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Online matching: myopic vs. forward-looking

Greedy can be sub-optimal to minimize cost
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“Forward looking” cost =18+ 1 =19




Effect of competition

Competition decreases the value of being forward looking
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Effect of competition

Competition decreases the value of being forward looking

1/2 1/2

“Forward looking” cost = (18 + 1) * % + 18 * % = 18.5



Effect of competition

Being greedy can be better since the resources may be “stolen”

10
@ — 9

“Forward looking” cost = (18 + 1) * % + 18 * % = 18.5
Greedy cost = (10 + 10) = % + 10 * % =15
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Spatial matching & pooling

o Focus on spatial matching services (e.g., ride-hailing, delivery)

more available suppliers = better dispatches
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Spatial matching & pooling

o Focus on spatial matching services (e.g., ride-hailing, delivery)
more available suppliers = better dispatches
o Forward-looking policies: keep a large buffer of ) ~

idle supply (“spatial pooling”), Castillo et al. [*17]
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Spatial matching & pooling

o Focus on spatial matching services (e.g., ride-hailing, delivery)
more available suppliers = better dispatches
o Forward-looking policies: keep a large buffer of ) ~

idle supply (“spatial pooling”), Castillo et al. [*17]
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o Multihoming and competing platforms?

@ tension between

spatial pooling
race to the bottom
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Spatial matching & pooling

o Focus on spatial matching services (e.g., ride-hailing, delivery)

more available suppliers = better dispatches
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o Forward-looking policies: keep a large buffer of

idle supply (“spatial pooling”), Castillo et al. [*17]
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o Multihoming and competing platforms?

Does multihoming in a duopoly lead to
inefficient matching policies in equilibrium?
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Outline

o Modeling approach:
* Duopoly with dispatch policies in a stochastic system
 Trade-offs between different cost types

o Equilibrium analysis: scale-efficient and scale-inefficient regimes

o Characterization of market efficiency and insights



Related literature

o Staffing & capacity planning:
e Halfin & Whitt ['81], Ward ['12], Atar ['12]
 Spatial capacity planning, Besbes et al. ['21]

o Matching and pricing in two-sided platforms:
* Wild Goose Chase, Castillo et al. ['17]
* Optimal control: Banerjee et al. ['16], Feng et al. ['20], Freund & van Ryzin ['21],

Kanoria ['22], Akbarpour et al. ['21], Aouad & Saritac ['22]
o Competition in gig economy platforms:
« Competition via pricing, Ahmadinejad et al. ['19]
 Labor participation and workers’ earnings, Lian et al. ['21]



A queuing duopoly model

o Suppliers: Poisson process with rate A, shared between platforms,
located randomly in a 1D ball

o Customers: two disjoint Poisson processes with rates 1; - Aand 4, - A
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A queuing duopoly model

o Suppliers: Poisson process with rate A, shared between platforms,
located randomly in a 1D ball

o Customers: two disjoint Poisson processes with rates 1; - Aand 4, - A

o Example:
« UberX vs. Lyft
* UberX vs. DoorDash



A queuing duopoly model

o Suppliers: Poisson process with rate A, shared between platforms,
located randomly in a 1D ball

o Customers: two disjoint Poisson processes with rates 1; - Aand 4, - A

o Example:
« UberX vs. Lyft
* UberX vs. DoorDash

o Large-market limit: A — oo



Cost-minimization game

1. Dispatch cost: ¢p x E [dispatch distance| x (rate of fulfilled demand)
2. Ildle cost: ¢y x E [number of idle suppliers]| x (market share)

3. Unfulfillment cost: (rate of rider requests that are not served)

CDEN,CIEO




Admission control policies

o Threshold on critical #idle suppliers
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Admission control policies

o Threshold on critical #idle suppliers: (1, n + 1)

A1-A A+ A2) A
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Cost-minimization game




Monopolist setting

Proposition [Folklore]:
The monopolist chooses an optimal threshold of @(\/K) (economies of scale)

Simple idea:

Unfulfillment cost constant (Little’s law)
n*(A) = @(\/K) to balance the idle cost (= n/A) and dispatch cost (= 1/n)



Equilibrium notion

o Equilibrium notion:

Fixing the opponent threshold, no platform reduces cost by deviating
g-equilibrium:

Fixing the opponent threshold, no platform reduces cost too much by deviating



Equilibrium notion
o Equilibrium notion:
C]-I(nj,n_j) < C]-I(m,n_j) Vm € N

g-equilibrium:

Cf(nj,n_j) < CjI(m, n_;)+e VmeN



Equilibrium analysis: definitions

With instance I = (cp, ¢, 11,15, 1),

o (nq4,n,) is a scale-inefficient equilibrium if an equilibrium for any large enough A

Inefficient

Cp cptl
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Equilibrium analysis: definitions

With instance I = (cp, ¢, 11,15, 1),

o I is a scale-inefficient instance if all equilibria are scale-inefficient equilibria

Inefficient
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Equilibrium analysis: definitions

With instance I = (cp, ¢, 11,15, 1),

o (ny(A),n,(A)) is a family of scale-efficient e-equilibria for any large enough A
and max {n,(A),n,(A)} = n*(A)

Efficient

e(VA)
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Equilibrium analysis

Informal Theorem 1 [A., Aouad, Freund, ‘23]:
Any instance can be classified into two mutually disjunctive outcomes:

1. Scale-inefficient instance and equilibrium (cp, cp) with no efficiency of scale (A)

2. Scale-efficient e-equilibria of the form (¢p, n*(A)),
where one platform generates efficiencies of scale

Very Inefficient Efficient

inefficient
co co cptl e e(VA)
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Equilibrium classitication

Equilibrium classifier:
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Equilibrium classitication

Theorem 1 [A., Aouad, Freund, '23]:
1. fg>0
I is scale-inefficient with equilibrium (cp, cp)
no scale-efficient e-equilibria with n, (A), n,(A) = cp
2. It g <0
(cp, cp) is not a scale-inefficient equilibrium
Scale-efficient e-equilibria (cp, n*(A))
It 1, < 1/(cp + 1), scale-efficient equilibria (cp, n*(A) + 1)
3. fg=0
(cp, cp) is a scale-inefficient equilibrium
Scale-efficient e-equilibria (cp, n*(A))



Equilibrium classification

CD=1
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Equilibrium classification: main lemma

Lemma:

For a fixed p = cp, the best response to p satisfies exactly one of these:
(i) is in [cp, p] for every large enough A
(ii) is in [n*(A) — 1,n*(A) + 1] for every large enough A

= best response is either a (smaller) constant or close to monopolist optimum



Equilibrium classification: proof challenges

loss of
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What is the resulting efficiency loss?

Price of Anarchy PoA (or Price of Stability PoS):
Ratio of worst (best) equilibrium cost to monopolist optimal cost

Ci(n1,n2) + Ca(n1,ns9)
()\1 -+ )\Q)CM(TL*)

R(nl, nz) =

PoA = lim sup sup R(ni,n2)

A—+00 equilibrium (ni,ns)

PoS, = lim sup inf R(ni,n2)

A——+oo €-equilibrium (nq,ns)



What is the resulting efficiency loss?

Price of Anarchy PoA (or Price of Stability PoS):
Ratio of worst (best) equilibrium cost to monopolist optimal cost

Theorem 2 [A., Aouad, Freund, ‘23]:
1. f g >0,1< PoS < PoA < 2.
2. fg<0and1; <(cp+ 1)1, PoA = PoS =1.
3. fg<0and A, =(cp +1)7% PoS, = 1.




What is the resulting efficiency loss?
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Efficiency loss: proof challenges

Lemma:
There exists a constant B such that for every large enough A, every equilibrium
(nq,n,) satisfies exactly one of these:

(i) ny = ny € [cp, B]

(ii) min{n,,n,} € [cp, B] and max{n,,n,} € [n*(A) — 1,n*(A) + 1]

Ruling out equilibria of ®(A) is very challenging since it requires
an analysis of second-order cost terms



Extension to distance thresholds

o Threshold on pickup distances: (14, T,)
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Extension to distance thresholds

Informal Theorem 3 [A., Aouad, Freund ‘23]:
With I = (cp, ¢;, A1, 4,, 1), at least one of the following holds for sufficiently large A:

1. Instance I is scale-inefficient.

2. There exists a family of scale-efficient e-equilibria

Same structure but weaker result & harder to analyze



Extension to distance thresholds

Distance-threshold PoA and PoS
plots with calibrated parameters

Stylized calibration, NYC 2021-2023
A = 8000, cp=4.29, c;= 3.896
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Extension to 2-dimensional dispatch cost
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Fragmentation vs. matching competition?
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Conclusion

o Multihoming + supply scarcity and demand imbalance = market unraveling &

I not addressed in the literature Kolkor et al. ['22], Allon et al. ['23]  inefficiency of equilibria

o Implications for regulation policies and fragmentation

o Similar tragedy of commons for other online matching environments?
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reduce the price of anarchy
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