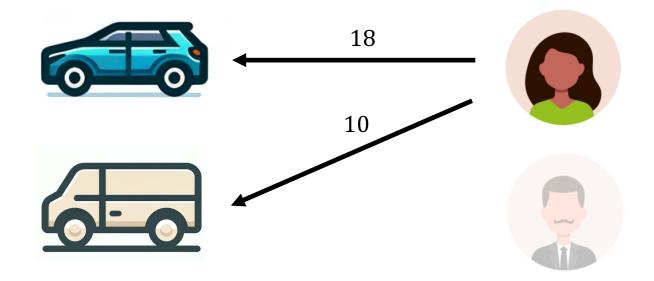
Spatial Matching under Multihoming

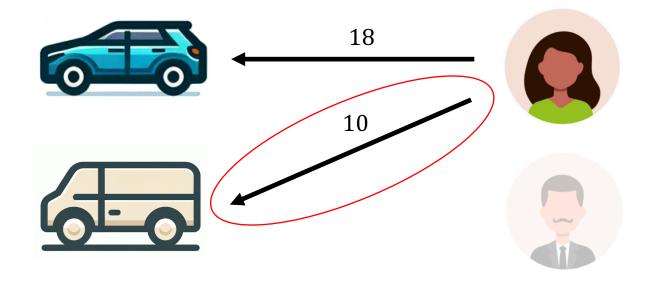
Alireza Amanihamedani (LBS)

Joint work with Ali Aouad (LBS) Daniel Freund (MIT)

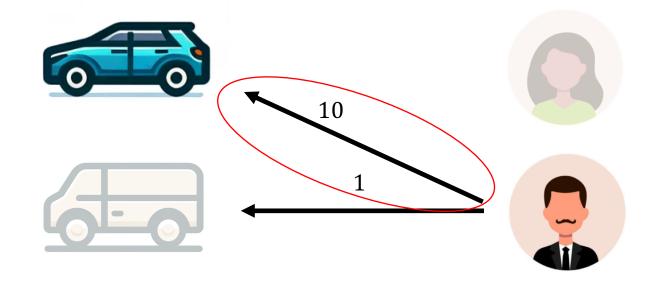
Greedy can be sub-optimal to minimize cost



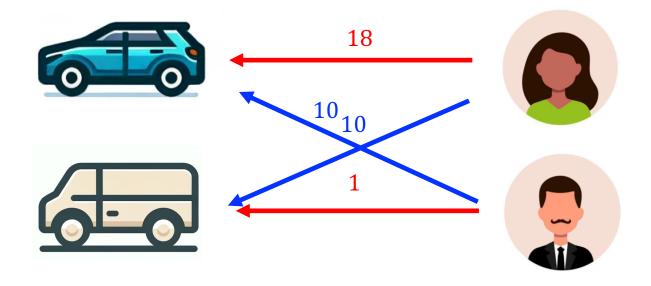
Greedy can be sub-optimal to minimize cost



Greedy can be sub-optimal to minimize cost

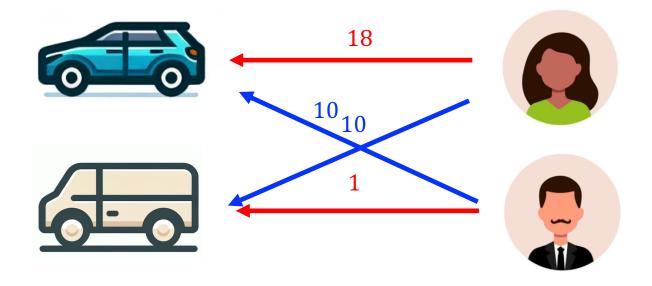


Greedy can be sub-optimal to minimize cost



Greedy cost = 10 + 10 = 20

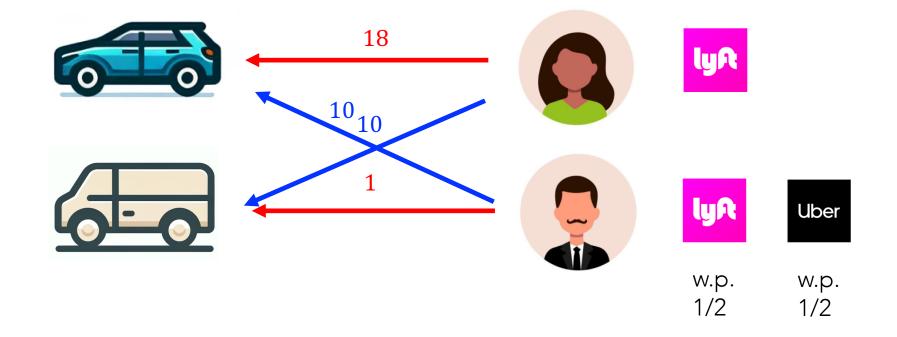
Greedy can be sub-optimal to minimize cost



Greedy cost = 10 + 10 = 20"Forward looking" cost = 18 + 1 = 19

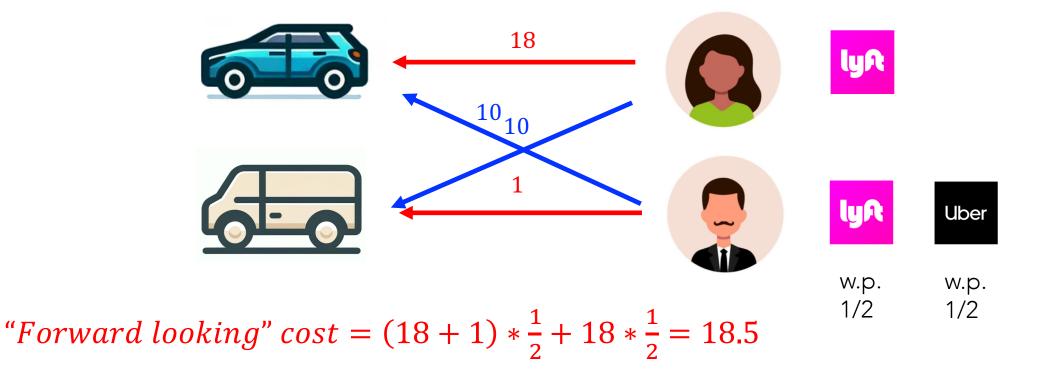
Effect of competition

Competition decreases the value of being forward looking



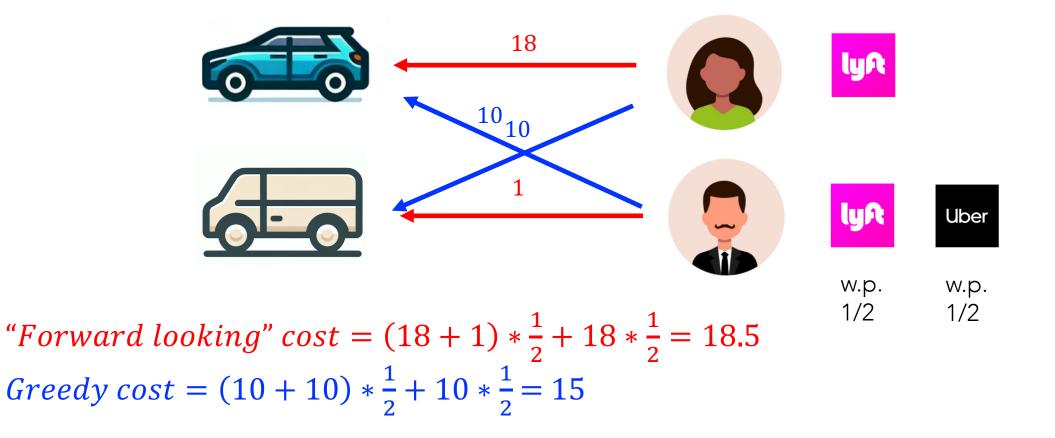
Effect of competition

Competition decreases the value of being forward looking

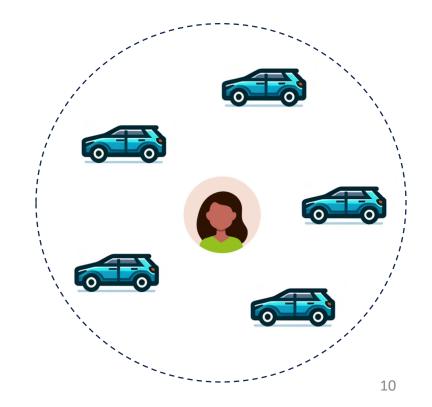


Effect of competition

Being greedy can be better since the resources may be "stolen"

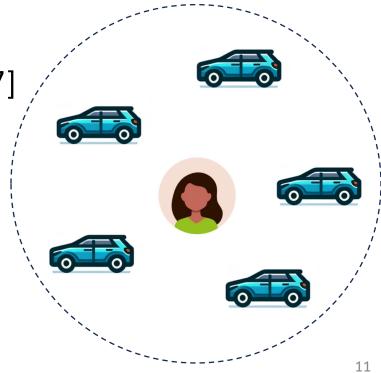


 ○ Focus on spatial matching services (e.g., ride-hailing, delivery) more available suppliers ⇒ better dispatches



○ Focus on spatial matching services (e.g., ride-hailing, delivery)
 more available suppliers ⇒ better dispatches

 Forward-looking policies: keep a large buffer of idle supply ("spatial pooling"), Castillo et al. ['17]



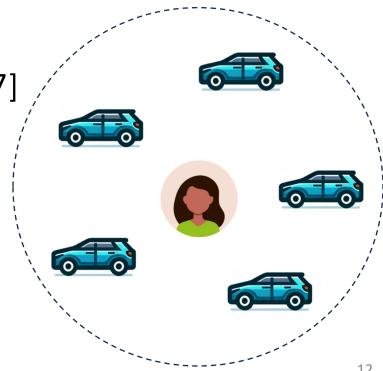
• Focus on spatial matching services (e.g., ride-hailing, delivery) more available suppliers \Rightarrow better dispatches

• Forward-looking policies: keep a large buffer of idle supply ("spatial pooling"), Castillo et al. ['17]

• Multihoming and competing platforms?

tension between

spatial pooling race to the bottom

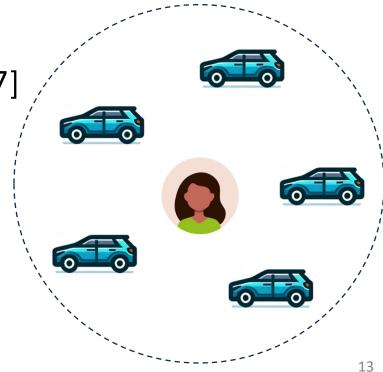


○ Focus on spatial matching services (e.g., ride-hailing, delivery)
 more available suppliers ⇒ better dispatches

 Forward-looking policies: keep a large buffer of idle supply ("spatial pooling"), Castillo et al. ['17]

O Multihoming and competing platforms?

Does multihoming in a duopoly lead to inefficient matching policies in equilibrium?



Outline

- Modeling approach:
 - Duopoly with dispatch policies in a stochastic system
 - Trade-offs between different cost types
- Equilibrium analysis: scale-efficient and scale-inefficient regimes
- Characterization of market efficiency and insights

Related literature

Staffing & capacity planning:

- Halfin & Whitt ['81], Ward ['12], Atar ['12]
- Spatial capacity planning, Besbes et al. ['21]
- Matching and pricing in two-sided platforms:
 - Wild Goose Chase, Castillo et al. ['17]
 - Optimal control: Banerjee et al. ['16], Feng et al. ['20], Freund & van Ryzin ['21], Kanoria ['22], Akbarpour et al. ['21], Aouad & Saritac ['22]

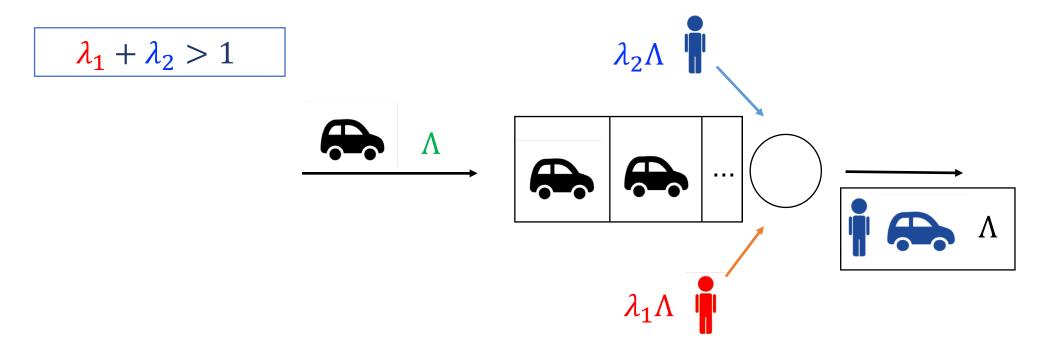
Competition in gig economy platforms:

- Competition via pricing, Ahmadinejad et al. ['19]
- Labor participation and workers' earnings, Lian et al. ['21]

A queuing duopoly model

 \circ Suppliers: Poisson process with rate $\Lambda,$ shared between platforms, located randomly in a 1D ball

 \circ Customers: two <u>disjoint</u> Poisson processes with rates $\lambda_1 \cdot \Lambda$ and $\lambda_2 \cdot \Lambda$



A queuing duopoly model

 \circ Suppliers: Poisson process with rate $\Lambda,$ shared between platforms, located randomly in a 1D ball

 \circ Customers: two <code>disjoint</code> Poisson processes with rates $\lambda_1 \cdot \Lambda$ and $\lambda_2 \cdot \Lambda$

 \circ Example:

- UberX vs. Lyft
- UberX vs. DoorDash

A queuing duopoly model

 \circ Suppliers: Poisson process with rate $\Lambda,$ shared between platforms, located randomly in a 1D ball

 \circ Customers: two <code>disjoint</code> Poisson processes with rates $\lambda_1 \cdot \Lambda$ and $\lambda_2 \cdot \Lambda$

 \circ Example:

- UberX vs. Lyft
- UberX vs. DoorDash

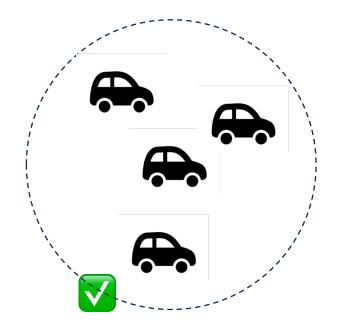
 \circ Large-market limit: $\Lambda \rightarrow \infty$

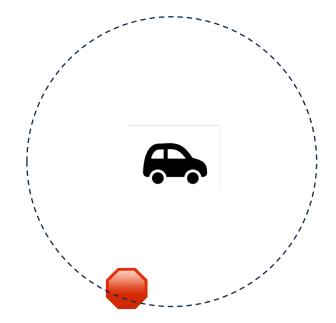
Cost-minimization game

- 1. Dispatch cost: $c_D \times \mathbb{E}$ [dispatch distance] × (rate of fulfilled demand)
- 2. Idle cost: $c_I \times \mathbb{E}$ [number of idle suppliers] × (market share)
- 3. Unfulfillment cost: (rate of rider requests that are not served)

Admission control policies

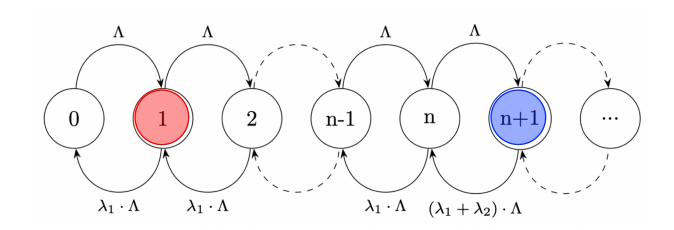
• Threshold on critical #idle suppliers





Admission control policies

 \circ Threshold on critical #idle suppliers: (1, n + 1)



Cost-minimization game

$$egin{aligned} C_j(n_j,n_{-j}) &\triangleq \underbrace{\Pr[N(n_1,n_2) < n_j]}_{ ext{UC}} + \underbrace{\mathbb{E}igg[rac{c_D}{N(n_1,n_2)+1} \cdot \mathbb{I}[N(n_1,n_2) \geq n_j]igg]}_{ ext{DC}} \ &+ \underbrace{c_I \cdot rac{1}{\Lambda} \cdot \Pr[N(n_1,n_2) \geq n_j] \cdot \mathbb{E}[N(n_1,n_2)]}_{ ext{IC}}. \end{aligned}$$

Monopolist setting

Proposition [Folklore]: The monopolist chooses an optimal threshold of $\Theta(\sqrt{\Lambda})$ (economies of scale)

Simple idea:

Unfulfillment cost constant (Little's law) $n^*(\Lambda) = \Theta(\sqrt{\Lambda})$ to balance the idle cost ($\approx n/\Lambda$) and dispatch cost ($\approx 1/n$)

Equilibrium notion

• Equilibrium notion:

Fixing the opponent threshold, no platform reduces cost by deviating

 ε -equilibrium:

Fixing the opponent threshold, no platform reduces cost too much by deviating

Equilibrium notion

• Equilibrium notion:

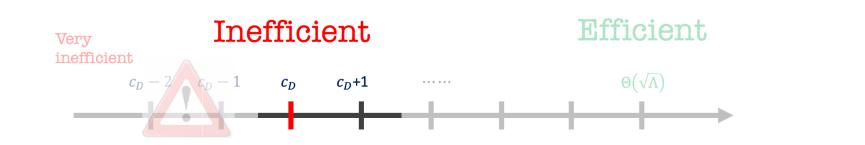
$$C^I_j(n_j,n_{-j}) \leq C^I_j(m,n_{-j}) ~~orall m \in \mathbb{N}$$

ε-equilibrium:

$$C^I_j(n_j,n_{-j}) \leq C^I_j(m,n_{-j}) + arepsilon ~~orall m \in \mathbb{N}$$

Equilibrium analysis: definitions

- With instance $I = (c_D, c_I, \lambda_1, \lambda_2, 1)$,
 - \circ (n_1, n_2) is a scale-inefficient equilibrium if an equilibrium for any large enough Λ
 - *I* is a scale-inefficient instance if all equilibria are scale-inefficient equilibria
 - $(n_1(\Lambda), n_2(\Lambda))$ is a family of scale-efficient ε -equilibria for any large enough Λ and max $\{n_1(\Lambda), n_2(\Lambda)\} = n^*(\Lambda)$



26

Equilibrium analysis: definitions

With instance $I = (c_D, c_I, \lambda_1, \lambda_2, 1)$,

 \circ (n_1, n_2) is a scale-inefficient equilibrium if an equilibrium for any large enough Λ

○ *I* is a scale-inefficient instance if all equilibria are scale-inefficient equilibria

• $(n_1(\Lambda), n_2(\Lambda))$ is a family of scale-efficient ε -equilibria for any large enough Λ and max $\{n_1(\Lambda), n_2(\Lambda)\} = n^*(\Lambda)$

27

Equilibrium analysis: definitions

With instance $I = (c_D, c_I, \lambda_1, \lambda_2, 1)$,

 \circ (n_1, n_2) is a scale-inefficient equilibrium if an equilibrium for any large enough Λ

• *I* is a scale-inefficient instance if all equilibria are scale-inefficient equilibria

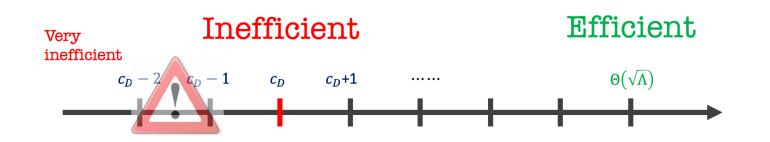
• $(n_1(\Lambda), n_2(\Lambda))$ is a family of scale-efficient ε -equilibria for any large enough Λ and max $\{n_1(\Lambda), n_2(\Lambda)\} = n^*(\Lambda)$

Equilibrium analysis

Informal Theorem 1 [A., Aouad, Freund, '23]: Any instance can be classified into two mutually disjunctive outcomes:

1. Scale-inefficient instance and equilibrium (c_D, c_D) with no efficiency of scale (Λ)

2. Scale-efficient ε -equilibria of the form $(c_D, n^*(\Lambda))$, where one platform generates efficiencies of scale



Equilibrium classification

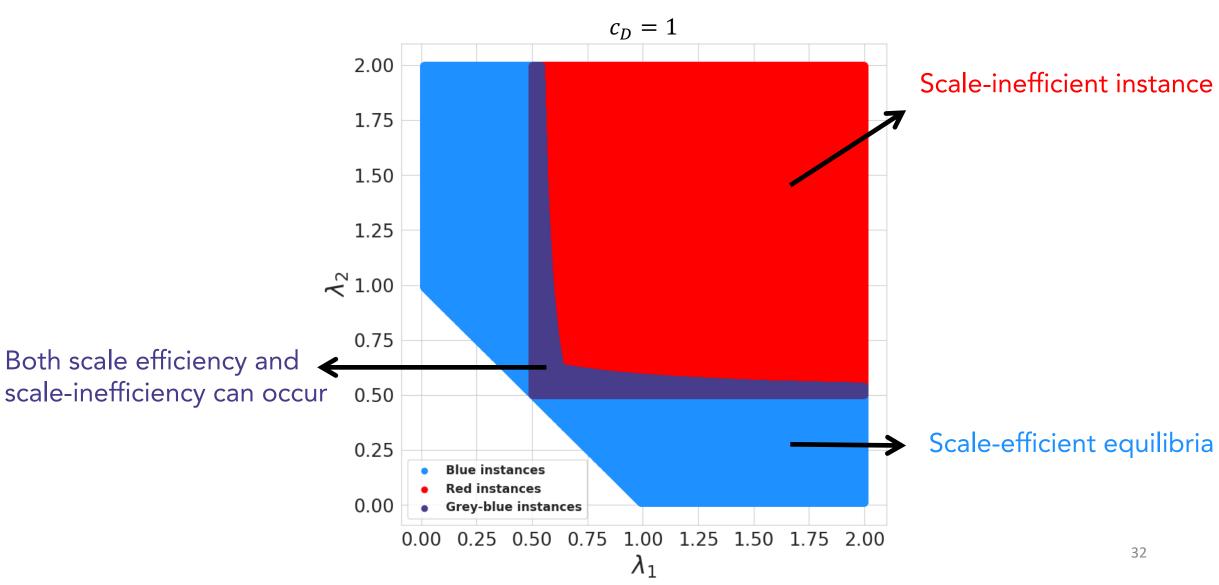
Equilibrium classifier:

$$\text{For }\lambda_1 \leq \lambda_2 \text{, let }g \triangleq \lambda_2 - \lambda_1 \cdot \left(\sum_{i=1}^{+\infty} \frac{c_D}{c_D + i} \cdot \left(\frac{1}{\lambda_1 + \lambda_2}\right)^i\right).$$

Equilibrium classification

Theorem 1 [A., Aouad, Freund, '23]: 1. If q > 0I is scale-inefficient with equilibrium (c_D, c_D) no scale-efficient ε -equilibria with $n_1(\Lambda), n_2(\Lambda) \ge c_D$ 2. If q < 0 (c_D, c_D) is not a scale-inefficient equilibrium Scale-efficient ε -equilibria $(c_D, n^*(\Lambda))$ \approx If $\lambda_1 < 1/(c_D + 1)$, scale-efficient equilibria $(c_D, n^*(\Lambda) \pm 1)$ 3. If q = 0 (c_D, c_D) is a scale-inefficient equilibrium Scale-efficient ε -equilibria $(c_D, n^*(\Lambda))$ 31

Equilibrium classification

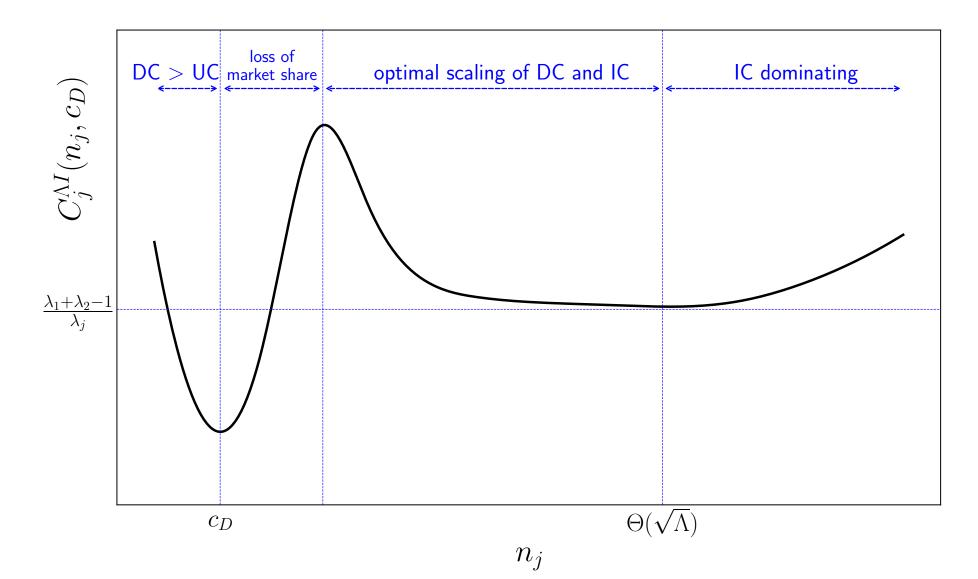


Equilibrium classification: main lemma

Lemma: For a fixed $p \ge c_D$, the best response to p satisfies exactly one of these: (i) is in $[c_D, p]$ for every large enough Λ (ii) is in $[n^*(\Lambda) - 1, n^*(\Lambda) + 1]$ for every large enough Λ

 \Rightarrow best response is either a (smaller) constant or close to monopolist optimum

Equilibrium classification: proof challenges



What is the resulting efficiency loss?

Price of Anarchy PoA (or Price of Stability PoS): Ratio of worst (best) equilibrium cost to monopolist optimal cost

$$R(n_1,n_2) = rac{C_1(n_1,n_2)+C_2(n_1,n_2)}{(\lambda_1+\lambda_2)C_M(n^*)}$$

$$\mathrm{PoA} = \limsup_{\Lambda o +\infty} \sup_{\mathrm{equilibrium}\;(n_1,n_2)} R(n_1,n_2)$$

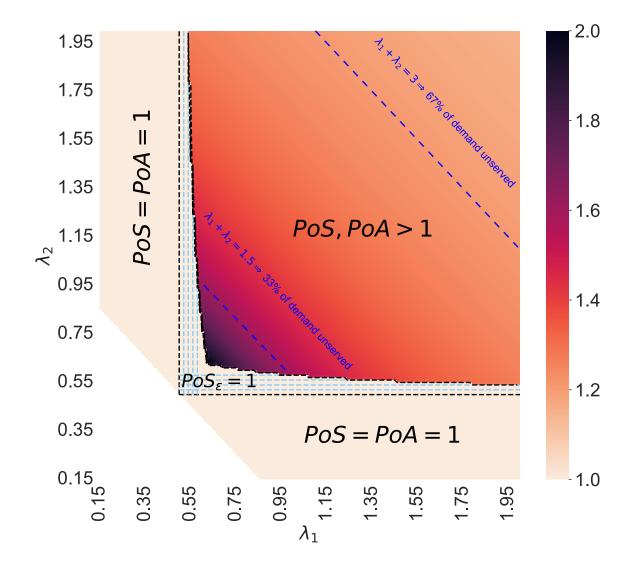
$$\mathrm{PoS}_arepsilon = \limsup_{\Lambda o +\infty} \inf_{arepsilon ext{-equilibrium } (n_1,n_2)} R(n_1,n_2)$$

What is the resulting efficiency loss?

Price of Anarchy PoA (or Price of Stability PoS): Ratio of worst (best) equilibrium cost to monopolist optimal cost

Theorem 2 [A., Aouad, Freund, '23]:
1. If
$$g > 0$$
, $1 < PoS \le PoA \le 2$.
2. If $g \le 0$ and $\lambda_1 < (c_D + 1)^{-1}$, $PoA = PoS = 1$.
3. If $g \le 0$ and $\lambda_1 \ge (c_D + 1)^{-1}$, $PoS_{\varepsilon} = 1$.

What is the resulting efficiency loss?



Efficiency loss: proof challenges

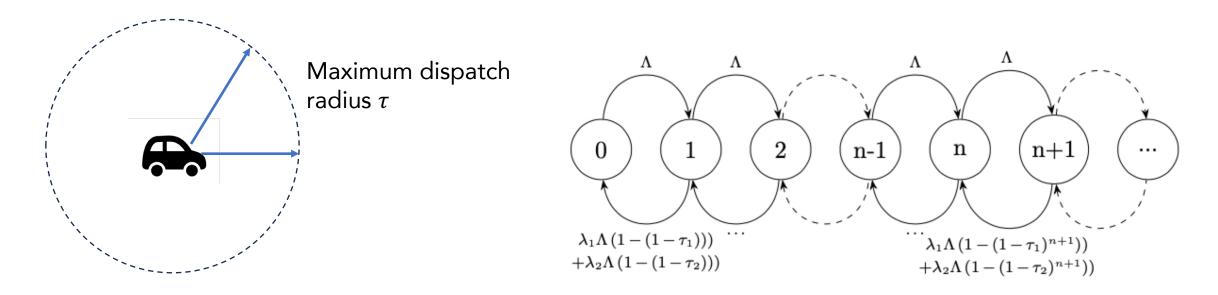
Lemma:

There exists a constant *B* such that for every large enough Λ , every equilibrium (n_1, n_2) satisfies exactly one of these: (i) $n_1 = n_2 \in [c_D, B]$ (ii) $\min\{n_1, n_2\} \in [c_D, B]$ and $\max\{n_1, n_2\} \in [n^*(\Lambda) - 1, n^*(\Lambda) + 1]$

Ruling out equilibria of $\Theta(\Lambda)$ is very challenging since it requires an analysis of second-order cost terms

Extension to distance thresholds

 \circ Threshold on pickup distances: (τ_1 , τ_2)



Extension to distance thresholds

Informal Theorem 3 [A., Aouad, Freund '23]: With $I = (c_D, c_I, \lambda_1, \lambda_2, 1)$, at least one of the following holds for sufficiently large Λ :

1. Instance I is scale-inefficient.

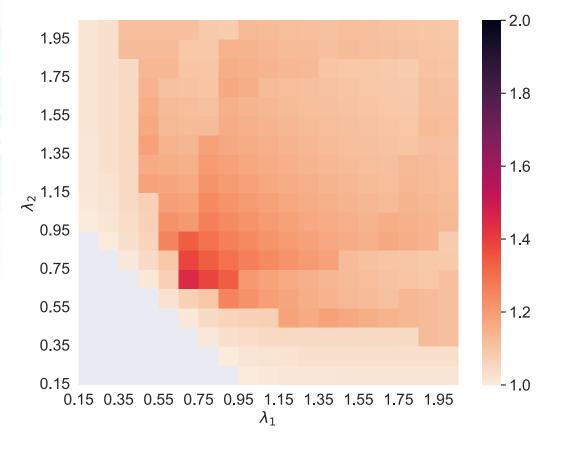
2. There exists a family of scale-efficient ε -equilibria

Same structure but weaker result & harder to analyze

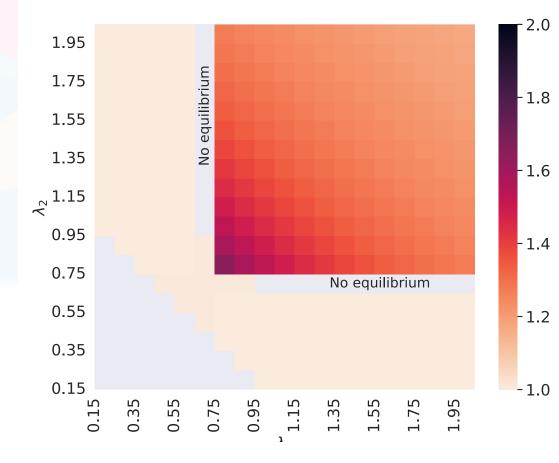
Extension to distance thresholds

Distance-threshold PoA and PoS plots with calibrated parameters

Stylized calibration, NYC 2021-2023 $\Lambda = 8000, c_D = 4.29, c_I = 3.896$



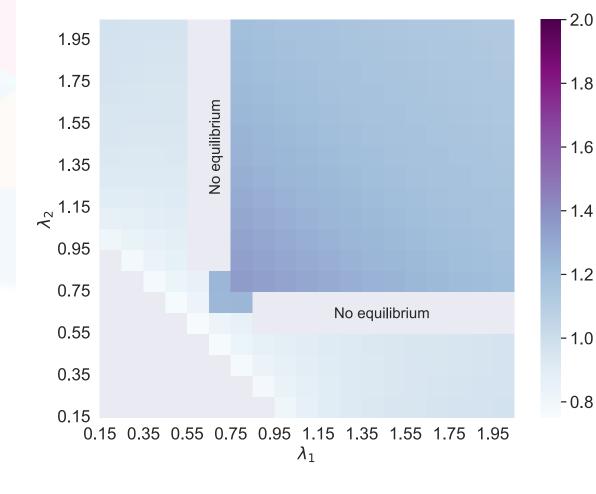
Extension to 2-dimensional dispatch cost



PoA and PoS with marginal dispatch cost $\approx 1/\sqrt{n}$

$$(\Lambda = 10^8, c_D = 1, c_I = 1)$$

Fragmentation vs. matching competition?



Efficiency ratio of competitive equilibrium with multihoming and fragmented market

$$(\Lambda = 5, c_D = 3, c_I = 0.02)$$

Conclusion

○ Multihoming + supply scarcity and demand imbalance ⇒ market unraveling &
 I not addressed in the literature Kolkor et al. ['22], Allon et al. ['23] inefficiency of equilibria

 ${\scriptstyle \circ}$ Implications for regulation policies and fragmentation

 $_{\odot}$ Similar tragedy of commons for other online matching environments?

FINANCIAL TIMES

UK COMPANIES TECH MARKETS CLIMATE OPINION WORK & CAREERS LIFE & ARTS HTSI

Opinion **Disrupters**

Ride-hailing apps should work with taxis to reduce the price of anarchy

Uber's recent move to make peace with an old foe in New York must be a sign of things to come

Accessed on Dec. 2023

Questions:

aamanihamedani@london.edu