Modular Curves and Finite Groups: Building Connections Via Computation

David Roe
Department of Mathematics
MIT

March 2, 2023
COmputations and their Uses in Number Theory CIRM - Luminy

Groups

Lewis Combes, John Jones, Jen Paulhus, David Roberts, Manami Roy, Sam Schiavone, Andrew Sutherland

Modcurve: Rational Points

Nikola Adÿaga, Jennifer Balakrishnan, Shiva Chidambaram, Garen Chiloyan, Daniel Hast, Timo Keller, Alvaro Lozano-Robledo, Pietro Mercuri, Philippe Michaud-Jacobs, Steffen Mller, Filip Najman, Ekin Ozman, Oana Padurariu, Bianca Viray, Borna Vukorepa

Modcurve: Database

Barinder Banwait, Jean Kieffer, David Lowry-Duda, Andrew Sutherland

Modcurve: Equations

Eran Assaf, Shiva Chidambaram, Edgar Costa, Juanita Duque-Rosero, Aashraya Jha, Grant Molnar, Bjorn Poonen, Rakvi, Jeremy Rouse, Ciaran Schembri, Padmavathi Srinivasan, Sam Schiavone, John Voight, David Zywina

Modcurve: Modular Abelian Varieties

Edgar Costa, Noam D. Elkies, Sachi Hashimoto, Kimball Martin

Demo

> https://alpha.lmfdb.org/ModularCurve/Q/

Modular curves X_{H} / \mathbb{Q} of level $N \leq 400$ and genus $g \leq 24$

level	coarse X_{H} / \mathbb{Q}	fine X_{H} / \mathbb{Q}	X_{H} / \mathbb{Q}
240	275184	5113941	5389125
336	233684	4367741	4601425
120	251423	2938971	3190394
168	161247	2499153	2660400
312	157819	2188045	2345864
264	148031	2140707	2288738
280	82433	947340	1029773
48	43910	486297	530207
360	28184	455652	483836
24	23102	210057	233159
\vdots	\vdots	\vdots	\vdots
	≈ 2 million	≈ 23 million	≈ 25 million

Coarse modular curves X_{H} / \mathbb{Q} of level $N \leq 70$ and genus $g \leq 24$

Groups in the LMFDB

	Now	Soon
Number of groups	257936	544802
Number of subgroups	86898708	$\approx 200,000,000$
Number of characters	11067588	$\approx 50,000,000$
Maximum order	2000	$47!\approx 2.58 \cdot 10^{59}$
Most common orders	$256,1728,384,1344$,	$256,1728,384,1344$,
	$960,1600,576,1440$	$960,163840,1600,576$
Sources	Small	Small, transitive, Lie type
		perfect, sporadic, $\subseteq \mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$
		$\subseteq S_{15}, \subseteq \mathrm{GL}_{2}(\mathbb{Z} / N)$

Modular Curves

- Classically, modular curves are associated to congruence subgroups of $\mathrm{PSL}_{2}(\mathbb{Z})$, which acts on the upper half plane (the modular curve is the quotient* as a Riemann surface).
- We associate to each (conjugacy class of) open subgroup H in $\mathrm{GL}_{2}(\hat{\mathbb{Z}})$ a moduli space whose points* correspond to elliptic curves with adelic Galois representation having image inside H.
- We restrict to H with surjective determinant so that the resulting curve X_{H} is defined over \mathbb{Q}.
- Three basic ingredients of the label: level, index, genus (plus tiebreakers).
- First stage: for each level, find the lattice of subgroups of $\mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z})$.
- Second stage: match with modular forms using point counts modulo primes.
- After the group theoretic computations: models, j-map, gonality, rational points.

Models

Once the subgroup lattice inside $\mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z})$ is computed, we compute models (for small enough genus):
(1) First, compute a canonical or embedded* model of X_{H} by looking for relations between modular forms.
(2) Then, try various strategies to find a plane model:
(1) Pick three (small) linear combinations of the coordinates and look for relations of increasing degree (as modular forms).
(2) Use Magma's representation of the function field to drop the dimension, then project (starting from rational cusps).
(3) For small genus, compute a gonal map to \mathbb{P}^{1} and use it together with a product of coordinates to get a map to \mathbb{P}^{2}.
(3) For pointless genus 0 curves, use the classification of genus 0 subgroups of $\mathrm{SL}_{2}(\mathbb{Z} / N \mathbb{Z})$ and express as a twist of a fixed curve.
(9) If elliptic or hyperelliptic over \mathbb{Q}, use Magma to find Weierstrass model.
(6) When hyperelliptic but not over \mathbb{Q}, express as a double cover of a pointless conic.

More demo

- Classic search

O Level 13

- Point search
- Trigonal curves
- Homepage

Groups in the LMFDB

Sources

- SmallGroup, TransitiveGroup, SimpleGroup, finite integral matrix groups, others. groupnames. org was great motivation.
- Representations: polycyclic, permutation, and matrix groups (avoid finitely presented).

Difficulties

- Collecting groups up to abstract isomorphism
- For abelian groups (and others), helpful to work up to automorphism rather than conjugacy.
- Structuring code to gracefully handle timeouts and errors, unpredictable runtime.
- Found plenty of bugs in Magma, including a 30 year old one.

Hashing

Need a hash that is isomorphism invariant and fast, with few collisions.

Primary hash

(1) If order is identifiable by GAP or Magma, use IdentifyGroup.
(2) If abelian, use abelian invariants.
(3) Otherwise, use the orders and EasyHash for the maximal subgroups (up to conjugacy), where
(9) EasyHash is the multiset of (order, size) for conjugacy classes.
(3) Combine into a 64 bit integer.

Groups of order 1536

- Fast enough to compute hashes for the 408,641,062 groups of order 1536.
- Very low collision rate: 408,597,690 distinct values, with maximum cluster size 72.

Group demo

(1) Search on size of automorphism group
(2) Interesting groups
(3) Subgroup search
(9) 144.124

Questions?

