On APN and AB Power Functions

Lilya Budaghyan

Selmer Center in Secure Communication University of Bergen Norway

> ALCOCRYPT 2023 Marseille, February 23

Outline

Introduction Preliminaries APN and AB functions

Optimal cryptographic functions Introduction

- Preliminaries
- APN and AB functions
- Equivalence relations of cryptographic functions
 - EAI-equivalence and known APN and AB monomials
 - CCZ-equivalence and its applications
- 3 Constructions and properties of APN functions
 - Classes of APN polynomials CCZ-inequivalent to monomials
 - Properties of APN monomials
 - Dobbertin conjecture on APN monomials

Introduction Preliminaries APN and AB functions

Vectorial Boolean functions

Modern applications of Boolean functions:

- reliability theory, multicriteria analysis, mathematical biology, image processing, theoretical physics, statistics;
- voting games, artificial intelligence, management science, digital electronics, propositional logic;
- algebra, coding theory, combinatorics, sequence design, cryptography.

Introduction Preliminaries APN and AB functions

Cryptographic properties of functions

Functions used in block ciphers, S-boxes, should possess certain properties to ensure resistance of the ciphers to cryptographic attacks.

Main cryptographic attacks on block ciphers and corresponding properties of S-boxes:

- Linear attack Nonlinearity
- Differential attack Differential uniformity
- Algebraic attack Existence of low degree multivariate equations
- Higher order differential attack Algebraic degree
- Interpolation attack Univariate polynomial degree

Introduction Preliminaries APN and AB functions

Optimal cryptographic functions

Optimal cryptographic functions

- are vectorial Boolean functions optimal for primary cryptographic criteria (APN and AB functions);
- are UNIVERSAL they define optimal objects in several branches of mathematics and information theory (coding theory, sequence design, projective geometry, combinatorics, commutative algebra);
- are "HARD-TO-GET" there are only a few known constructions (12 AB, 19 APN);
- are "HARD-TO-PREDICT" most conjectures are proven to be false.

Introduction Preliminaries APN and AB functions

Outline

Optimal cryptographic functions Introduction

- Preliminaries
- APN and AB functions
- 2 Equivalence relations of cryptographic functions
 - EAI-equivalence and known APN and AB monomials
 - CCZ-equivalence and its applications
- 3 Constructions and properties of APN functions
 - Classes of APN polynomials CCZ-inequivalent to monomials
 - Properties of APN monomials
 - Dobbertin conjecture on APN monomials

Introduction Preliminaries APN and AB functions

Univariate representation and algebraic degree of functions

The univariate representation of
$$F : \mathbb{F}_{2^n} \to \mathbb{F}_{2^m}$$
 for $m|n$:
 $F(x) = \sum_{i=0}^{2^n-1} c_i x^i, \quad c_i \in \mathbb{F}_{2^n}.$

The binary expansion of $0 \le k < 2^n$:

$$k=\sum_{s=0}^{n-1}2^{s}k_{s},$$

where k_s , $0 \le k_s \le 1$. Then binary weight of *k*:

$$w_2(k)=\sum_{s=0}^{n-1}k_s.$$

Algebraic degree of F:

$$d^{\circ}(F) = \max_{0 \leq i < 2^n, c_i \neq 0} w_2(i)$$

Optimal cryptographic functions

Equivalence relations of cryptographic functions Constructions and properties of APN functions

Special functions

• F is linear if

$$F(x)=\sum_{i=0}^{n-1}b_ix^{2^i}.$$

- F is affine if it is a linear function plus a constant.
- F is quadratic if for some affine A

$$F(x) = \sum_{i,j=0}^{n-1} b_{ij} x^{2^i+2^j} + A(x).$$

- *F* is power function or monomial if $F(x) = x^d$.
- The inverse F^{-1} of a permutation F is s.t. $F^{-1}(F(x)) = F(F^{-1}(x)) = x.$

Introduction Preliminaries APN and AB functions

Introduction Preliminaries APN and AB functions

Trace and component functions

Trace function from \mathbb{F}_{2^n} to \mathbb{F}_{2^m} for m|n:

$$\operatorname{tr}_n^m(x) = \sum_{i=0}^{n/m-1} x^{2^{im}}.$$

Absolute trace function:

$$\operatorname{tr}_n(x) = \operatorname{tr}_n^1(x) = \sum_{i=0}^{n-1} x^{2^i}.$$

For $F : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$ and $v \in \mathbb{F}_{2^n}^*$ $\operatorname{tr}_n(vF(x))$

is a component function of F.

Introduction Preliminaries APN and AB functions

Outline

Optimal cryptographic functions

- Introduction
- Preliminaries
- APN and AB functions
- Equivalence relations of cryptographic functions
 EAI-equivalence and known APN and AB monomials
 - CCZ-equivalence and its applications
- 3 Constructions and properties of APN functions
 - Classes of APN polynomials CCZ-inequivalent to monomials
 - Properties of APN monomials
 - Dobbertin conjecture on APN monomials

Introduction Preliminaries APN and AB functions

Differential uniformity and APN functions

- Differential cryptanalysis of block ciphers was introduced by Biham and Shamir in 1991.
- $F : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$ is differentially δ -uniform if

 $F(x+a)+F(x)=b, \qquad \forall a\in \mathbb{F}_{2^n}^*, \ \forall b\in \mathbb{F}_{2^n},$

has at most δ solutions.

- Differential uniformity measures the resistance to differential attack [Nyberg 1993].
- *F* is almost perfect nonlinear (APN) if $\delta = 2$.
- APN functions are optimal for differential cryptanalysis.

First examples of APN functions [Nyberg 1993]:

- Gold function $x^{2^{i}+1}$ on $\mathbb{F}_{2^{n}}$ with gcd(i, n) = 1;
- Inverse function x^{2^n-2} on \mathbb{F}_{2^n} with *n* odd.

Introduction Preliminaries APN and AB functions

Quadratic and Power APN Functions

• $F(x) = x^d$ on \mathbb{F}_{2^n} , then *F* is APN iff $D_1F(x) = F(x+1) + F(x)$ is a two-to-one mapping. Indeed, for any $a \neq 0$

$$F(x + a) + F(x) = (x + a)^d + x^d = a^d D_1 F(x/a).$$

• If *F* is quadratic then *F* is APN iff F(x + a) + F(x) = F(a) has 2 solutions for any $a \neq 0$.

Introduction Preliminaries APN and AB functions

Nonlinearity of functions

- Linear cryptanalysis was discovered by Matsui in 1993.
- Distance between two Boolean functions:

$$d(f,g)=|\{x\in\mathbb{F}_{2^n}:f(x)\neq g(x)\}|.$$

• Nonlinearity of $F : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$:

$$N_F = \min_{a \in \mathbb{F}_{2^n}, b \in \mathbb{F}_2, v \in \mathbb{F}_{2^n}^*} d(\operatorname{tr}_n(v \ F(x), \operatorname{tr}_n(ax) + b))$$

 Nonlinearity measures the resistance to linear attack [Chabaud and Vaudenay 1994].

Introduction Preliminaries APN and AB functions

Walsh transform of an (n, n)-function F

$$\lambda_{\mathsf{F}}(\mathsf{u},\mathsf{v}) = \sum_{x \in \mathbb{F}_{2^n}} (-1)^{\operatorname{tr}_n(\mathsf{v} \ \mathsf{F}(x)) + \operatorname{tr}_n(ax)}, \quad \mathsf{u} \in \mathbb{F}_{2^n}, \ \mathsf{v} \in \mathbb{F}_{2^n}^*$$

- Walsh coefficients of *F* are the values of its Walsh transform.
- Walsh spectrum of *F* is the set of all Walsh coefficients of *F*.
- The extended Walsh spectrum of *F* is the set of absolute values of all Walsh coefficients of *F*.
- F is APN iff

$$\sum_{u,v\in\mathbb{F}_{2^n},v\neq 0}\lambda_F^4(u,v)=2^{3n+1}(2^n-1).$$

Introduction Preliminaries APN and AB functions

Almost bent functions

The nonlinearity of *F* via Walsh transform:

$$N_F = 2^{n-1} - rac{1}{2} \max_{u \in \mathbb{F}_{2^n}, v \in \mathbb{F}_{2^n}^*} |\lambda_F(u, v)| \le 2^{n-1} - 2^{rac{n-1}{2}}.$$

Functions achieving this bound are called almost bent (AB).

- AB functions are optimal for linear cryptanalysis.
- *F* is AB iff $\lambda_F(u, v) \in \{0, \pm 2^{\frac{n+1}{2}}\}.$
- AB functions exist only for *n* odd.
- *F* is maximally nonlinear if *n* is even and $N_F = 2^{n-1} 2^{\frac{n}{2}}$ (conjectured optimal).

Introduction Preliminaries APN and AB functions

Almost bent functions II

- If F is AB then it is APN.
- If *n* is odd and *F* is quadratic APN then *F* is AB.
- Algebraic degrees of AB functions are upper bounded by $\frac{n+1}{2}$ [Carlet, Charpin, Zinoviev 1998].

First example of AB functions:

- Gold functions $x^{2^{i+1}}$ on \mathbb{F}_{2^n} with gcd(i, n) = 1, *n* odd;
- Gold APN functions with *n* even are not AB;
- Inverse functions are not AB.

Introduction Preliminaries APN and AB functions

Almost Bent Power Functions

 In general, checking Walsh spectrum for power functions is sufficient for *a* ∈ 𝔽₂ and *b* ∈ 𝔽^{*}_{2ⁿ}.

•
$$F(x) = x^d$$
 is AB on \mathbb{F}_{2^n} iff $\lambda_F(a, b) \in \{0, \pm 2^{\frac{n+1}{2}}\}$ for $a \in \mathbb{F}_2$, $b \in \mathbb{F}_{2^n}^*$, since $\lambda_F(a, b) = \lambda_F(1, a^{-d}b)$ for $a \in \mathbb{F}_{2^n}^*$.

- In case of power permutation, sufficient for *b* = 1 and all *a*.
 - If $F = x^d$ is a permutation, F is AB iff $\lambda_F(a, 1) \in \{0, \pm 2^{\frac{n+1}{2}}\}$ for $a \in \mathbb{F}_{2^n}$, since $\lambda_F(a, b) = \lambda_F(ab^{-\frac{1}{d}}, 1)$.

EAI-equivalence and known APN and AB monomials CCZ-equivalence and its applications

Outline

- Optimal cryptographic functions
 - Introduction
 - Preliminaries
 - APN and AB functions
- 2 Equivalence relations of cryptographic functions
 - EAI-equivalence and known APN and AB monomials
 - CCZ-equivalence and its applications
- 3 Constructions and properties of APN functions
 - Classes of APN polynomials CCZ-inequivalent to monomials
 - Properties of APN monomials
 - Dobbertin conjecture on APN monomials

EAI-equivalence and known APN and AB monomials CCZ-equivalence and its applications

Cyclotomic, EA- and EAI- equivalences

F and F' are extended affine equivalent (EA-equivalent) if

$$F' = A_1 \circ F \circ A_2 + A$$

for some affine permutations A_1 and A_2 and some affine A. If A = 0 then F and F' are called affine equivalent.

- *F* and *F'* are EAI-equivalent if *F'* is obtained from *F* by a sequence of applications of EA-equivalence and inverses of permutations.
- Functions x^d and $x^{d'}$ over \mathbb{F}_{2^n} are cyclotomic equivalent if $d' = 2^i \cdot d \mod (2^n 1)$ for some $0 \le i < n$ or, $d' = 2^i/d \mod (2^n 1)$ in case $gcd(d, 2^n 1) = 1$.

EAI-equivalence and known APN and AB monomials CCZ-equivalence and its applications

Invariants and Relation Between Equivalences

- Linear equivalence ⊂ affine equivalence ⊂ EA-equivalence ⊂ EAI-equivalence.
- Cyclotomic equivalence \subset EAI-equivalence.
- APNness, ABness are preserved by EAI-equivalence.
- Algebraic degree is preserved by EA-equivalence but not by EAI-equivalence.
- Permutation property is preserved by cyclotomic and affine equivalences (not by EA- or EAI-equivalences).

EAI-equivalence and known APN and AB monomials CCZ-equivalence and its applications

Known AB power functions x^d on \mathbb{F}_{2^n}

Functions	Exponents d	Conditions on <i>n</i> odd
Gold (1968)	2 ^{<i>i</i>} + 1	$gcd(i, n) = 1, 1 \le i < n/2$
Kasami (1971)	$2^{2i} - 2^i + 1$	$gcd(i, n) = 1, 2 \le i < n/2$
Welch (conj.1968)	$2^{m} + 3$	<i>n</i> = 2 <i>m</i> + 1
Niho	$2^m + 2^{\frac{m}{2}} - 1$, <i>m</i> even	n = 2m + 1
(conjectured in 1972)	$2^m + 2^{\frac{3m+1}{2}} - 1$, <i>m</i> odd	

Welch and Niho cases were proven by Canteaut, Charpin, Dobbertin (2000) and Hollmann, Xiang (2001), respectively.

EAI-equivalence and known APN and AB monomials CCZ-equivalence and its applications

Known APN power functions x^d on \mathbb{F}_{2^n}

Functions	Exponents d	Conditions
Gold	2 ^{<i>i</i>} + 1	$gcd(i, n) = 1, 1 \le i < n/2$
Kasami	$2^{2i} - 2^i + 1$	$gcd(i, n) = 1, 2 \leq i < n/2$
Welch	$2^{m} + 3$	<i>n</i> = 2 <i>m</i> + 1
Niho	$2^m + 2^{\frac{m}{2}} - 1$, <i>m</i> even	n = 2m + 1
	$2^m + 2^{\frac{3m+1}{2}} - 1$, <i>m</i> odd	
Inverse	2 ^{<i>n</i>-1} – 1	n = 2m + 1
Dobbertin	$2^{4m} + 2^{3m} + 2^{2m} + 2^m - 1$	n = 5m

- Power APN functions are permutations for *n* odd and 3-to-1 for *n* even [Dobbertin 1999].
- This list is up to cyclotomic equivalence and is conjectured complete [Dobbertin 1999].
- For n even the Inverse function is differentially 4-uniform and maximally nonlinear and is used as S-box in AES with n = 8.

EAI-equivalence and known APN and AB monomials CCZ-equivalence and its applications

Open problems in the beginning of 2000

- All known APN functions were power functions up to EA-equivalence.
- Power APN functions are permutations for *n* odd and 3-to-1 for *n* even.

Open problems:

- 1 Existence of APN polynomials (EA-)inequivalent to power functions.
- 2 Existence of APN permutations over \mathbb{F}_{2^n} for *n* even.

EAI-equivalence and known APN and AB monomials CCZ-equivalence and its applications

Outline

- Optimal cryptographic functions
 - Introduction
 - Preliminaries
 - APN and AB functions
- 2 Equivalence relations of cryptographic functions
 - EAI-equivalence and known APN and AB monomials
 - CCZ-equivalence and its applications
- 3 Constructions and properties of APN functions
 - Classes of APN polynomials CCZ-inequivalent to monomials
 - Properties of APN monomials
 - Dobbertin conjecture on APN monomials

EAI-equivalence and known APN and AB monomials CCZ-equivalence and its applications

CCZ-equivalence

The graph of a function $F : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$ is the set

$$G_{F} = \{(x, F(x)) : x \in \mathbb{F}_{2^{n}}\}.$$

F and *F'* are CCZ-equivalent if $\mathcal{L}(G_F) = G_{F'}$ for some affine permutation \mathcal{L} of $\mathbb{F}_{2^n} \times \mathbb{F}_{2^n}$ [Carlet, Charpin, Zinoviev 1998].

CCZ-equivalence

- preserves differential uniformity, nonlinearity and extended Walsh spectrum.
- is more general than EAI-equivalence [B., Carlet, Pott 2005].
- was used to disprove two conjectures of 1998:
 - On nonexistence of AB functions EA-inequivalent to any permutation [disproved by B., Carlet, Pott 2005];
 - On nonexistence of APN permutations for *n* even [disproved for *n* = 6 by Dillon et al. 2009].

First classes of APN and AB maps EAI-inequivalent to monomials

APN functions CCZ-equivalent to Gold functions and EAI-inequivalent to power functions on \mathbb{F}_{2^n} ; they are AB for *n* odd [B., Carlet, Pott 2005].

Functions	Conditions
	<i>n</i> ≥ 4
$x^{2^{i}+1} + (x^{2^{i}} + x + \operatorname{tr}_{n}(1) + 1)\operatorname{tr}_{n}(x^{2^{i}+1} + x \operatorname{tr}_{n}(1))$	gcd(i, n) = 1
	6 <i>n</i>
$[x + \operatorname{tr}_n^3(x^{2(2^i+1)} + x^{4(2^i+1)}) + \operatorname{tr}_n(x)\operatorname{tr}_n^3(x^{2^i+1} + x^{2^{2^i}(2^i+1)})]^{2^i+1}$	gcd(i, n) = 1
	$m \neq n$
$x^{2^{i}+1} + \operatorname{tr}_{n}^{m}(x^{2^{i}+1}) + x^{2^{i}}\operatorname{tr}_{n}^{m}(x) + x \operatorname{tr}_{n}^{m}(x)^{2^{i}}$	<i>n</i> odd
+ $[\operatorname{tr}_n^m(x)^{2^i+1} + \operatorname{tr}_n^m(x^{2^i+1}) + \operatorname{tr}_n^m(x)]^{\frac{1}{2^i+1}}(x^{2^i} + \operatorname{tr}_n^m(x)^{2^i} + 1)$	m n
$+[\mathrm{tr}_{n}^{m}(x)^{2^{i}+1}+\mathrm{tr}_{n}^{m}(x^{2^{i}+1})+\mathrm{tr}_{n}^{m}(x)]^{\frac{2^{i}}{2^{i}+1}}(x+\mathrm{tr}_{n}^{m}(x))$	gcd(i, n) = 1

CCZ-construction of APN permutation for *n* even

Big APN problem: Do APN permutations exist for *n* even?

No quadratic APN permutations for n even [Nyberg 1993].

The only known APN permutation for *n* even [Dillon et al 2009]:

• Applying CCZ-equivalence to quadratic APN on \mathbb{F}_{2^n} with n = 6 and *c* primitive

$$F(x) = x^3 + x^{10} + cx^{24}$$

obtain a nonquadratic APN permutation $c^{25}x^{57} + c^{30}x^{56} + c^{32}x^{50} + c^{37}x^{49} + c^{23}x^{48} + c^{39}x^{43} + c^{44}x^{42} + c^{4}x^{41} + c^{18}x^{40} + c^{46}x^{36} + c^{51}x^{35} + c^{52}x^{34} + c^{18}x^{33} + c^{56}x^{32} + c^{53}x^{29} + c^{30}x^{28} + cx^{25} + c^{58}x^{24} + c^{60}x^{22} + c^{37}x^{21} + c^{51}x^{20} + cx^{18} + c^2x^{17} + c^4x^{15} + c^{44}x^{14} + c^{32}x^{13} + c^{18}x^{12} + cx^{11} + c^9x^{10} + c^{17}x^8 + c^{51}x^7 + c^{17}x^6 + c^{18}x^5 + x^4 + c^{16}x^3 + c^{13}x$

Relation between equivalences for monomials and the problem of APN permutations

Two power functions are CCZ-equivalent iff they are cyclotomic equivalent [Dempwolff 2018].

Conjecture: For non-quadratic power APNs CCZ- and EAI-equivalences coincide [B., Calderini, Villa 2020].

- confirmed for $n \leq 9$ [B., Calderini, Villa 2020];
- confirmed for inverse functions [Koelsch 2021]. This problem can be reduced to studying permutations $L'(x^d) + L(x)$ for linear L, L'.

Related problems on APN permutations:

• Are there APN permutations of the form $x^d + L(x)$ where *d* is Kasami, Welch, Niho or Dobbertin exponent and $L(x) \neq 0$ linear.

EAI-equivalence and known APN and AB monomials CCZ-equivalence and its applications

Relation between equivalences for APN polynomials

- For quadratic APN functions CCZ-equivalence is more general than EAI-equivalence [B., Carlet, Pott, Leander 2005-2009].
- Two quadratic APN functions are CCZ-equivalent iff they are EA-equivalent [Yoshiara 2017].
- For non-power non-quadratic APN functions CCZ-equivalence is more general than EAI-equivalence [B., Calderini, Villa, 2020].

Classes of APN polynomials CCZ-inequivalent to monomials Properties of APN monomials Dobbertin conjecture on APN monomials

Outline

- Optimal cryptographic functions
 - Introduction
 - Preliminaries
 - APN and AB functions
- Equivalence relations of cryptographic functions
 EAI-equivalence and known APN and AB monomials
 CCZ-equivalence and its applications
- Onstructions and properties of APN functions
 - Classes of APN polynomials CCZ-inequivalent to monomials
 - Properties of APN monomials
 - Dobbertin conjecture on APN monomials

Classes of APN polynomials CCZ-inequivalent to monomials Properties of APN monomials Dobbertin conjecture on APN monomials

First APN and AB classes CCZ-ineq. to monomials

First example of APN polynomial [Edel, Pott, Kyureghyan 2005]:

 $F_{bin}(x) = x^3 + wx^{36}$

over $\mathbb{F}_{2^{10}}$, where *w* has the order 3 or 93.

First infinite family of APN and AB [B., Carlet, Leander 2006-2008]: Let *s*, *k*, *p* be positive integers such that n = pk, p = 3, 4, gcd(k, p) = gcd(s, pk) = 1 and α primitive in $\mathbb{F}_{2^n}^*$.

 $x^{2^{s}+1} + \alpha^{2^{k}-1}x^{2^{-k}+2^{k+s}}$

is quadratic APN on \mathbb{F}_{2^n} . If *n* is odd then this function is an AB permutation.

This disproved the conjecture from 1998 on nonexistence of quadratic AB functions inequivalent to Gold functions.

Classes of APN polynomials CCZ-inequivalent to monomials Properties of APN monomials Dobbertin conjecture on APN monomials

Known APN families CCZ-ineq. to power functions

N°	Functions	Conditions
C1-	2^{s+1} +2^{sk} - 12^{sk} + 2^{mk+s}	$n = pk, \gcd(k, 3) = \gcd(s, 3k) = 1, p \in \{3, 4\}$.
C2	x + u - x	$i = sk \mod p, m = p - i, n \ge 12, u \text{ primitive in } \mathbb{F}_{2^n}^s$
00	C3 $sx^{q+1} + x^{2^i+1} + x^{q(2^i+1)} + cx^{2^iq+1} + c^q x^{2^i+q}$	$q = 2^m, n = 2m, gcd(i, m) = 1, c \in \mathbb{F}_{2^n}, s \in \mathbb{F}_{2^n} \setminus \mathbb{F}_q$
5		$X^{2^{l}+1} + cX^{2^{l}} + c^{q}X + 1$ has no solution x s.t. $x^{q+1} = 1$
C4	$x^3 + a^{-1} Tr_n(a^3 x^9)$	$a \neq 0$
C5	$x^3 + a^{-1} \mathrm{Tr}_n^3 (a^3 x^9 + a^6 x^{18})$	$3 n, a \neq 0$
C6	$x^3 + a^{-1} \mathrm{Tr}_n^3 (a^6 x^{18} + a^{12} x^{36})$	$3 n, a \neq 0$
C7-	2 ⁴ +1 , 2 ^k 2 ^{-k} +2 ^{k+4} , 2 ^{-k} +1 , 2 ^k +1 2 ⁴ +2 ^{k+4}	$n = 3k$, $gcd(k, 3) = gcd(s, 3k) = 1, v, w \in \mathbb{F}_{2^k}$,
C9	$ux^{-++} + u^{-}x^{-+-} + vx^{-++} + wu^{-++}x^{-+-}$	$vw \neq 1, 3 (k + s), u$ primitive in $\mathbb{F}_{2^n}^*$
010	$(,, 2^m \setminus 2^k + 1,, (,,,,, 2^m \setminus (2^k + 1)2^i,,,,,,,, 2^m \setminus (,,,,,,, .$	$n=2m, m \geqslant 2$ even, $\gcd(k,m)=1$ and $i \geqslant 2$ even,
(x + x)	$(x+x) \rightarrow u(ux+u x) \rightarrow u(x+x)(ux+u x)$	u primitive in $\mathbb{F}_{2^n}^*$, $u' \in \mathbb{F}_{2^m}$ not a cube
C11	$L(x)^{2^{i}}x + L(x)x^{2^{i}}$	
C12	$ut(x)(x^q+x)+t(x)^{2^{2i}+2^{3i}}+at(x)^{2^{2i}}(x^q+x)^{2^i}+b(x^q+x)^{2^i+1}$	$n = 2m, q = 2^m, gcd(m, i) = 1, t(x) = u^q x + x^q u$,
		$X^{2^{t}+1} + aX + b$ has no solution over \mathbb{F}_{2^m}
C13	$x^3+a(x^{2^{i_i+1}})^{2^k}+bx^{3\cdot 2^m}+c(x^{2^{i_i+m}+2^m})^{2^k}$	$n=2m=10, (a,b,c)=(\beta,1,0,0), i=3, k=2, \beta$ primitive in \mathbb{F}_{2^2}
		$n = 2m, m \text{ odd}, 3 \nmid m, (a, b, c) = (\beta, \beta^2, 1), \beta \text{ primitive in } \mathbb{F}_{2^2}$,
		$i \in \{m - 2, m, 2m - 1, (m - 2)^{-1} \mod n\}$

- All are quadratic. For n odd they are AB otherwise have optimal nonlinearity.
- In general, these families are pairwise CCZ-inequivalent [B., Calderini, Villa, 2020].

Classes of APN polynomials CCZ-inequivalent to monomials Properties of APN monomials Dobbertin conjecture on APN monomials

APN Polynomial CCZ-Inequivalent to Monomials and Quadratics

Only one known example of APN polynomial CCZ-inequivalent to quadratics and to power functions for n=6:

$$\begin{aligned} x^3 + c^{17}(x^{17} + x^{18} + x^{20} + x^{24}) + \\ c^{14}(\operatorname{tr}_6(c^{52}x^3 + c^6x^5 + c^{19}x^7 + c^{28}x^{11} + c^2x^{13}) + \\ \operatorname{tr}_3(c^{18}x^9) + x^{21} + x^{42}) \end{aligned}$$

where *c* is some primitive element of \mathbb{F}_{2^6} [Brinkmann, Leander; Edel, Pott 2008].

- No infinite families known.
- No AB examples known.

Classes of APN polynomials CCZ-inequivalent to monomials Properties of APN monomials Dobbertin conjecture on APN monomials

Complete Classification of APN Functions for $n \leq 5$

Brinkmann and Leander 2008:

CCZ-classification finished for:

• APN functions with $n \le 5$ (there are only power functions).

EA-classification is finished for:

 APN functions with n ≤ 5 (there are only power functions and the ones constructed by CCZ-equivalence in 2005).

Classes of APN polynomials CCZ-inequivalent to monomials Properties of APN monomials Dobbertin conjecture on APN monomials

Some Classifications of APN Functions for $6 \le n \le 8$

- CCZ-classification of quadratics for n ≤ 8 by B., Kaleyski, Yu, Dillon, Edel, Kalgin, Idrisova, Pott, Berlier, Leander, Perrin et al 2006-2023:
 13 functions for n = 6 and 488 for n = 7 and more than 26500 for n = 8:
- EA-classification of known APN for n = 6 by Calderini 2019:
 - Gold has 3 EA-classes;
 - non-quadratic APN has 23 EA-classes;
 - Dillon permutation has 13 EA-classes, two of them containing permutations; 4 affine classes of permutations;
 - remaining 11 functions have 3,13,19,85,86 or 91 EA-classes.

Classes of APN polynomials CCZ-inequivalent to monomials Properties of APN monomials Dobbertin conjecture on APN monomials

Outline

- Optimal cryptographic functions
 - Introduction
 - Preliminaries
 - APN and AB functions
- Equivalence relations of cryptographic functions
 EAI-equivalence and known APN and AB monomials
 CCZ-equivalence and its applications
- 3 Constructions and properties of APN functions
 - Classes of APN polynomials CCZ-inequivalent to monomials
 - Properties of APN monomials
 - Dobbertin conjecture on APN monomials

Classes of APN polynomials CCZ-inequivalent to monomials Properties of APN monomials Dobbertin conjecture on APN monomials

Exceptional APN functions

A function *F* is exceptional APN if it is APN over \mathbb{F}_{2^n} for infinitely many values of *n*.

Gold and Kasami functions are the only known exceptional APN functions.

It is conjectured by Aubry, McGuire and Rodier (2010) that there are no more exceptional APN functions.

- Proven for power functions [Jedlicka 2007; Hernando, McGuire 2010].
- More partial results confirming this conjecture Jedlika, Hernando, Aubry, McGuire, Rodier, Caullery, Delgado, Janwa, Herbaut, Issa et al (2009-2022).

Classes of APN polynomials CCZ-inequivalent to monomials Properties of APN monomials Debertin conjecture on APN monomials

Nonliniarity properties of known APN families

All known APN families, except inverse and Dobbertin functions, have Gold-like Walsh spectra:

- for *n* odd they are AB;
- for *n* even Walsh spectra are $\{0, \pm 2^{n/2}, \pm 2^{n/2+1}\}$.

Walsh spectra of Inverse function: all integers divisible by 4 in the interval $[-2^{n/2+1} + 1, 2^{n/2+1} + 1]$ [Lachaud, Wolfmann 1990].

Sporadic APN polynomials with Walsh spectra $\{0, \pm 2^{n/2}, \pm 2^{n/2+1}, \pm 2^m\}$ with m = n/2 + 2 or m = n - 1:

• For *n* = 6 only one case [Dillon et al. 2006]

$$x^{3} + a^{11}x^{5} + a^{13}x^{9} + x^{17} + a^{11}x^{33} + x^{48}$$

- For *n* = 8 [Yu et al 2014; Beierle, Leander 2022]:
 - more than 500 functions with four different distributions $(\pm 2^{n/2+2}$ taken 16, 48, 32 and 64 times) with m = n/2 + 2;
 - there are cases with m = n 1.

Classes of APN polynomials CCZ-inequivalent to monomials Properties of APN monomials Debertin conjecture on APN monomials

Some Problems on Nonlinearity of APN functions

- Find a family of quadratic APN polynomials with non-Gold like nonliniarity.
- The only family of APN power functions with unknown Walsh spectrum is Dobbertin function.
 - All Walsh coefficients are divisible by 2^{2m} but not by 2^{2m+1} implying it is not AB [Canteut, Charpin, Dobbertin 2000].

Classes of APN polynomials CCZ-inequivalent to monomials Properties of APN monomials Dobbertin conjecture on APN monomials

Walsh Spectrum of Dobbertin Function

Conjecture on the Walsh spectrum of $F(x) = x^d$ with $d = 2^{4m} + 2^{3m} + 2^{2m} + 2^m - 1$ over $\mathbb{F}_{2^{5m}}$ [B., Calderini, Carlet, Davidova, Kaleyski 2022]:

- $\{0, 2^{2m}(2^m+1), \pm 2^{5k-2}, \pm s \cdot 2^{2m} \mid 1 \le s \le k \cdot (k+1), s \text{ odd} \}$ for $m = 2k - 1, k \in \mathbb{N}$;
- {0, $-2^{2m}(2^m + 1), \pm 2^{5k}, \pm 2^{5k+1}, \pm s \cdot 2^{2m} \mid 1 \le s \le k \cdot (k+2), s \text{ odd}$ for $m = 2k, k \in \mathbb{N}$.

Moreover, $\lambda_F(u, v)$ takes the maximum absolute value $2^{2m}(2^m + 1)$ for u = v = 1. Hence, $N_F = 2^{5m-1} - 2^{2m-1}(2^m + 1)$.

Classes of APN polynomials CCZ-inequivalent to monomials Properties of APN monomials Dobbertin conjecture on APN monomials

"Optimal" representations for known APN exponents

- Kasami exponent for *n* odd $2^{2i} 2^i + 1 = \frac{2^{3i}+1}{2^i+1}$;
- Welch exponent $2^{t} + 3$, n = 2t + 1;
- Niho exponent over \mathbb{F}_{2^n} with n = 2t + 1
 - If *t* is an even then $2^t + 2^{\frac{t}{2}} 1$ is cyclotomic equivalent to $\frac{3}{2^{t+1}+2^{\frac{t}{2}}+1}$;
 - If t is an odd then $2^{\frac{3t+1}{2}} + 2^t 1$ is cyclotomic equivalent to $\frac{3}{2^t+2^{\frac{t-1}{2}}+1}$;
- Dobbertin exponent $2^{4m} + 2^{3m} + 2^{2m} + 2^m 1$ over $\mathbb{F}_{2^{5m}}$ is cyclotomic equivalent to $\frac{2^{2m} + 2^m + 1}{2^m + 1}$.

Classes of APN polynomials CCZ-inequivalent to monomials Properties of APN monomials Dobbertin conjecture on APN monomials

Outline

- Optimal cryptographic functions
 - Introduction
 - Preliminaries
 - APN and AB functions
- Equivalence relations of cryptographic functions
 EAI-equivalence and known APN and AB monomials
 CCZ-equivalence and its applications
- 3 Constructions and properties of APN functions
 - Classes of APN polynomials CCZ-inequivalent to monomials
 - Properties of APN monomials
 - Dobbertin conjecture on APN monomials

Classes of APN polynomials CCZ-inequivalent to monomials Properties of APN monomials Dobbertin conjecture on APN monomials

Composition of monomials with linear functions

For $3 \le s, t \le n - 1$ and some linear function *L* study $F(x) = x^s \circ L \circ x^t$ for APN property, in particular, for equivalent to APN monomials [B., Calderini, Carlet, Davidova, Kaleyski 2022].

•
$$F(x) = x^{2^{2i}-2^i+1} + x^{2^{2i}} + x^{2^i} + x$$
 if $s = 2^i + 1$, $t = \frac{1}{2^i+1}$ and $L(x) = x^{2^{2i}} + x$.

- *F* is EA-equivalent to the inverse of Kasami $x^{\frac{1}{2^{2l}-2^{i}+1}}$ for $s = 2^{i} + 1$, $t = \frac{1}{2^{r}+1}$ and $L(x) = x^{2^{i}} + x$ when $n = 3s \pm r$ is odd, $3s \ge r$, gcd(3s, r) = 1.
- *F* is affine equivalent to $x^{\frac{1}{2^{i}+1}}$ when $s = \frac{1}{2^{i}+1}$, $t = 2^{i}+1$ for $L(x) = x^{2^{i}} + x$
- These are the only nontrivial cases for $n \leq 9$ odd and $L \in \mathbb{F}_2[x]$.

Classes of APN polynomials CCZ-inequivalent to monomials Properties of APN monomials Dobbertin conjecture on APN monomials

Some Particular Exponents

Consider over $\mathbb{F}_{2^{mk}}$ exponents

$$d=\sum_{i=1}^{k-1}2^{im}-1$$

[B. 2005; B., Calderini, Carlet, Davidova, Kaleyski 2022].

- For m = 1 and k = 5 it gives Inverse and Dobbertin exponent - the only two APN monomials which are not AB for n odd.
- Not AB.
- Not APN if $k = 2^{l} + 2$ for some positive integer *l*, or when k = 2 and m > 2.
- Not APN for k = 3 it is $2^{2m} 2^m + 1$ over $\mathbb{F}_{2^{3m}}$ with derivatives 2^m -to-1.
- Not APN for k = 4: its derivatives are "almost" 2-to-1 with exceptions taking high values.

Classes of APN polynomials CCZ-inequivalent to monomials Properties of APN monomials Dobbertin conjecture on APN monomials

Sidon Sets and Sum-Free Sets

- A subset of 𝔽_{2ⁿ} is a Sidon set if it does not contain four different elements whose sum is 0.
- A subset S of F_{2ⁿ} is a sum-free set if there exist no a, b, c ∈ S that a + b = c.
- If x^d is APN over \mathbb{F}_{2^n} then for every $0 \le j \le n-1$ $\{a \in \mathbb{F}_{2^n}^* : a^{d-2^j} = 1\}$ is a Sidon sum-free set in \mathbb{F}_{2^n} [Carlet, Picek 2017].

Classes of APN polynomials CCZ-inequivalent to monomials Properties of APN monomials Dobbertin conjecture on APN monomials

Dobbertin conjecture on APN monomials

Search for new APN and AB Monomials:

- No new APN for $n \le 26$ [Dobbertin, Canteaut 2000];
- No new AB for $n \leq 33$ [Leander, Langevin 2008];
- No new APN for *n* ≤ 34 and *n* = 36, 38, 40, 42 [Edel];
 - gcd(d, 2ⁿ − 1) is either 1 or 3;
 - excluding known APN;
 - choosing only one representative from cyclotomic coset;
 - an APN monomial stays APN on subfields.
- Adding Sidon and sum-free sets does not exclude sufficient cases for further progress.

Classes of APN polynomials CCZ-inequivalent to monomials Properties of APN monomials Dobbertin conjecture on APN monomials

Open problems on APN monomials since 2000

- For *d* Kasami, Welch, Niho or Dobbertin exponent:
 - does CCZ-equivalence coincide with EAI-equivalence for x^d ?
 - find permutations of the form $x^d + L(x)$ where $L(x) \neq 0$ linear.
- Find Walsh spectrum of Dobbertin function:
 - use the conjecture for representation of Walsh coefficients (2022);
 - use "optimal" representation for the Dobbertin exponent.
- Find new APN monomials:
 - study $x^s \circ L \circ x^t$;
 - study known special exponents or find and study other special exponents;
 - find new properties of APN monomials to facilitate computer search.