Advancements in the Control of Dynamic Matching Markets

Ali Aouad (LBS)

Dec 2024, CIRM

Online Stochastic Matching

o Problem statement: sequentially matching agents (supply resources, customer queries) in a graph with **stochastic arrivals**

Online Stochastic Matching

- o Problem statement: sequentially matching agents (supply resources, customer queries) in a graph with stochastic arrivals
- o Expansive literature in computer science / operations research
 - Online matching: KVV ['90], MGS ['12], JL ['14], PPSW['21]...
 - Matching queues: CK ['09], GW ['14], AAGK ['17], TX ['17]...

Online Stochastic Matching

- o Online matching problem: sequentially matching supply (resources) with demand (customer queries) across a bipartite graph
- o Expansive literature in computer science / operations research
 - Online matching: KVV ['90], MGS ['12], JL ['14], PPSW['21]...
 - Matching queues: CK ['09], GW ['14], AAGK ['17], TX ['17]...

Optimization-based matching policies for dynamic processes

- 1 Dynamic arrival/departure process
- Correlated arrival process

Dynamic Stochastic Matching Under Limited Time

Joint work with Omer Saritaç (LBS)

Role of "Timing" in Matching Platforms

Matching markets are dynamic (= new agents enter or abandon the market)

Role of "Timing" in Matching Platforms

Matching markets are dynamic (= new agents enter or abandon the market)

E.g., Car-Pooling ¹

"Longer initial wait times enabled the app to make more efficient matches"

Contributions—what's coming

- Modeling approach: Dynamic stochastic matching
- 2 Simple provably good matching algorithms
 - New mathematical programming relaxations
 - o Threshold policies, online correlated rounding
- 3 Numerical simulations-car-pooling system

2 Market Dynamics

2 Market Dynamics

Abandonment cost: $c_a(i)$

2 Market Dynamics

Abandonment cost: $c_a(i)$

Cost Minimization Problem

$$\inf_{\pi} \lim_{t \to \infty} \frac{\mathbb{E}[C^{\pi}(t)]}{t}$$

Reward Maximization Problem

$$\sup_{\pi} \lim_{t \to \infty} \frac{\mathbb{E}[R^{\pi}(t)]}{t}$$

Classical Matching vs. Dynamic Matching

	"Classical" Online Matching	Our Setting
When agents arrive?	Online/Offline	Dynamic (Poisson)
When to match?	Immediately	Stopping time problem
Horizon?	Finite	Steady-state (avg. cost)

Classical Matching vs. Dynamic Matching

	"Classical" Online Matching	Our Setting
When agents arrive?	Online/Offline	Dynamic (Poisson)
When to match?	Immediately	Stopping time problem
Horizon?	Finite	Steady-state (avg. cost)
Algorithm design?	Competitive algorithms	?

Theory & practice: ABDJSS ['18], YZKW ['19]

Theory & practice: ABDJSS ['18], YZKW ['19]

Informal Theorem [A. and Saritac '20]: In the min-cost setting, the performance guarantee of the batching policy with optimal batch window can be arbitrarily bad.

Informal Theorem [A. and Saritac '20]: In the min-cost setting, the performance guarantee of the batching policy with optimal batch window can be arbitrarily bad.

Proof construction:

- o Passive vs. active vertices: passive = matched with vertex arriving earlier
- o Decision variable: $x_{i,j}$ match rate of active type-i with passive type-j vertices

- Passive vs. active vertices: passive = matched with vertex arriving earlier
- o Decision variable: $x_{i,j}$ match rate of active type-i with passive type-j vertices

$$L^* = \min_{x_{i,j}, x_{i,a} \ge 0} \qquad \sum_{i} c_a(i) \cdot x_{i,a} + \sum_{(i,j)} c(i,j) \cdot x_{i,j}$$

- Passive vs. active vertices: passive = matched with vertex arriving earlier
- \circ Decision variable: $x_{i,j}$ match rate of active type-i with passive type-j vertices

$$L^* = \min_{x_{i,j}, x_{i,a} \ge 0} \qquad \sum_{i} c_a(i) \cdot x_{i,a} + \sum_{(i,j)} c(i,j) \cdot x_{i,j}$$
s.t.
$$\sum_{i} x_{j,i} + \sum_{i} x_{i,j} + x_{i,a} = \lambda_i , \qquad \forall i$$

- Passive vs. active vertices: passive = matched with vertex arriving earlier
- o Decision variable: $x_{i,j}$ match rate of active type-i with passive type-j vertices

$$L^* = \min_{x_{i,j}, x_{i,a} \ge 0} \qquad \sum_{i} c_a(i) \cdot x_{i,a} + \sum_{(i,j)} c(i,j) \cdot x_{i,j}$$
s.t.
$$\sum_{j} x_{j,i} + \sum_{j} x_{i,j} + x_{i,a} = \lambda_i , \qquad \forall i$$

$$\frac{\mu_i}{\lambda_j} \cdot x_{i,j} \le x_{i,a} , \qquad \forall (i,j)$$

"Minimal" level abandonment

Performance Metrics (Refresher)

o Competitive Ratio: Performance relative to "optimum offline"

$$\max_{\mathcal{I}} \ \frac{c^{\mathrm{alg}}(\mathcal{I})}{c^{\mathrm{off}(\mathcal{I})}(\mathcal{I})} \quad \left. \right] \quad \text{Benchmark knows all arrivals and sojourn times!}$$

o Approximation Ratio: Performance relative to "optimum online"

$$\max_{\mathcal{I}} \ \frac{c^{\operatorname{alg}}(\mathcal{I})}{c^*(\mathcal{I})} \quad \text{Realistic benchmark} \\ = \operatorname{best implementable policy}$$

Value of Dynamic Information

- o Approximation Ratio: Relative performance vs. optimal policy
- o Competitive Ratio: Relative performance vs. full-information policy

Informal Theorem [A. and Saritac '20]: For the min-cost problem, no algorithm achieves a positive constant-factor competitive ratio.

Approximation Result for Cost-Minimization

Spatial graphs: The costs $\{c(i,j), c_a(i)\}_{i,j}$ satisfy the triangle inequality

Theorem 1 [A. and Saritac '20]: The cost minimization dynamic matching problem admits a polynomial-time factor-3 approximation on spatial graphs with uniform μ -s.

Approximation Result for Cost-Minimization

Spatial graphs: The costs $\{c(i,j), c_a(i)\}_{i,j}$ satisfy the triangle inequality

Theorem 1 [A. and Saritac '20]: The cost minimization dynamic matching problem admits a polynomial-time factor-3 approximation on spatial graphs with uniform μ -s.

Matching policy: threshold-based or additive-approximation of value function

Auxiliary Stopping Time Problem

Focus on a single active vertex (ignore competition)

Optimal stopping rule $\ T$

Auxiliary Stopping Time Problem

Focus on a single active vertex (ignore competition)

Optimal stopping rule $\ T$

Lem. [A. and Saritac '20]: The optimal stopping rule is threshold-based. The optimal threshold \bar{c}_i is independent of the current state and can be computed in polynomial-time.

Approximation Result for Cost-Minimization

Spatial graphs: The costs $\{c(i,j), c_a(i)\}_{i,j}$ satisfy the triangle inequality

Theorem 1 [A. and Saritac '20]: The cost minimization dynamic matching problem admits a polynomial-time factor-3 approximation on spatial graphs with uniform μ -s.

Matching policy: threshold-based or additive-approximation of value function

Empirical Simulation---NY Taxi Demand

- We focus on four time windows that represents various market conditions
- Split the data into training and test sets
 - Define rider types and estimate their arrival rates

Day of week	Time of day	Number of types $ \mathcal{T} $	Sample size	
			Training set	Test set
Monday	7:30 AM - 8:00 AM	272	50988	9022
	11:00 AM - 11:30 AM	272	48484	7064
Saturday	7:30 AM - 8:00 AM	218	15036	2535
	5:30 AM - 6:00 PM	307	70035	10275

Table: Summary statistics of the data set generated for each time window

Performance Metrics

Total Cost is an affine function of the two performance metrics

- Match Rate: Percentage of riders matched
- Saving Rate: Percentage of trip costs saved by pooling

Total Cost = $\alpha - \beta_1 \cdot Match Rate - \beta_2 \cdot Saving Rate$

Numerical Results

Match rate = % matched before abandoning Saving rate = % cost saved by pooling riders

Main Result for General Networks

Main Result for General Networks

Theorem 2 [A. and Saritac '20]: The reward maximization dynamic matching problem admits efficient constant-factor approximations:

- On general graphs, the approximation ratio is \$\frac{1}{4} \cdot \left(1 \frac{1}{e}\right)\$.
 On bipartite graphs, the approximation ratio is \$\frac{1}{2} \cdot \left(1 \frac{1}{e}\right)\$.
- On bipartite graphs with one impatient side, the approximation ratio is $\left(1-\frac{1}{e}\right)$.

Our policy is a correlated rounding of the LP relaxation.

LP Rounding Algorithm

Step 1: Solve a flow matching problem ("fluid relaxation")

Step 2: Randomization based on fractional flow ("rounding")

LP Rounding Algorithm

Step 1: Solve a variant of our LP relaxation

Step 2: Flexible randomization based on fractional flow

Role of Pooling Effects

Role of Pooling Effects

By pooling A + B, we can minimize waiting times + abandonments

Step 1: Flexible Randomization

Active vertices

Passive vertices

Step 1: Flexible Randomization

 μ_i

Analysis outline

- Flow decomposition : each arrival → randomly assigned "active" or "passive" and "compatibility set"
- Lower bound on the availability rates of active types: virtual Markov chain
- PASTA property: relating the lower bound on reward rates to original LP solution

Analysis outline

- 1. Flow decomposition : each arrival → randomly assigned "active" or "passive" and "compatibility set"
- 2. Lower bound on the availability rates of active types: virtual Markov chain
- 3. PASTA property: relating the lower bound on reward rates to the original LP solution

Step 2: Lower bound via virtual Markov chain

Step 2: Lower bound via virtual Markov chain

Create virtual copies of passive vertices to satisfy all active vertices

A Nonparametric Framework for Online Stochastic Matching with Correlated Arrivals

Joint work with Will Ma (Columbia GSB)

Outline

- 1 Nonparametric models with correlated arrivals
- (2) New matching algorithms with optimal competitive/approximation ratios

bipartite graph:

bipartite graph:

bipartite graph:

arrival process:

serial independence (i.e., no correlations)

Limitations of "serial independence" assumption

 \circ Estimation error $T, oldsymbol{p}_t$

 $D_j \sim PoissonB\left(p_{1,j}, p_{2,j}, \ldots\right)$

 $D_j \sim PoissonB\left(p_{1,j}, p_{2,j}, \ldots\right)$

 $\operatorname{Var}(D_j) \leq \operatorname{E}[D_j]$

Limitations of "serial independence" assumption

- \circ Estimation error T, \boldsymbol{p}_t
- o Textbook demand models, e.g., Gaussian

Limitations of "serial independence" assumption

- \circ Estimation error T, \boldsymbol{p}_t
- o Textbook demand models, e.g., Gaussian
- o A majority (70%+) of high-demand SKUs violate $Var(D_j) \leq E[D_j]$
 - o JD.com e-commerce order data (M&SOM 2020)
 - o Large fashion retailer (2014-2015 data), 200,000 SKUs

$Var(D_j) < E[D_j]$ is unreasonably optimistic

JD.com Data¹

$Var(D_j) < E[D_j]$ is unreasonably optimistic

JD.com data¹

$Var(D_j) < E[D_j]$ is unreasonably optimistic

Order fulfilment data¹

$Var(D_i) < E[D_i]$ is unreasonably optimistic

Order fulfilment data¹

¹Largest 200,000 SKUs, August-December 2014, bi-weekly aggregation

Outline

- 1 Nonparametric models with correlated arrivals
- (2) New matching algorithms with optimal competitive/approximation ratios

Nonparametric models

- o serial independence assumption
- o modelling the arrival process (t)

Nonparametric models

INDEP model

- Each type-demand D_j follows an arbitrary (known) distribution
- But type-demands are independent $D_i \perp \!\!\! \perp D_k$

E.g., independent regions

Nonparametric models

CORREL model

- The total demand $D = \sum D_j$ follows an arbitrary (known) distribution
- Conditional on T = D, the *t*-th query type independently sampled from p_t

E.g., common shock across regions

conditional on D!

Outline

- (1) Nonparametric models with correlated arrivals
- New matching algorithms with optimal competitive/approx. ratios
 - Tighter polyhedral relaxations (≠ fluid relaxation)
 - Lossless rounding scheme

LPfluid =
$$\max_{x} \sum_{i,j} r_{i,j} x_{i,j}$$

s.t. $\sum_{i} x_{i,j} \le k_{i}$
 $\sum_{j} x_{i,j} \le \mathbb{E}[D_{j}]$
 $x_{i,j} \ge 0$

$$\operatorname{LP}^{\text{fluid}} = \max_{x} \sum_{i,j} r_{i,j} x_{i,j}$$

$$s.t. \sum_{i} x_{i,j} \leq k_{i}$$

$$\sum_{j} x_{i,j} \leq \mathbb{E}[D_{j}]$$

$$x_{i,j} \geq 0$$

$$\operatorname{LP^{trunc}} = \max_{x} \sum_{i,j} r_{i,j} x_{i,j}$$

$$s.t. \sum_{j} x_{i,j} \leq k_{i} \quad \forall i$$

$$\sum_{i \in S} x_{i,j} \leq \mathbb{E} \left[\min \left\{ \sum_{i \in S} k_{i}, D_{j} \right\} \right] \quad \forall j, S \subseteq [n]$$

$$x_{i,j} \geq 0$$

LPfluid =
$$\max_{x} \sum_{i,j} r_{i,j} x_{i,j}$$

s.t. $\sum_{i} x_{i,j} \leq k_{i}$
 $\sum_{j} x_{i,j} \leq \mathbb{E}[D_{j}]$
 $x_{i,j} \geq 0$

$$LP^{trunc} = \max_{x} \sum_{i,j} r_{i,j} x_{i,j}$$

$$s.t. \quad \sum_{j}^{i,j} x_{i,j} \le k_i \quad \forall i$$

S: subset of resources; Hall's marriage condition and taking expectations

$$\sum_{i \in S} x_{i,j} \le \mathbb{E} \left[\min \left\{ \sum_{i \in S} k_i, D_j \right\} \right] \quad \forall j, S \subseteq [n]$$

$$x_{i,j} \ge 0$$

LPfluid =
$$\max_{x} \sum_{i,j} r_{i,j} x_{i,j}$$

s.t. $\sum_{i} x_{i,j} \leq k_{i}$
 $\sum_{j} x_{i,j} \leq \mathbb{E}[D_{j}]$
 $x_{i,j} \geq 0$

$$LP^{trunc} = \max_{x} \sum_{i,j} r_{i,j} x_{i,j}$$

$$s.t. \quad \sum_{j}^{i,j} x_{i,j} \le k_i \quad \forall i$$

S: subset of resources; Hall's marriage condition and taking expectations

$$\sum_{i \in S} x_{i,j} \le \mathbb{E} \left[\min \left\{ \sum_{i \in S} k_i, D_j \right\} \right] \quad \forall j, S \subseteq [n]$$

$$x_{i,j} \ge 0$$

$$\text{LP}^{\text{fluid}} = \max_{x} \ \sum_{i,j} r_{i,j} x_{i,j} \\ \text{s.t.} \ \sum_{i} x_{i,j} \leq k_{i} \\ \sum_{j} x_{i,j} \leq \mathbb{E}[D_{j}] \\ x_{i,j} \geq 0$$

$$\text{LP}^{\text{trunc}} = \max_{x} \ \sum_{i,j} r_{i,j} x_{i,j} \\ \text{s.t.} \ \sum_{j} x_{i,j} \leq k_{i} \ \forall i$$
 S: subset of resources; Hall's marriage condition and taking expectations
$$s.t. \ \sum_{j} x_{i,j} \leq k_{i} \ \forall i$$

$$\sum_{i \in S} x_{i,j} \leq \mathbb{E}\left[\min\left\{\sum_{i \in S} k_{i}, D_{j}\right\}\right] \ \forall j, S \subseteq [n]$$

$$x_{i,j} \geq 0$$

Proposition [A., Ma '22]: Valid benchmark $LP^{trunc} \geq OFF$

Proposition [A., Ma '22]: LP^{trunc} is solvable in polynomial time (polymatroid constraints).

Main results – INDEP

Theorem [A., Ma, Zhang '23]: For INDEP, there is no matching policy better than

1/2-competitive even under large inventory and uniform arrivals.

Main results – INDEP

Theorem [A., Ma, Zhang '23]: For INDEP, there is no matching policy better than 1/2-competitive even under large inventory and uniform arrivals.

Theorem [A., Ma '23]: For INDEP, there exists a 1/2-competitive matching policy (against our LP) that is computed in polynomial time, even under adversarial arrivals.

Main results – INDEP

Theorem [A., Ma, Zhang '23]: For INDEP, there is no matching policy better than 1/2-competitive even under large inventory and uniform arrivals.

Theorem [A., Ma '23]: For INDEP, there exists a 1/2-competitive matching policy (against our LP) that is computed in polynomial time, even under adversarial arrivals.

Proof idea:

Reduction to single-offline node prophet inequality via lossless rounding

The central rounding lemma

$$LP^{\text{fluid}} = \max_{x} \sum_{t} \sum_{i,j} r_{i,j} x_{i,j}^{t}$$

$$s.t. \sum_{i} \sum_{t} x_{i,j}^{t} \leq k_{i}$$

$$\sum_{j} x_{i,j}^{t} \leq \theta_{t,j}$$

$$\operatorname{LP^{trunc}} = \max_{x} \sum_{i,j} r_{i,j} x_{i,j}$$

$$s.t. \sum_{j} x_{i,j} \leq k_{i} \quad \forall i$$

$$\sum_{i \in S} x_{i,j} \leq \mathbb{E} \left[\min \left\{ \sum_{i \in S} k_{i}, D_{j} \right\} \right] \quad \forall j, S \subseteq [n]$$

$$x_{i,j} \geq 0$$

The central rounding lemma

$$\operatorname{LP}^{\text{fluid}} = \max_{x} \sum_{t} \sum_{i,j} r_{i,j} x_{i,j}^{t}$$

$$s.t. \sum_{i} \sum_{t} x_{i,j}^{t} \leq k_{i}$$

$$\sum_{j} x_{i,j}^{t} \leq \theta_{t,j}$$

$$x_{i,j} \leq 0$$

$$\operatorname{LP}^{\text{frunc}} = \max_{x} \sum_{i,j} r_{i,j} x_{i,j}$$

$$s.t. \sum_{j} x_{i,j} \leq k_{i} \quad \forall i$$

$$\sum_{i \in S} x_{i,j} \leq \mathbb{E} \left[\min \left\{ \sum_{i \in S} k_{i}, D_{j} \right\} \right] \quad \forall j, S \subseteq [n]$$

Lemma [A., Ma '22]: There exists a lossless rounding for $\mathrm{LP}^{\mathrm{trunc}}$ for each type j

$$\Pr_{\pi \sim \lambda_j} \left[\sum_{\ell} \mathbb{I}[\pi(\ell) = i] \cdot \Pr[D_j \ge \ell] \right] = x_{i,j}^*$$

The central rounding lemma

Lemma [A., Ma '22]: There exists a lossless rounding for $\mathrm{LP}^{\mathrm{trunc}}$ for each type j:

$$\Pr_{\pi \sim \lambda_j} \left[\sum_{\ell} \mathbb{I}[\pi(\ell) = i] \cdot \Pr[D_j \ge \ell] \right] = x_{i,j}^*$$

- \circ E.g., nonparametric demand $\Pr\left[D_j \geq \ell\right] = 1/2^{\ell-1}$ with $\ell = 1, \ldots, 4$
- o Feasible fractional matching: $x_j^* = \left(\frac{1}{8}, \frac{3}{8}, \frac{7}{8} + \epsilon\right)$
- Binding constraints:

$$\frac{7}{8} + \epsilon \le \text{E}[\min\{D_j, 1\}] = 1$$

$$\frac{11}{8} + \epsilon \le \text{E}[\min\{D_j, 2\}] = \frac{3}{2}$$

$$\frac{13}{8} + \epsilon \le \text{E}[\min\{D_j, 3\}] = \frac{7}{4}$$

Which query is routed to resource 1? Greedy?

$$x_j^* = \left(\frac{1}{8}, \frac{3}{8}, \frac{7}{8} + \epsilon\right)$$

$$\ell = 1$$

$$\ell=2$$

$$\ell = 2$$
 $\ell = 3$

$$\ell = 4$$

| null query

routed query

Which query is routed to resource 1? Proportional? ®

$$x_j^* = \left(\frac{1}{8}, \frac{3}{8}, \frac{7}{8} + \epsilon\right)$$

$$\ell = 1$$

$$\ell = 2$$

$$\ell = 2$$
 $\ell = 3$

$$\ell = 4$$

null query

routed query

Concluding remarks

- Common principles
 - o Limitations of fluid relaxation for more rich stochastic matching problems
 - o Tighter LP relaxations: more closely approximating the online/offline optimum
 - o "Attainability" results: contention resolution or correlated roundings
- Open questions & future directions
 - o Breaching (1-1/e)-approximation for dynamic matching
 - Sample complexity of nonparametric stochastic models
 - o Other models of correlation: e.g., prediction uncertainty

Main results – CORREL

Observation [A., Ma '22]: For CORREL, no constant-factor competitive ratio is achievable.

Theorem [A., Ma '22]: For CORREL, there exists an approximate matching policy that achieving an approximation ratio $\gamma_k^* > (1+\sqrt{k})^{-1}$, where γ_k^* is the best-known competitive ratio for k-unit prophet inequality.

Proof ideas:

- o Conditional LP: valid inequalities conditional on the largest arrival sequence length
- o Reduction to online contention resolution scheme [Jiang, Ma, and Zhang, 22]

Conditional LP

$$LP^{\text{fluid}} = \max_{x} \sum_{t} \sum_{i,j} r_{i,j} x_{i,j}^{t}$$

$$s.t. \sum_{i} \sum_{t} x_{i,j}^{t} \leq k_{i}$$

$$\sum_{j} x_{i,j}^{t} \leq \theta_{t,j}$$

$$LP^{\text{cond}} = \max_{x} \sum_{t} \sum_{i,j} r_{i,j} x_{i,j}^{t}$$

$$s.t. \sum_{i} \sum_{t} \frac{1}{\Pr[D \ge t]} \cdot x_{i,j}^{t} \le k_{i}$$

$$\sum_{i} \frac{1}{\Pr[D \ge t]} \cdot x_{i,j}^{t} \le \theta_{t,j}$$

Intuition: "the tightest constraints are given by the largest possible demand"