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A conjecture of Coleman

A abelian variety over a number field k
I End0

Q(A) = End(AQ)⊗Q the algebra of Q-endomorphisms

Ag,d = {End0
Q(A) : A/k of dimension g and [k : Q] = d}/ '

Conjecture (Coleman)
The set Ag,d is finite for any g,d ≥ 1.

There is even a stronger version for endomorphism rings.
Very little is known:

I It is known for A1,d (elliptic curves)
I It is known if we restrict to CM abelian varieties: ACM

g,d is finite
(Orr-Skorobogatov 2018)

I We are interested in A2,1 (abelian surfaces over Q)
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The case A1,d of elliptic curves
E/k e. c. , [k : Q] = d  End0

Q(E) '

{
Q
M = Q(

√
−D), D ∈ Q>0

Constructing elliptic curves over C with CM by M
I I ⊆ M a fractional ideal
I I ⊆ C is a lattice and C/I is an elliptic curve with End(E) ' OM

Theory of Complex Multiplication

I {E/C : End(E) ' OM}/ '
1:1←→ {I ⊆ M fractional ideals}/I ∼ λI = Cl(M)

I If E has CM by OM then j(E) ∈ Q and [Q(j(E)) : Q] = #Cl(M)

I If E has CM by O ⊆ OM then #Cl(M) ≤ [Q(j(E)) : Q]

If E/k has CM by M, Q(j(E)) ⊆ k ⇒ #Cl(M) ≤ [k : Q] = d .
Heilbronn (1934): ∃ finitely many Q(

√
−D) with #Cl(M) ≤ d

I A1,d is finite for all d
For d ≤ 100 the set A1,d is known explicitly (Watkins)
A1,1 = {Q} ∪ {Q(

√
−D) : D = 3,4,7,8,11,19,43,67,163}
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The case A2,1 of abelian surfaces over Q
A2,1 = {End0

Q(A) : A/Q, dim(A) = 2}/ '
A/Q an abelian surface

I geometrically simple if AQ is simple
I geometrically split if AQ ∼ E1 × E2

End0
Q(A) '

{
Q,Q(

√
D), CM field ,B/Q division indef. quat. alg.

Q×Q,Q×M,M ×M ′,M2(Q),M2(M), M = Q(
√
−D)

The case where A is geometrically simple is open:
I There are 19 possibilities for the CM field (Murabayashi-Umegaki)
I Nothing is known for the real quadratic field or quaternion algebra

Asplit
2,1 = {End0

Q(A) : A/Q, dim(A) = 2, A geom. split}

Asplit
2,1 is finite (Shafarevich, 1996)

Our goal

To determine Asplit
2,1 explicitly
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The case Asplit
2,1

If A/Q is a geometrically split abelian surface:
1 AQ ∼ E1 × E2 or AQ ∼ E2

1 with Ei non-CM
I End0

Q(A) ' Q×Q or End0
Q(A) ' M2(Q).

2 AQ ∼ E1 × E2, and E1 or E2 have CM by some M
I End0

Q(A) ' Q×M1 or End0
Q(A) ' M1 ×M2 with Mi = Q(

√
−Di )

I Fite–Kedlaya–Rotger–Sutherland: Ei ∼ Ci for some Ci/Q
I Thus #Cl(M) = 1 finitely many M ’s

3 AQ ∼ E2 and E has CM by some M
I End0

Q(A) ' M2(M)
I Key observation (Shafarevic):
∃ d ∈ Z>1 s.t. End(AQ) = End(AK ) for some K with [K : Q] ≤ d
Gal(Q/Q) acts on End(AQ) ' Z8 with kernel Gal(Q/K )
Gal(K/Q) ↪→ GL8(Z) and so Gal(K/Q) ↪→ GL8(Z/3Z)

I E/K and [K : Q] ≤ d  finitely many M ’s since A1,d is finite.

Main question
What imaginary quadratic fields M do in fact appear?
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Main Theorem

Theorem (Fité–G.)

The set Asplit
2,1 of Q-endomorphism algebras of geometrically split

abelian surfaces over Q is made of:
1 Q×Q, M2(Q);
2 Q×M1, M1 ×M2, with Mi quadratic imag. fields of #Cl(Mi) = 1;
3 M2(M) with M quadratic imaginary field, Cl(M) ' C1,C2,C2 × C2

and M distinct from
Q(
√
−195),Q(

√
−312),Q(

√
−340),Q(

√
−555),Q(

√
−715),Q(

√
−760)

In particular, the set Asplit
2,1 has cardinality 92.

1 If AQ ∼ E1 × E2 or AQ ∼ E2
1 with Ei non-CM

2 If AQ ∼ E1 × E2 and Ei can have CM
3 Here AQ ∼ E2 with E with CM by M: here is where the work is
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Squares of CM elliptic curves
Central question

If A/Q with AQ ∼ E2 and E has CM by M, what are the possible M ’s?

Theorem (Fité–G., 2015)
Necessarily Cl(M) ' C1,C2, or C2 × C2

K/Q minimal such that End(AQ) = End(AK ) E/K and AK ∼ E2

I CM theory HM ⊆ K
I [FKRS12] Gal(K/M) ' C1,Cr ,Dr with r ∈ {2,3,4,6}
I This implies Cl(M) ' C1,Cr ,Dr with r ∈ {2,3,4,6}

Main idea:
I Show that ∃N ⊆ K with Gal(N/M) of exponent 2 such that E can be

defined over N up to isogeny
I Gal(N/M) ' C1,C2,C2 × C2 and HM ⊆ N so Gal(HM/M) as well

Idea of the proof: adapt Ribet’s theory of Q-curves
I σ ∈ Gal(K/Q) (σE)2 ∼ σAK = AK ∼ E2

F There is an isogeny µσ :
σE −→ E

I Cohomology class cE ∈ H2(Gal(K/M),M×)
F cE(σ, τ) = µσ ◦ σµτ ◦ µ−1

στ
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Weil descent (up to isogeny)
For L ⊆ K , there exists E∗/L with E ∼ E∗K ⇐⇒ cE |Gal(K/L) = 1.

AK ∼ E2 ⇒ cE ∈ H2(Gal(K/M),M×)[2]

Ribet: P = M×/{±1} and M× ' {±1} × P.
H2(Gal(K/M),M×)[2] ' H2(Gal(K/M), {±1})× H2(Gal(K/M),P)[2]

' H2(Gal(K/M), {±1})× Hom(Gal(K/M),P/P2)

cE is trivial when restricted to 〈σ2〉
N ⊆ K the corresponding subfield, Gal(N/M) ' of exponent 2
Weil descent: EK ∼ E∗K for some E∗/N

Now the question is
of these possible M ’s, which ones do really occur?

Give a construction of A’s for some M ’s and rule out the other M ’s
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Constructing abelian surfaces: restriction of scalars

Easy cases
Given M with Cl(M) ' C1,C2, construct A/Q abelian surface with
AQ ∼ E2 and E with CM by M.

If Cl(M) = 1
I take E/Q with CM by M and A = E × E .

If Cl(M) = C2
I If E has CM by OM then [Q(jE ) : Q] = 2, so we can take E/Q(j(E))
I A = ResQ(jE )/QE has dimension 2 and AQ ∼ E × σE
I If E has CM, then σEQ ∼ EQ and therefore AQ ∼ E2

If Cl(M) = C2 × C2 then [Q(jE ) : Q] = 4 and ResQ(jE )/QE has dim 4
I Idea: choose E so that ResQ(jE )/QE ∼ A2

I We will take E to be a Gross Q-curve
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Case C2 × C2: Gross’s Q-curves
H = HM Hilbert class field of M.
A Gross Q-curve is

I E/H elliptic curve with CM by M s.t. σE ∼ E ∀σ ∈ Gal(H/Q)

Theorem (Shimura–Nakamura)
∃ Gross Q-curve E/H ⇐⇒ Disc(M) 6= −4× (primes ≡ 1 (mod 4))

M = Q(
√
−D) has Cl(M) ' C2 × C2 for D in

D2,2 ={84,120,132,168,195,228,280,312,340,372,408,435,
483,520,532,555,595,627,708,715,760,795,1012,1435}

There is Gross Q-curves in all cases except D = 340
(Gross) If E = ResQ(jE )/QE then End0(E) ' QcE [Gal(H/M]

If End0(E) ' M2(Q) E ∼ A2 and we’re done!
For D 6= 340, Nakamura showed that:

I For each D, Gross Q-curves D give rise to 8 cohomology classes
I Gave a method for computing all these cohomology classes cE
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Computing the endomorphism algebra of E
For each D 6= 340, we computed End0(E) for each of the eight
representatives of Q-curves with CM by Q(

√
−D).

1

For D ∈ {84,120,132,168,228,280,372,408,435,483,
520,532,595,627,708,795,1012,1435}

at least one of the Q-curves has End0(E) ' M2(Q).
2 For D ∈ {195, 312, 555, 715, 760}

all Q-curves have End0(E) '

{
number field

division quaternion algebra
⇒ E is simple over Q of dimension 4

1 gives an A/Q for all M with Cl(M) = C2 × C2 except for:
I Disc(M) = −195,−312,−555,−715,−760 (never get M2(Q))
I Disc(M) = −340 (there is no Gross Q-curve)

Need to show that for the fields M in 2, A does not exist
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Ruling out abelian surfaces

M ∈ D2,2 s.t. for any Gross Q-curve E/H we know that ResH/QE
does not have any factor of dimension 2.
Suppose that ∃ A/Q with AQ ∼ E2 and E has CM by M.
K = minimal field where this decomposition takes place.

I Gal(K/M) ' C2 × C2,Dr , r = 3,4,6
If Gal(K/M) ' C2 × C2

I H ⊆ K and Gal(H/M) ' Cl(M) ' C2 × C2 ⇒ K = H
I Then E is a Gross Q-curve, but this is a contradiction:
I Hom(AH ,E) 6= 0⇒ Hom(A,ResH/QE) 6= 0.
I But the simple factors of ResH/QE are of dimension 4.

If Gal(K/M) ' Dr with r ∈ {3,4,6}
I A does not exist either, but the argument gets more technical
I Can assume Gal(K/M) has an element β of order r = 4 or r = 6.
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Ruling out abelian surfaces: projective representations
A/Q with AK ∼ E2 and E has CM by M

I σE ∼ E for all σ ∈ Gal(K/Q), but H ( K  not a Gross Q-curve
I Need to relate A to a Gross Q-curve (let us suppose there is one)

Let E∗/H be a Gross Q-curve with E∗L ∼ EL
I Hom0(E∗L ,AL) is not a Gal(L/M) representation:

φ : E∗L→AL  
σφ : σE∗L→AL

I But we have µσ : σE∗L→E∗L so we can define
ρσ(φ) = σφ ◦ µ−1

σ : E∗L→AL
I ρσρτ = cE∗(σ, τ)ρστ projective representation (cE∗ -representation)

Key: Hom0(E∗L ,AL)⊗ Hom0(E∗L ,AL)∗ ' End0(AK ) as Gal(K/M)-rep’s
Using this we show that cE∗(β̄, β̄) ∈ ±1
The cocycles of Gross’s Q-curves satisfy that cE∗(β̄, β̄) = ±d with
d a proper divisor of DiscM. Contradiction!
Extra argument using c-representations rules out Q(

√
−340) too
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A natural question

Theorem (Fité–G.)

The set Asplit
2,1 of Q-endomorphism algebras of geometrically split

abelian surfaces over Q consists of 92 algebras.

Question
Which of the 92 endomorphism algebras arise from Jacobians of
genus 2 curves defined over Q?

Spoiler
Not all of them.
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Endomorphism algebras of geometrically split
abelian surfaces over Q
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