Search Games with Predictions

Spyros Angelopoulos

From matchings to markets. A tale of Mathematics, Economics and Computer Science

CIRM, Marseille, Dec 11-15 2023

Quick summary of the presentation

- The power and limitations of imperfect advice in search games
- Motivated by recent advances on algorithms with ML predictions / untrusted advice
- Focus mainly on pure (deterministic) strategies
 - ... but I will also touch on "real" search games with mixed strategies

Based on the following works:

Online Search with a Hint (Information and Computation 2023)

Competitive Search in the Line and the Star with Predictions (MFCS 2023)

Search Games with Predictions (ongoing work with T. Lidbetter and K. Panagiotou)

	Optimal competitive ratio	Techniques
Pure strategies	9 [Beck and Newman 1970]	Doubling + Gal's theorem
Mixed strategies	$1 + \min_{a>1} \frac{a}{\ln a} \approx 4.59$ [Gal 1980]	Randomized doubling + Minimax theorem

	Optimal competitive ratio	Techniques
Pure strategies	9 [Beck and Newman 1970]	Doubling + Gal's theorem
Mixed strategies	$1 + \min_{a>1} \frac{a}{\ln a} \approx 4.59$ [Gal 1980]	Randomized doubling + Minimax theorem

Hint *h*: some information that is given to the searcher The search strategy S(h) is now a function of the hint

- If hint is trusted, then it is guaranteed to be correct
- If hint is untrusted, then it is generated adversarially

Hint *h*: some information that is given to the searcher The search strategy S(h) is now a function of the hint

- If hint is trusted, then it is guaranteed to be correct
- If hint is untrusted, then it is generated adversarially

Competitiveness of $S(h) = (c_{S,h}, r_{S,h})$

Hint *h*: some information that is given to the searcher The search strategy S(h) is now a function of the hint

- If hint is trusted, then it is guaranteed to be correct
- If hint is untrusted, then it is generated adversarially

Consistency: c.r. if hint is correct

Competitiveness of $S(h) = (c_{S,h}, r_{S,h})$

Hint *h*: some information that is given to the searcher The search strategy S(h) is now a function of the hint

- If hint is trusted, then it is guaranteed to be correct
- If hint is untrusted, then it is generated adversarially

Consistency: c.r. if hint is correct

Competitiveness of $S(h) = (c_{S,h}, r_{S,h})$

Robustness : c.r. if hint is adversarial

Hint *h*: some information that is given to the searcher The search strategy S(h) is now a function of the hint

- If hint is trusted, then it is guaranteed to be correct
- If hint is untrusted, then it is generated adversarially

Consistency: c.r. if hint is correct

Competitiveness of $S(h) = (c_{S,h}, r_{S,h})$

Robustness : c.r. if hint is adversarial

What is the best consistency if we want the strategy to be r-robust?

An example

Suppose hint= LEFT / RIGHT, and that the searcher blindly follows the hint

This strategy is $(1,\infty)$ competitive

What are the other points on the Pareto frontier?

[Lykouris and Vassilvitskii 2018]

[Lykouris and Vassilvitskii 2018]

Access to a prediction associated with the input which is inherently erroneous

[Lykouris and Vassilvitskii 2018]

Access to a prediction associated with the input which is inherently erroneous

[Lykouris and Vassilvitskii 2018]

Access to a prediction associated with the input which is inherently erroneous

[Lykouris and Vassilvitskii 2018]

Access to a prediction associated with the input which is inherently erroneous

[Lykouris and Vassilvitskii 2018]

Access to a prediction associated with the input which is inherently erroneous

The prediction has error η (unknown to the algorithm)

Many studies of online problems under this learning-enhanced framework

Types of hints

The hint is the exact **position** of the target

The hint is the **direction** of the search (left or right)

The hint is a **k-bit string**

01101...1

Positional hint

Positional hint $b_r =$ largest base that guarantees r-robustness

Positional hint

 $b_r =$ largest base that guarantees r- robustness

Positional hint

Directional hint

Lower bound

Hint

Result

$c = 1 + 2\left(\frac{b^2}{b^2 - 1} + \delta \frac{b^3}{b^2 - 1}\right)$

k bits of (untrusted) advice

- **1.** Define 2^k appropriate "pseudo-geometric" strategies. Half of them start on the right, the other half start on the left
- 2. Require that each of these strategies is individually *r*-robust (this gives a *range* for *b* as function of *r*)
- **3.** Consistency = competitive ratio of the **best** strategy, optimize b within the range of step (2).

- **1.** Define 2^k appropriate "pseudo-geometric" strategies. Half of them start on the right, the other half start on the left
- 2. Require that each of these strategies is **individually** *r***-robust** (this gives a *range* for b as function of r)
- **3.** Consistency = competitive ratio of the **best** strategy, optimize *b* within the range of step (2).

consistency=1 +
$$2\frac{b_r^{1/2^{k-1}}}{b_r - 1}$$

- **1.** Define 2^k appropriate "pseudo-geometric" strategies. Half of them start on the right, the other half start on the left
- 2. Require that each of these strategies is **individually** *r***-robust** (this gives a *range* for b as function of r)
- **3.** Consistency = competitive ratio of the **best** strategy, optimize b within the range of step (2).

consistency=1+2
$$\frac{b_r^{1/2^{k-1}}}{b_r-1}$$

max *b* that guarantees

r-robustness

- **1.** Define 2^k appropriate "pseudo-geometric" strategies. Half of them start on the right, the other half start on the left
- 2. Require that each of these strategies is **individually** *r***-robust** (this gives a *range* for b as function of r)
- **3.** Consistency = competitive ratio of the **best** strategy, optimize b within the range of step (2).

consistency=1 +
$$2\frac{b_r^{1/2^{k-1}}}{b_r - 1}$$

Tricky part: showing that this is optimal

max b that guarantees r—robustness

Suppose $k=1 \rightarrow two$ searchers

Suppose $k=1 \rightarrow$ two searchers

 $Consistency \ge \sup_{i} \frac{cost_i}{d_i}$

Complications:

- Need to incorporate individual robustness of searchers
 Workaround: get into the details of the limsup
- 2. Searchers may be asymmetric (more on one side than the other)

Workaround: Bijective mapping over the search lengths that "balances" things up

Extensions to star search

Extensions to star search

Extensions to star search

Results

- Tight bounds for positional hints
- Asymptotically tight results for directional hints
- k-bit advice is open (in particular: lower bounds)

Dealing with errors

Positional hint: *Error :* distance of the hider from the hint

Strategy: Pretend that the searcher is "close and beyond" the predicted position

Directional hint: No concept of error for the line

k-bit advice hint: *Error : #* of erroneous advice bits (or wrong query responses)

Strategy : Search the space of 2^k pseudo-geometric strategies by using **fault-tolerant binary search**

Takeaway: Upper and lower bounds via *Rényi-Ulam games*

Search games (work in progress)

Consistency / robustness tradeoffs for mixed strategy games

- Box search: n boxes, each with a search cost, payoff= expected search time hint = hider's box
 Extends results of [Lidbetter 2013]
- Tree search: Expanding search in a tree-like network Q
 hint = a connected branch of Q
 Extends results of [Alpern and Lidbetter 2023]
- Linear search: Randomized search on the infinite line

hint = direction of search

Extends a result of [Gal 1980]

Biased randomized doubling with base $\alpha > 1$: The non-predicted brach is searched less, say by a factor $\mu \in (0,1)$

consistency =
$$1 + \frac{1 + \mu \alpha}{\ln \alpha}$$
 robustness = $1 + \frac{1 + \frac{\alpha}{\mu}}{\ln \alpha}$

Biased randomized doubling with base $\alpha > 1$: The non-predicted brach is searched less, say by a factor $\mu \in (0,1)$

consistency =
$$1 + \frac{1 + \mu \alpha}{\ln \alpha}$$
 robustness = $1 + \frac{1 + \frac{\alpha}{\mu}}{\ln \alpha}$

But how can we show that this is Pareto-optimal?

Answer: Suffices to study a new game in which the Searcher must minimize a given linear combination of consistency and robustness, i.e, constistency + λ · robustness, with $\lambda \in (0,1]$

Biased randomized doubling with base $\alpha > 1$: The non-predicted brach is searched less, say by a factor $\mu \in (0,1)$

consistency =
$$1 + \frac{1 + \mu\alpha}{\ln \alpha}$$
 robustness = $1 + \frac{1 + \frac{\alpha}{\mu}}{\ln \alpha}$

But how can we show that this is Pareto-optimal?

Answer: Suffices to study a new game in which the Searcher must minimize a given linear combination of consistency and robustness, i.e, constistency + λ · robustness, with $\lambda \in (0,1]$

We show that the value of this new game is $1 + \lambda + \min_{\alpha>1} \frac{1 + \lambda + 2\sqrt{\lambda\alpha}}{\ln \alpha}$, which is matched by the randomized doubling strategy with $\mu = \sqrt{\lambda}$

Conclusion

- Searching with untrusted information under several prediction models
- Even simple search problems become challenging under predictions

Future work

- Searching in graphs
- Patrolling and rendezvous games
- Combining advice complexity and learnability

Looking for a postdoc (or a phd opening) ?

3 postdocs over the next four years

INSTITUT DE RECHERCHE EN INFORMATIQUE FONDAMENTALE

http://lip6.fr/Spyros.Angelopoulos

Looking for a postdoc (or a phd opening) ?

3 postdocs over the next four years

INSTITUT DE RECHERCHE EN INFORMATIQUE FONDAMENTALE

http://lip6.fr/Spyros.Angelopoulos

Thank you!