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   The power and limitations of imperfect advice in search games

   Focus mainly on pure (deterministic) strategies 

Quick summary of the presentation

Online Search with a Hint  (Information and Computation 2023 )  

Competitive Search in the Line and the Star with Predictions  (MFCS 2023 )

Based on the following works:

… but I will also touch on “real” search games with mixed strategies

   Motivated by recent advances on algorithms with ML predictions / untrusted advice

Search Games with Predictions (ongoing work with T. Lidbetter and K. Panagiotou)
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cS,h

rS,h
Pareto 

efficiency

What is the best consistency if we want 
the strategy to be � robust?r−



An example

H

Suppose  hint= LEFT / RIGHT,  and  that the searcher blindly follows the hint

This strategy is �  competitive(1,∞)

What are the other points on the Pareto frontier?
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Many studies of online problems under this learning-enhanced framework



Types of hints

The hint is the direction of the search (left or right)

The hint is the exact position of the target

The hint is a k-bit string 

H

𝟶𝟷𝟷𝟶𝟷…𝟷
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Positional and directional hints: summary of results

H

…

Lower bound Result

( br + 1
br − 1

, r)
  Properties of 

�
n

∑
i=0

xi−1 ≤ rxi

Lower bound Result

Generalization
of Gal’s Theorem

c = 1 + 2 ( b2

b2 − 1
+ δ

b3

b2 − 1 )

r = 1 + 2 ( b2

b2 − 1
+

1
δ

b3

b2 − 1 )

Positional hint

Upper bound

Directional hint

δ ⋅ b1 b0

δ ⋅ b2 b3

… Hint

Upper bound
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       Half of them start on the right, the other half start on the left 

2k

2.    Require that each of these strategies is individually � -robust
       (this gives a range for �  as function of � )

r
b r

3.    Consistency = competitive ratio of the best strategy, 
       optimize �  within the range of step (2).b

Tricky part: showing
that this is optimalconsistency=1 + 2

b1/2k−1

r

br − 1
max �  that guarantees
      � robustness   

b
r−
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�Lower bound: proof idea

Suppose k=1�  two searchers→ first discovered 
     by black

first discovered 
       by red

Consistency ≥ sup
i

costi

di

Apply Gal’s theorem on 
        this expression

Complications:

1. Need to incorporate individual robustness of searchers

2.  Searchers may be asymmetric  (more on one side than the other)

Workaround:  get into the details of the limsup

Workaround: Bijective mapping over the search lengths that “balances" things up
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�Extensions to star search

Results

   Tight bounds for positional hints

   Asymptotically tight results for directional hints 

   k-bit advice is open (in particular: lower bounds)

H

d(H)



Dealing with errors 

   Positional hint:         Error : distance of the hider from the hint

   Directional hint:       No concept of error for the line

   k-bit advice hint: 

Strategy:  Pretend that the searcher is 
                “close and beyond” the predicted position

Error : # of erroneous advice bits (or wrong query responses)

Strategy : Search the space of �  pseudo-geometric strategies 
                 by using fault-tolerant binary search 

2k

Takeaway: Upper and lower bounds via Rényi-Ulam games

For the star: rank difference between the predicted/actual ray



Search games (work in progress)

Consistency / robustness tradeoffs for mixed strategy games

  Box search:     n boxes, each with a search cost, payoff= expected search time

hint = hider’s box

  Tree search:    Expanding search in a tree-like network �Q
hint = a connected branch of �Q

Extends results of [Lidbetter 2013] 

Extends results of [Alpern and Lidbetter 2023]

  Linear search: Randomized search on the infinite line

hint = direction of search

Extends a result of [Gal 1980]
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  But how can we show that this is Pareto-optimal?

Answer: Suffices to study a new game in which the Searcher must minimize

              a given linear combination of consistency and robustness, i.e,

              �constistency + λ ⋅ robustness, with λ ∈ (0,1]

consistency = 1 +
1 + μα

ln α
robustness = 1 +

1 + α
μ

ln α

  We show that the value of this new game is �  ,

    which is matched by the randomized doubling strategy with �

1 + λ + min
α>1

1 + λ + 2 λα
ln a

μ = λ



Conclusion

   Searching with untrusted information under several prediction models

   Even simple search problems become challenging under predictions 

Future work

   Searching in graphs

   Patrolling and rendezvous games

   Combining advice complexity and learnability 
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