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Online Stochastic Matching

o Problem statement: sequentially matching agents (supply resources,
customer queries) in a graph with stochastic arrivals



Online Stochastic Matching

o Problem statement: sequentially matching agents (supply resources,
customer queries) in a graph with stochastic arrivals

o Expansive literature in computer science / operations research
* Online matching: KWV ['90], MGS ['12], JL ['14], PPSW['21]...
« Matching queues: CK ['09], GW ["14], AAGK ["17], TX["17]...



Online Stochastic Matching

Optimization-based matching policies for dynamic processes

@ Dynamic arrival/departure process

9 Correlated arrival process



Dynamic Stochastic Matching
Under Limited Time

Joint work with Omer Saritac (LBS)



Role of “Timing” in Matching Plattorms

o Matching markets are dynamic (= new agents enter or abandon the market)



Role of “Timing” in Matching Plattorms

o Matching markets are dynamic (= new agents enter or abandon the market)

E.g., Car-Pooling

“Longer initial wait times enabled the
app to make more efficient matches”

"Korolko et al. ['19], HBS case study: The Launch of Express Pool ['18]



Contributions—what’s coming

0 Modeling approach: Dynamic stochastic matching

e Simple provably good matching algorithms
o New mathematical programming relaxations

o Threshold policies, online correlated rounding

e Numerical simulations-car-pooling system



Dynamic Stochastic Matching Model



Dynamic Stochastic Matching Model
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Dynamic Stochastic Matching Model
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weighted graph E.g., Car-pooling

Type = (Origin, Destination, "Patience”)



Dynamic Stochastic Matching Model

@ e Market Dynamics
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Dynamic Stochastic Matching Model

a Market Dynamics
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Dynamic Stochastic Matching Model

a Market Dynamics
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Dynamic Stochastic Matching Model

Cost Minimization Problem

 E[C7(t)]
Ci i inf lim

Reward Maximization Problem

' E[R™ (¢
@ sup lim | t()]

Abandonment cost: ¢ (1) r t—00




Classical Matching vs. Dynamic Matching

“Classical” Online Our Setting

Matching
When agents arrive? Online/Offline Dynamic (Poisson)
When to match? Immediately Stopping time problem
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Classical Matching vs. Dynamic Matching

“Classical” Online Our Setting

Matching
When agents arrive? Online/Offline Dynamic (Poisson)
When to match? Immediately Stopping time problem
‘Horizon? . Finite, Steady-state (avg. cost)

________________________________________________________________________________________________________________________________________________________________________________________________________

Algorithm design? Competitive algorithms | ?



Performance of Batching Policies?



Performance of Batching Policies?

Theory & practice: ABDJSS ['18], YZKW ['19]

ERIE L

A Batch WlndOWT A A



Performance of Batching Policies?

Theory & practice: ABDJSS ['18], YZKW ['19]

ERIE L

A Batch W|ndowT A A

v

Informal Theorem [A. and Saritac ‘20]: In the min-cost setting, the performance guarantee
of the batching policy with optimal batch window can be arbitrarily bad.




Performance of Batching Policies?

Informal Theorem [A. and Saritac '20]: In the min-cost setting, the performance guarantee
of the batching policy with optimal batch window can be arbitrarily bad.

Proof construction:

Frequent arrivals

Even with homogeneous

Infrequent arrivals
abandonments/costs 9



Linear Programming Relaxation



Linear Programming Relaxation

o Passive vs. active vertices: passive = matched with vertex arriving earlier

o Decision variable: i, match rate of active type-i with passive type-j vertices
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Linear Programming Relaxation

o Passive vs. active vertices: passive = matched with vertex arriving earlier

o Decision variable: i, match rate of active type-i with passive type-j vertices

L* = min Z Ca(/l:) *Tjq T Z C(Zvj) " L4

Ti,5,%i,a >0 —
(4,7)

)
S.t. ij,i -+ in,j -+ Lia = )\z y A}
J J



Linear Programming Relaxation

o Passive vs. active vertices: passive = matched with vertex arriving earlier

o Decision variable: i, match rate of active type-i with passive type-j vertices

L* = min Z xza+2623 C T ]

Zi, j,Tiaq=>0
(4,5)

S.t. Zxﬂ—l—Zx”qL:vw—)\z, A}

M 2 < Ty, V(i J)

)\j _.\

“"Minimal” level abandonment



Performance Metrics (Refresher)

o Competitive Ratio: Performance relative to “optimum offline”

c8(T)
mIaX coff(Z) (I) Benchmark knows all
arrivals and sojourn times!

o Approximation Ratio: Performance relative to “optimum online”

Calg (I)
mIaX » (I) Realistic benchmark
& = best implementable policy




Value of Dynamic Information

o Approximation Ratio: Relative performance vs. optimal policy

o Competitive Ratio: Relative performance vs. full-information policy

Informal Theorem [A. and Saritac '20]: For the min-cost problem, no algorithm
achieves a positive constant-factor competitive ratio.




Approximation Result tfor Cost-Minimization

Spatial graphs: The costs {¢(¢,7), ca(?)}4,;5 satisfy the triangle inequality

Theorem 1 [A. and Saritac '20]: The cost minimization dynamic matching problem
admits a polynomial-time factor-3 approximation on spatial graphs with uniform W -s.




Approximation Result tfor Cost-Minimization

Spatial graphs: The costs {¢(¢,7), ca(?)}4,5 satisfy the triangle inequality

Theorem 1 [A. and Saritac '20]: The cost minimization dynamic matching problem
admits a polynomial-time factor-3 approximation on spatial graphs with uniform [-s.

Matching policy: threshold-based or additive-approximation of value function
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Auxiliary Stopping Time Problem

Focus on a single active vertex (ignore competition)

R o & 4fa

A

Optimal stopping rule I’



Auxiliary Stopping Time Problem

Focus on a single active vertex (ignore competition)

R o & 4fa

A

Optimal stopping rule I’

v

Lem. [A. and Saritac '20]: The optimal stopping rule is threshold-based. The optimal
threshold C; is independent of the current state and can be computed in polynomial-time.




Approximation Result tfor Cost-Minimization

Spatial graphs: The costs {¢(¢,7), ca(?)}4,5 satisfy the triangle inequality

Theorem 1 [A. and Saritac '20]: The cost minimization dynamic matching problem
admits a polynomial-time factor-3 approximation on spatial graphs with uniform [-s.

Matching policy: threshold-based or additive-approximation of value function
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Empirical Simulation---NY Taxi Demand

o We focus on four time windows that represents various market conditions

o Split the data into training and test sets
 Define rider types and estimate their arrival rates

: ‘ Sample size
Day of week | Time of day Number of types |T| Training set  Test set
Monday 7:30 AM - 8:00 AM 272 50988 9022
11:00 AM - 11:30 AM 272 48484 7064
Saturday 7:30 AM - 8:00 AM 218 15036 2535
5:30 AM - 6:00 PM 307 70035 10275

Table: Summary statistics of the data set generated for each time window




Performance Metrics

Total Cost is an affine function of the two performance metrics
o Match Rate: Percentage of riders matched

o Saving Rate: Percentage of trip costs saved by pooling

Total Cost = a« — 31 - Match Rate — (35 - Saving Rate



Numerical Results

Algorithm | | Batching | | Threshold | | Vertex-Additive

Algorithm -e- Batching -®- Threshold -®- Vertex—Additive

30% =

Saving Rate

20% =

70.I0°/o 80.'0% 90.I0% 1 OOI.O% O.(l)% 1 O.IO% 20 .IO% 30.I0°/o 40 .IO% 50.I0%
Match Rate Saving Rate
Match rate = % matched before abandoning

Saving rate = % cost saved by pooling riders



Main Result for General Networks



Main Result for General Networks

Theorem 2 [A. and Saritac ‘20]: The reward maximization dynamic matching
problem admits efficient constant-factor approximations:

«  On general graphs, the approximation ratio is ;- (1—%> .

+  On bipartite graphs, the approximation ratio is ;- (1—9 .
« On bipartite graphs with one impatient side, the approximation ratio is (1—2) .

Our policy is a correlated rounding of the LP relaxation.




LP Rounding Algorithm

Step 1: Solve a flow matching problem (“tluid relaxation”)

Step 2: Randomization based on fractional flow (“rounding”)



P Rounding Algorithm

Step 1: Solve a variant of our LP relaxation

Step 2: Flexible randomization based on fractional flow



Role of Pooling Eftects

i& Agent to be matched

Thought experiment...




Role of Pooling Effects

ﬁ Agent to be matched

o ,{o o

By pooling A + B, we can minimize
waiting times + abandonments



Step 1: Flexible Randomization

Passive vertices

(39 «Xa
;
Active vertices @

oczj:a;;j = @ e
U

2%



Step 1: Flexible Randomization

Compatibility-sets = Pooling effects

Passive vertices
(3o -5
i

+00




Analysis outline

1. Flow decomposition : each arrival 2 randomly assigned
"active” or "passive” and “compatibility set”



Analysis outline

3.

. Flow decomposition : each arrival 2 randomly assigned

"active” or "passive” and “compatibility set”

_ower bound on the availability rates of active types: virtual
Markov chain

PASTA property: relating the lower bound on reward rates to
the original LP solution



Step 2: Lower bound via virtual Markov chain

"True” Markov chain

Passive
vertices
Active =
vertices

Real Matches

—



Step 2: Lower bound via virtual Markov chain

"True” Markov chain

Passive

vertices

Active
vertices

Real Matches

==

“Virtual” Markov chain

Passive
vertices

Active -
vertices _ - - -
- P
7

Virtual Matches
—_——

Create virtual copies of passive vertices
to satisfy all active vertices



London
Business

School

A Nonparametric Framework for Online
Stochastic Matching with Correlated Arrivals

Joint work with Will Ma (Columbia GSB)



Outline

G Nonparametric models with correlated arrivals

@ New matching algorithms with optimal competitive/approximation ratios



Classic offline/online model

bipartite graph:



Classic offline/online model

bipartite graph:

starting
inventory
k;
resources 1 query types J

(offline) (online)



Classic offline/online model

bipartite graph:

starting
inventory

k;

resources 1 query types J

matching rewards 7 ;



Classic offline/online model

arrival process:

1 t-1
x0 |

|
I |
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Classic offline/online model

arrival process:

1 t-1 t t+1
x0 |

| | |
I | | |

x0 <
o ®

P:_1




Classic offline/online model

arrival process:

1 t-1 t t+1
X1 I |




Classic offline/online model

arrival process:

1 t-1 t t+1
X2 |

| | |
I | | |

0 ® <0

|



Classic offline/online model

arrival process:

1 t-1 t t+1
|

serial independence
(i.e., no correlations)



Limitations ot “serial independence” assumption

o Estimation error 1T', p,



Classic offline/online model

arrival process:

1 t-1 t t+1 T

- | | | |
D; ~ PoissonB (pyj,p2.j, - ) o & & o
N AT



Classic offline/online model

arrival process:

1 t-1 t t+1 T
D; ~ PoissonB (p1.j,p2.,---) Qo O O x Dg
N A
A

Var(Dj) S E[D]]



Limitations ot “serial independence” assumption

o Estimation error 1T', p,

o Textbook demand models, e.g., Gaussian



Limitations ot “serial independence” assumption

o Estimation error 1T', p,

o Textbook demand models, e.g., Gaussian

o A majority (70%+) of high-demand SKUs violate Var(D;) < E|[D;]
oJD.com e-commerce order data (M&SOM 2020)
o Large tfashion retailer (2014-2015 data), 200,000 SKUs



Var(D,) < E[Dj] is unreasonably optimistic

JD.com Data'’

'Largest 40x40 (SKU,location) pairs, weekly level aggregates' (March 2018)



Var(D,) < E[Dj] is unreasonably optimistic

JD.com data’

79% of SKU-locations
(R2 = 69%)

'Largest 40x40 (SKU,location) pairs, weekly level aggregates' (March 2018)



Var(D,) < E[Dj] is unreasonably optimistic

Order fulfilment data’

'Largest 200,000 SKUs, August-December 2014, bi-weekly aggregation



Var(D,) < E[Dj] is unreasonably optimistic

Order fulfilment data’

==

R
—~
S
~

n'-'-""e‘ >

73% of SKUs

U LTHTY )

-
(=]
o]

|
N
oione
[
[

ve'®!

100 150 200 250 300 350
demand

o
&

'Largest 200,000 SKUs, August-December 2014, bi-weekly aggregation



Classic offline/online model

arrival process:

1 t-1 t t+1 T

-----------------------------------------

_________________________________________
-----------------------------------------

D] ~ PO?;SSO’TLB (pl’j,pQJ, . . ) |$ JJ_ g XDj E

_________________________________________
-----------------------------------------

~ cross-sectional independence 1 reen e

e.g., Huang and Shu ['21] A



Outline

G Nonparametric models with correlated arrivals

@ New matching algorithms with optimal competitive/approximation ratios



Nonparametric models

o serial independence assumption
o modelling the arrival process (t)

Nonparametric models

_________________________________________

1. demand distribution D
2. arrival ordering: ADV, RAND




Nonparametric models

INDEP model | | | | N

« Each type-demand D; follows an
arbitrary (known) distribution

« But type-demands are independent
D; 1l Dy

E.g., independent regions



Nonparametric models

CORREL model . t

. The total demand D =) _D; follows
an arbitrary (known) distdbution

« Conditional on T= D, the t-th query
type independently sampled from Py

E.g., common shock across regions

conditional on D!



Outline

@ Nonparametric models with correlated arrivals

a New matching algorithms with optimal competitive/approx. ratios
o Tighter polyhedral relaxations (# fluid relaxation)

o Lossless rounding scheme



LP benchmark for IN




LP benchmark for IN

fluid __ o
LP = max g 75, i %i,

2V}
s.t. in’j S kz
> wij <E[Dy]
J

Zi,j 2 0

D

=P

LPtrunc — IMax E T,5L4,5
x

[2¥]
s.t. invj S ]C,L A}
J

in,j S K

€S

Ti,j 2 U

min {

> ki, D;

€S

}] V4,5 C [n]



LP benchmark for INDEP

_ [ptrune — o oy S: subset of resources;
LPiud — max Zm,jxi,j x ; I Hall's marriage condition
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s.t. i < ki Vi
S.t. in’j <k; ; o ’
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LP benchmark for INDEP

. [ptrune — o o S: subset of resources;
LPMd — max Z?“i,jxi,j x ; BT Hall’s marriage condition
v ,J and taking expectations
s.t. x; i < k; Vi
S.t. in’j <k; ; o ’
i
Z%‘,j < E[D;] szg < E {min {Z kiaDj}] Vj, 8 C [n]

J i€S i€S

Xy, 4 Z 0 Li 4 Z 0

Proposition [A., Ma ‘22]: Valid benchmark LP"""¢ > OFF

Proposition [A., Ma '22]: LP"""° is solvable in polynomial time (polymatroid constraints).




Main results — INDEP

Theorem [A., Ma, Zhang ‘23]: For INDEP, there is no matching policy better than

1/2-competitive even under large inventory and uniform arrivals.
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(against our LP) that is computed in polynomial time, even under adversarial arrivals.




Main results — INDEP

Theorem [A., Ma, Zhang ‘23]: For INDEP, there is no matching policy better than

1/2-competitive even under large inventory and uniform arrivals.

Theorem [A., Ma '23]: For INDEP, there exists a 1/2-competitive matching policy

(against our LP) that is computed in polynomial time, even under adversarial arrivals.

Proof idea:

Reduction to single-offline node prophet inequality via lossless rounding



The central rounding lemma

LPtrunc = INax E T,5L4,5
T

. 1 J
LPMud — max g E ri,jaﬁf,j
T t 4,5 s.t. E xi,j S kzL A}
J

s.t. Zzﬂfij < k;
it sz‘,j <E min{z ki,Dj}] V3,5 C [n]

t
E Ly j < et,j 1€S €S
J

Li g Z 0



The central rounding lemma

LPtrunc = INax E T,5L4,5
€T Y )

. 1 J
LPMud — max E E ri T i
J

s.t. szij < k;
it Zx” <E min{z ki,Dj}] V35,8 € [n]

t
E Ly j < Ht,j 1€S ieS
J

Li g Z 0

Lemma [A., Ma ‘22]: There exists a lossless rounding for LP*"""° for each type j

Prros, | Tw(f) =i - Pr[D; > 5]] =T
14




The central rounding lemma

For any fixed type demand distribution, the
LP fractional solutions represents all

achievable match rates to the m resources

Lemma [A., Ma ‘22]: There exists a lossless rounding for LP*""° for each type j:

Proea, | _Iw(l) =i - Pr[D; > (]| ==},
12




Rounding lemma

o E.g., nonparametric demand Pr[D; > /] = 1/2 Y with £ =1,...,4

o Feasible fractional matching: z* = (%, 2, % 1+ e)

o Binding constraints:

J—

g + e < Emin{D;,1}| =1

11
3 + e < Emin{D,,2}] =

13
< + ¢ < E[min{D;, 3}| =

I~ =3 DN W



Rounding lemma

' Pr[D; >/ =1/2""1
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Rounding lemma

' Pr[D; >/ =1/2""1

Which query is routed to resource 17

—————
I

_____

R —

(=1 (=9 (=3 0 =4 o



Rounding lemma

' Pr[D; >/ =1/2""1

ﬁ Which query is routed to resource 1? Greedy?
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Rounding lemma

' Pr[D; >/ =1/2""1

ﬁ Which query is routed to resource 1? Greedy? ®

—————
I

_____
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. routed query



Rounding lemma

' Pr[D; >/ =1/2""1
mm  Which query is routed to resource 1? Proportional? ®

—————

- . 1 3 7
xj=(§,§,8+e)

_____

S
' null query

(=1 (=2 (=3 (=4

. routed query



Rounding lemma

' Pr[D; >/ =1/2""1

Which query is routed to resource 17
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Rounding lemma

' Pr[D; >/ =1/2""1

Which query is routed to resource 27
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Rounding lemma

' Pr[D; >/ =1/2""1

Which query is routed to resource 27

R —



Rounding lemma

' Pr[D; >/ =1/2""1

Which query is routed to resource 37

R —



Concluding remarks

« Common principles
o Limitations of fluid relaxation for more rich stochastic matching problems
o Tighter LP relaxations: more closely approximating the online/offline optimum

o “Attainability” results: contention resolution or correlated roundings

* Open questions & future directions

o Breaching (1-1/e)-approximation for dynamic matching
o Sample complexity of nonparametric stochastic models

o Other models of correlation: e.g., prediction uncertainty



Main results — CORRE

_______________________________________________________________________________________________________________________

_______________________________________________________________________________________________________________________

iTheorem [A., Ma "22]: For CORREL, there exists an approximate matching policy thati
achieving an approximation ratio v; > (1 + VEk) lwhere ~; is the best-known competitive
ratio for k-unit prophet inequality.

_______________________________________________________________________________________________________________________

Proof ideas:
o Conditional LP: valid inequalities conditional on the largest arrival sequence length
o Reduction to online contention resolution scheme [Jiang, Ma, and Zhang, 22]



Conditional LP

LPMud — max E g Ti,jxfj
xT )
Y
s.t. E E x;; < ki
it
t
E 5’3@3 < 0:,
J

Lpeond = max ZZri,jxf,j
t i
1
s.t. Zzt: PrD > 1] g <

1 t
Lat <,
;PI‘[D Zt] xz,] = Yty

Intuition: “the tightest
constraints are given by the
largest possible demand”



