Modular Curves and Finite Groups: Building Connections Via Computation

David Roe

Department of Mathematics MIT

March 2, 2023 COmputations and their Uses in Number Theory CIRM - Luminy

Groups

Lewis Combes, John Jones, Jen Paulhus, David Roberts, Manami Roy, Sam Schiavone, Andrew Sutherland

Modcurve: Rational Points

Nikola Adÿaga, Jennifer Balakrishnan, Shiva Chidambaram, Garen Chiloyan, Daniel Hast, Timo Keller, Alvaro Lozano-Robledo, Pietro Mercuri, Philippe Michaud-Jacobs, Steffen Mller, Filip Najman, Ekin Ozman, Oana Padurariu, Bianca Viray, Borna Vukorepa

Modcurve: Database

Barinder Banwait, Jean Kieffer, David Lowry-Duda, Andrew Sutherland

Modcurve: Equations

Eran Assaf, Shiva Chidambaram, Edgar Costa, Juanita Duque-Rosero, Aashraya Jha, Grant Molnar, Bjorn Poonen, Rakvi, Jeremy Rouse, Ciaran Schembri, Padmavathi Srinivasan, Sam Schiavone, John Voight, David Zywina

Modcurve: Modular Abelian Varieties

Edgar Costa, Noam D. Elkies, Sachi Hashimoto, Kimball Martin

Demo

https://alpha.lmfdb.org/ModularCurve/Q/

Modular curves X_H/\mathbb{Q} of level $N \leq 400$ and genus $g \leq 24$

level	coarse X_H/\mathbb{Q}	fine X_H/\mathbb{Q}	X_H/\mathbb{Q}
240	275 184	5 1 1 3 9 4 1	5 389 125
336	233 684	4 367 741	4 601 425
120	251 423	2938971	3 190 394
168	161 247	2 499 153	2660400
312	157 819	2188045	2 345 864
264	148 031	2140707	2288738
280	82 433	947 340	1 029 773
48	43 910	486 297	530 207
360	28 184	455 652	483 836
24	23 102	210 057	233 159
÷	÷	÷	÷
	≈ 2 million	≈ 23 million	≈ 25 million

Coarse modular curves X_H/\mathbb{Q} of level $N \leq 70$ and genus $g \leq 24$

Groups in the LMFDB

	Now	Soon
Number of groups	257 936	544 802
Number of subgroups	86 898 708	$\approx 200,000,000$
Number of characters	11 067 588	$\approx 50,000,000$
Maximum order	2 000	$47! \approx 2.58 \cdot 10^{59}$
Most common orders	256, 1728, 384, 1344,	256, 1728, 384, 1344,
	960, 1600, 576, 1440	960, 163840, 1600, 576
Sources	Small	Small, transitive, Lie type
		perfect, sporadic, $\subseteq \operatorname{GL}_n(\mathbb{F}_q)$
		$\subseteq S_{15}, \subseteq \operatorname{GL}_2(\mathbb{Z}/N)$

Modular Curves

- Classically, modular curves are associated to congruence subgroups of $PSL_2(\mathbb{Z})$, which acts on the upper half plane (the modular curve is the quotient^{*} as a Riemann surface).
- We associate to each (conjugacy class of) open subgroup *H* in GL₂($\hat{\mathbb{Z}}$) a moduli space whose points* correspond to elliptic curves with adelic Galois representation having image inside *H*.
- We restrict to *H* with surjective determinant so that the resulting curve X_H is defined over \mathbb{Q} .
- Three basic ingredients of the label: level, index, genus (plus tiebreakers).
- First stage: for each level, find the lattice of subgroups of $GL_2(\mathbb{Z}/N\mathbb{Z})$.
- Second stage: match with modular forms using point counts modulo primes.
- After the group theoretic computations: models, *j*-map, gonality, rational points.

Models

Once the subgroup lattice inside $\operatorname{GL}_2(\mathbb{Z}/N\mathbb{Z})$ is computed, we compute models (for small enough genus):

- First, compute a canonical or embedded^{*} model of X_H by looking for relations between modular forms.
- In the try various strategies to find a plane model:
 - Pick three (small) linear combinations of the coordinates and look for relations of increasing degree (as modular forms).
 - Use Magma's representation of the function field to drop the dimension, then project (starting from rational cusps).
 - So For small genus, compute a gonal map to P¹ and use it together with a product of coordinates to get a map to P².
- For pointless genus 0 curves, use the classification of genus 0 subgroups of SL₂(Z/NZ) and express as a twist of a fixed curve.
- If elliptic or hyperelliptic over Q, use Magma to find Weierstrass model.
- So When hyperelliptic but not over \mathbb{Q} , express as a double cover of a pointless conic.

More demo

- Classic search
- 2 Level 13
- Opint search
- Trigonal curves
- Homepage

Groups in the LMFDB

Sources

- SmallGroup, TransitiveGroup, SimpleGroup, finite integral matrix groups, others. groupnames.org was great motivation.
- Representations: polycyclic, permutation, and matrix groups (avoid finitely presented).

Difficulties

- Collecting groups up to abstract isomorphism
- For abelian groups (and others), helpful to work up to automorphism rather than conjugacy.
- Structuring code to gracefully handle timeouts and errors, unpredictable runtime.
- Found plenty of bugs in Magma, including a 30 year old one.

Hashing

Need a hash that is isomorphism invariant and fast, with few collisions.

Primary hash

- If order is identifiable by GAP or Magma, use IdentifyGroup.
- If abelian, use abelian invariants.
- Otherwise, use the orders and EasyHash for the maximal subgroups (up to conjugacy), where
- EasyHash is the multiset of (order, size) for conjugacy classes.
- Sombine into a 64 bit integer.

Groups of order 1536

- Fast enough to compute hashes for the 408,641,062 groups of order 1536.
- Very low collision rate: 408,597,690 distinct values, with maximum cluster size 72.

Group demo

- Search on size of automorphism group
- Interesting groups
- Subgroup search
- 144.124

Questions?

