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Vectorial Boolean functions

For n and m positive integers
Boolean functions: F : Fn

2 → F2
Vectorial Boolean (n,m)-functions: F : Fn

2 → Fm
2

Modern applications of Boolean functions:
reliability theory, multicriteria analysis, mathematical
biology, image processing, theoretical physics, statistics;
voting games, artificial intelligence, management science,
digital electronics, propositional logic;
algebra, coding theory, combinatorics, sequence design,
cryptography.
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Cryptographic properties of functions

Functions used in block ciphers, S-boxes, should possess
certain properties to ensure resistance of the ciphers to
cryptographic attacks.

Main cryptographic attacks on block ciphers and corresponding
properties of S-boxes:

Linear attack – Nonlinearity

Differential attack – Differential uniformity

Algebraic attack – Existence of low degree multivariate
equations

Higher order differential attack – Algebraic degree

Interpolation attack – Univariate polynomial degree
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Optimal cryptographic functions

Optimal cryptographic functions
are vectorial Boolean functions optimal for primary
cryptographic criteria (APN and AB functions);

are UNIVERSAL - they define optimal objects in several
branches of mathematics and information theory (coding
theory, sequence design, projective geometry,
combinatorics, commutative algebra);

are "HARD-TO-GET" - there are only a few known
constructions (12 AB, 19 APN);

are "HARD-TO-PREDICT" - most conjectures are proven
to be false.
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Univariate representation and algebraic degree of
functions

The univariate representation of F : F2n → F2m for m|n:

F (x) =
2n−1∑
i=0

cix i , ci ∈ F2n .

The binary expansion of 0 ≤ k < 2n:

k =
n−1∑
s=0

2sks,

where ks, 0 ≤ ks ≤ 1. Then binary weight of k :

w2(k) =
n−1∑
s=0

ks.

Algebraic degree of F :
d◦(F ) = max

0≤i<2n,ci ̸=0
w2(i).
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Special functions

F is linear if

F (x) =
n−1∑
i=0

bix2i
.

F is affine if it is a linear function plus a constant.
F is quadratic if for some affine A

F (x) =
n−1∑
i,j=0

bijx2i+2j
+ A(x).

F is power function or monomial if F (x) = xd .
The inverse F−1 of a permutation F is s.t.
F−1(F (x)) = F (F−1(x)) = x .
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Trace and component functions

Trace function from F2n to F2m for m|n:

trm
n (x) =

n/m−1∑
i=0

x2im
.

Absolute trace function:

trn(x) = tr1
n(x) =

n−1∑
i=0

x2i
.

For F : F2n → F2n and v ∈ F∗
2n

trn(vF (x))

is a component function of F .
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Differential uniformity and APN functions
Differential cryptanalysis of block ciphers was introduced
by Biham and Shamir in 1991.
F : F2n → F2n is differentially δ-uniform if

F (x + a) + F (x) = b, ∀a ∈ F∗
2n , ∀b ∈ F2n ,

has at most δ solutions.
Differential uniformity measures the resistance to
differential attack [Nyberg 1993].
F is almost perfect nonlinear (APN) if δ = 2.
APN functions are optimal for differential cryptanalysis.

First examples of APN functions [Nyberg 1993]:
Gold function x2i+1 on F2n with gcd(i ,n) = 1;
Inverse function x2n−2 on F2n with n odd.
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Quadratic and Power APN Functions

F (x) = xd on F2n , then F is APN iff
D1F (x) = F (x + 1) + F (x) is a two-to-one mapping.
Indeed, for any a ̸= 0

F (x + a) + F (x) = (x + a)d + xd = adD1F (x/a).

If F is quadratic then F is APN iff F (x + a) + F (x) = F (a)
has 2 solutions for any a ̸= 0.
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Nonlinearity of functions

Linear cryptanalysis was discovered by Matsui in 1993.

Distance between two Boolean functions:

d(f ,g) = |{x ∈ F2n : f (x) ̸= g(x)}|.

Nonlinearity of F : F2n → F2n :

NF = min
a∈F2n ,b∈F2,v∈F∗

2n
d(trn(v F (x), trn(ax) + b)

Nonlinearity measures the resistance to linear attack
[Chabaud and Vaudenay 1994].
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Walsh transform of an (n,n)-function F

λF (u, v) =
∑

x∈F2n

(−1)trn(v F (x))+trn(ax), u ∈ F2n , v ∈ F∗
2n

Walsh coefficients of F are the values of its Walsh
transform.

Walsh spectrum of F is the set of all Walsh coefficients of
F .

The extended Walsh spectrum of F is the set of absolute
values of all Walsh coefficients of F .

F is APN iff ∑
u,v∈F2n ,v ̸=0

λ4
F (u, v) = 23n+1(2n − 1).
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Almost bent functions

The nonlinearity of F via Walsh transform:

NF = 2n−1 − 1
2

max
u∈F2n ,v∈F∗

2n
|λF (u, v)| ≤ 2n−1 − 2

n−1
2 .

Functions achieving this bound are called almost bent (AB).

AB functions are optimal for linear cryptanalysis.

F is AB iff λF (u, v) ∈ {0,±2
n+1

2 }.

AB functions exist only for n odd.

F is maximally nonlinear if n is even and NF = 2n−1 − 2
n
2

(conjectured optimal).
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Almost bent functions II

If F is AB then it is APN.

If n is odd and F is quadratic APN then F is AB.

Algebraic degrees of AB functions are upper bounded by
n+1

2 [Carlet, Charpin, Zinoviev 1998].

First example of AB functions:

Gold functions x2i+1 on F2n with gcd(i ,n) = 1, n odd;

Gold APN functions with n even are not AB;

Inverse functions are not AB.
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Almost Bent Power Functions

In general, checking Walsh spectrum for power functions is
sufficient for a ∈ F2 and b ∈ F∗

2n .

F (x) = xd is AB on F2n iff λF (a,b) ∈ {0,±2
n+1

2 } for a ∈ F2,
b ∈ F∗

2n , since λF (a,b) = λF (1,a−db) for a ∈ F∗
2n .

In case of power permutation, sufficient for b = 1 and all a.

If F = xd is a permutation, F is AB iff λF (a,1) ∈ {0,±2
n+1

2 }
for a ∈ F2n , since λF (a,b) = λF (ab− 1

d ,1).
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Cyclotomic, EA- and EAI- equivalences

F and F ′ are extended affine equivalent (EA-equivalent) if

F ′ = A1 ◦ F ◦ A2 + A

for some affine permutations A1 and A2 and some affine A.
If A = 0 then F and F ′ are called affine equivalent.

F and F ′ are EAI-equivalent if F ′ is obtained from F by a
sequence of applications of EA-equivalence and inverses
of permutations.

Functions xd and xd ′
over F2n are cyclotomic equivalent if

d ′ = 2i · d mod (2n − 1) for some 0 ≤ i < n
or, d ′ = 2i/d mod (2n − 1) in case gcd(d ,2n − 1) = 1.
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Invariants and Relation Between Equivalences

Linear equivalence ⊂ affine equivalence ⊂ EA-equivalence
⊂ EAI-equivalence.

Cyclotomic equivalence ⊂ EAI-equivalence.

APNness, ABness are preserved by EAI-equivalence.

Algebraic degree is preserved by EA-equivalence but not
by EAI-equivalence.

Permutation property is preserved by cyclotomic and affine
equivalences (not by EA- or EAI-equivalences).
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Known AB power functions xd on F2n

Functions Exponents d Conditions on n odd

Gold (1968) 2i + 1 gcd(i, n) = 1, 1 ≤ i < n/2

Kasami (1971) 22i − 2i + 1 gcd(i, n) = 1, 2 ≤ i < n/2

Welch (conj.1968) 2m + 3 n = 2m + 1

Niho 2m + 2
m
2 − 1, m even n = 2m + 1

(conjectured in 1972) 2m + 2
3m+1

2 − 1, m odd

Welch and Niho cases were proven by Canteaut, Charpin,
Dobbertin (2000) and Hollmann, Xiang (2001), respectively.
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Known APN power functions xd on F2n

Functions Exponents d Conditions

Gold 2i + 1 gcd(i, n) = 1, 1 ≤ i < n/2

Kasami 22i − 2i + 1 gcd(i, n) = 1, 2 ≤ i < n/2

Welch 2m + 3 n = 2m + 1

Niho 2m + 2
m
2 − 1, m even n = 2m + 1

2m + 2
3m+1

2 − 1, m odd

Inverse 2n−1 − 1 n = 2m + 1

Dobbertin 24m + 23m + 22m + 2m − 1 n = 5m

Power APN functions are permutations for n odd and
3-to-1 for n even [Dobbertin 1999].
This list is up to cyclotomic equivalence and is conjectured
complete [Dobbertin 1999].
For n even the Inverse function is differentially 4-uniform
and maximally nonlinear and is used as S-box in AES with
n = 8.
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Open problems in the beginning of 2000

All known APN functions were power functions up to
EA-equivalence.

Power APN functions are permutations for n odd and
3-to-1 for n even.

Open problems:
1 Existence of APN polynomials (EA-)inequivalent to power

functions.

2 Existence of APN permutations over F2n for n even.
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CCZ-equivalence
The graph of a function F : F2n → F2n is the set

GF = {(x ,F (x)) : x ∈ F2n}.

F and F ′ are CCZ-equivalent if L(GF ) = GF ′ for some affine
permutation L of F2n × F2n [Carlet, Charpin, Zinoviev 1998].

CCZ-equivalence
preserves differential uniformity, nonlinearity and extended
Walsh spectrum.

is more general than EAI-equivalence [B., Carlet, Pott
2005].
was used to disprove two conjectures of 1998:

On nonexistence of AB functions EA-inequivalent to any
permutation [disproved by B., Carlet, Pott 2005];
On nonexistence of APN permutations for n even
[disproved for n = 6 by Dillon et al. 2009].
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First classes of APN and AB maps EAI-inequivalent to
monomials

APN functions CCZ-equivalent to Gold functions and
EAI-inequivalent to power functions on F2n ; they are AB for n
odd [B., Carlet, Pott 2005].

Functions Conditions

n ≥ 4

x2i+1 + (x2i
+ x + trn(1) + 1)trn(x2i+1 + x trn(1)) gcd(i, n) = 1

6|n
[x + tr3

n(x2(2i+1) + x4(2i+1)) + trn(x)tr3
n(x2i+1 + x22i (2i+1))]2

i+1 gcd(i, n) = 1

m ̸= n

x2i+1 + trm
n (x2i+1) + x2i

trm
n (x) + x trm

n (x)2i
n odd

+[trm
n (x)2i+1 + trm

n (x2i+1) + trm
n (x)]

1
2i+1 (x2i

+ trm
n (x)2i

+ 1) m|n

+[trm
n (x)2i+1 + trm

n (x2i+1) + trm
n (x)]

2i

2i+1 (x + trm
n (x)) gcd(i, n) = 1
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CCZ-construction of APN permutation for n even

Big APN problem: Do APN permutations exist for n even?
No quadratic APN permutations for n even [Nyberg 1993].

The only known APN permutation for n even [Dillon et al 2009]:
Applying CCZ-equivalence to quadratic APN on F2n with
n = 6 and c primitive

F (x) = x3 + x10 + cx24

obtain a nonquadratic APN permutation
c25x57+c30x56+c32x50+c37x49+c23x48+c39x43+ c44x42+
c4x41+c18x40+c46x36+c51x35+c52x34+ c18x33+c56x32+
c53x29+c30x28+cx25+c58x24+ c60x22+c37x21+c51x20+
cx18 + c2x17 + c4x15 + c44x14 + c32x13 + c18x12 + cx11 +
c9x10 + c17x8 + c51x7 + c17x6 + c18x5 + x4 + c16x3 + c13x
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Relation between equivalences for monomials
and the problem of APN permutations

Two power functions are CCZ-equivalent iff they are cyclotomic
equivalent [Dempwolff 2018].

Conjecture: For non-quadratic power APNs CCZ- and
EAI-equivalences coincide [B., Calderini, Villa 2020].

confirmed for n ≤ 9 [B., Calderini, Villa 2020];
confirmed for inverse functions [Koelsch 2021].

This problem can be reduced to studying permutations
L′(xd) + L(x) for linear L,L′.

Related problems on APN permutations:
Are there APN permutations of the form xd + L(x) where d
is Kasami, Welch, Niho or Dobbertin exponent and
L(x) ̸= 0 linear.
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Relation between equivalences for APN polynomials

For quadratic APN functions CCZ-equivalence is more
general than EAI-equivalence [B., Carlet, Pott, Leander
2005-2009].
Two quadratic APN functions are CCZ-equivalent iff they
are EA-equivalent [Yoshiara 2017].
For non-power non-quadratic APN functions
CCZ-equivalence is more general than EAI-equivalence
[B., Calderini, Villa, 2020].
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First APN and AB classes CCZ-ineq. to monomials
First example of APN polynomial [Edel, Pott, Kyureghyan
2005]:

Fbin(x) = x3 + wx36

over F210 , where w has the order 3 or 93.

First infinite family of APN and AB [B., Carlet, Leander
2006-2008]:
Let s, k ,p be positive integers such that n = pk , p = 3,4,
gcd(k ,p) = gcd(s,pk) = 1 and α primitive in F∗

2n .

x2s+1 + α2k−1x2−k+2k+s

is quadratic APN on F2n . If n is odd then this function is an AB
permutation.
This disproved the conjecture from 1998 on nonexistence of
quadratic AB functions inequivalent to Gold functions.
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Known APN families CCZ-ineq. to power functions

All are quadratic. For n odd they are AB otherwise have
optimal nonlinearity.
In general, these families are pairwise CCZ-inequivalent
[B., Calderini, Villa, 2020].
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APN Polynomial CCZ-Inequivalent to Monomials and
Quadratics

Only one known example of APN polynomial CCZ-inequivalent
to quadratics and to power functions for n=6:

x3 + c17(x17 + x18 + x20 + x24)+

c14(tr6(c52x3 + c6x5 + c19x7 + c28x11 + c2x13)+

tr3(c18x9) + x21 + x42)
where c is some primitive element of F26 [Brinkmann, Leander;
Edel, Pott 2008].

No infinite families known.
No AB examples known.
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Complete Classification of APN Functions for n ≤ 5

Brinkmann and Leander 2008:

CCZ-classification finished for:
APN functions with n ≤ 5 (there are only power functions).

EA-classification is finished for:
APN functions with n ≤ 5 (there are only power functions
and the ones constructed by CCZ-equivalence in 2005).
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Some Classifications of APN Functions for 6 ≤ n ≤ 8

CCZ-classification of quadratics for n ≤ 8 by B., Kaleyski,
Yu, Dillon, Edel, Kalgin, Idrisova, Pott, Berlier, Leander,
Perrin et al 2006-2023:
13 functions for n = 6 and 488 for n = 7 and more than
26500 for n = 8;
EA-classification of known APN for n = 6 by Calderini
2019:

Gold has 3 EA-classes;
non-quadratic APN has 23 EA-classes;
Dillon permutation has 13 EA-classes, two of them
containing permutations; 4 affine classes of permutations;
remaining 11 functions have 3,13,19,85,86 or 91
EA-classes.
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Exceptional APN functions

A function F is exceptional APN if it is APN over F2n for infinitely
many values of n.

Gold and Kasami functions are the only known exceptional
APN functions.

It is conjectured by Aubry, McGuire and Rodier (2010) that
there are no more exceptional APN functions.

Proven for power functions [Jedlicka 2007; Hernando,
McGuire 2010].

More partial results confirming this conjecture Jedlika,
Hernando, Aubry, McGuire, Rodier, Caullery, Delgado,
Janwa, Herbaut, Issa et al (2009-2022).
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Nonliniarity properties of known APN families
All known APN families, except inverse and Dobbertin
functions, have Gold-like Walsh spectra:

for n odd they are AB;
for n even Walsh spectra are {0,±2n/2,±2n/2+1}.

Walsh spectra of Inverse function: all integers divisible by 4 in
the interval [−2n/2+1 + 1,2n/2+1 + 1] [Lachaud, Wolfmann
1990].

Sporadic APN polynomials with Walsh spectra
{0,±2n/2,±2n/2+1,±2m} with m = n/2 + 2 or m = n − 1:

For n = 6 only one case [Dillon et al. 2006]

x3 + a11x5 + a13x9 + x17 + a11x33 + x48.

For n = 8 [Yu et al 2014; Beierle, Leander 2022]:
more than 500 functions with four different distributions
(±2n/2+2 taken 16, 48, 32 and 64 times) with m = n/2 + 2;
there are cases with m = n − 1. 38 / 47
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Some Problems on Nonlinearity of APN functions

Find a family of quadratic APN polynomials with non-Gold
like nonliniarity.

The only family of APN power functions with unknown
Walsh spectrum is Dobbertin function.

All Walsh coefficients are divisible by 22m but not by 22m+1

implying it is not AB [Canteut, Charpin, Dobbertin 2000].
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Walsh Spectrum of Dobbertin Function

Conjecture on the Walsh spectrum of F (x) = xd with
d = 24m + 23m + 22m + 2m − 1 over F25m

[B., Calderini, Carlet, Davidova, Kaleyski 2022]:

{0,22m(2m+1),±25k−2,±s ·22m | 1 ≤ s ≤ k ·(k +1), s odd}
for m = 2k − 1, k ∈ N;
{0,−22m(2m + 1),±25k ,±25k+1,±s · 22m | 1 ≤ s ≤
k · (k + 2), s odd} for m = 2k , k ∈ N.

Moreover, λF (u, v) takes the maximum absolute value
22m(2m + 1) for u = v = 1.
Hence, NF = 25m−1 − 22m−1(2m + 1).
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"Optimal" representations for known APN exponents

Kasami exponent for n odd 22i − 2i + 1 = 23i+1
2i+1 ;

Welch exponent 2t + 3, n = 2t + 1;
Niho exponent over F2n with n = 2t + 1

If t is an even then 2t + 2
t
2 − 1 is cyclotomic equivalent to

3
2t+1+2

t
2 +1

;

If t is an odd then 2
3t+1

2 + 2t − 1 is cyclotomic equivalent to
3

2t+2
t−1

2 +1
;

Dobbertin exponent 24m + 23m + 22m + 2m − 1 over F25m is
cyclotomic equivalent to 22m+2m+1

2m+1 .
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Composition of monomials with linear functions
For 3 ≤ s, t ≤ n − 1 and some linear function L study
F (x) = xs ◦ L ◦ x t for APN property, in particular, for equivalent
to APN monomials [B., Calderini, Carlet, Davidova, Kaleyski
2022].

F (x) = x22i−2i+1 + x22i
+ x2i

+ x if s = 2i + 1, t = 1
2i+1 and

L(x) = x22i
+ x .

F is EA-equivalent to the inverse of Kasami x
1

22i−2i+1 for
s = 2i + 1, t = 1

2r+1 and L(x) = x2i
+ x when n = 3s ± r is

odd, 3s ≥ r , gcd(3s, r) = 1.

F is affine equivalent to x
1

2i+1 when s = 1
2i+1 , t = 2i + 1 for

L(x) = x2i
+ x

These are the only nontrivial cases for n ≤ 9 odd and
L ∈ F2[x ].

43 / 47



Optimal cryptographic functions
Equivalence relations of cryptographic functions

Constructions and properties of APN functions

Classes of APN polynomials CCZ-inequivalent to monomials
Properties of APN monomials
Dobbertin conjecture on APN monomials

Some Particular Exponents
Consider over F2mk exponents

d =
k−1∑
i=1

2im − 1

[B. 2005; B., Calderini, Carlet, Davidova, Kaleyski 2022].
For m = 1 and k = 5 it gives Inverse and Dobbertin
exponent - the only two APN monomials which are not AB
for n odd.
Not AB.
Not APN if k = 2l + 2 for some positive integer l , or when
k = 2 and m > 2.
Not APN for k = 3 it is 22m − 2m + 1 over F23m with
derivatives 2m-to-1.
Not APN for k = 4: its derivatives are "almost" 2-to-1 with
exceptions taking high values.
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Sidon Sets and Sum-Free Sets

A subset of F2n is a Sidon set if it does not contain four
different elements whose sum is 0.
A subset S of F2n is a sum-free set if there exist no
a,b, c ∈ S that a + b = c.
If xd is APN over F2n then for every 0 ≤ j ≤ n − 1
{a ∈ F∗

2n : ad−2j
= 1} is a Sidon sum-free set in F2n

[Carlet, Picek 2017].
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Dobbertin conjecture on APN monomials

Search for new APN and AB Monomials:
No new APN for n ≤ 26 [Dobbertin, Canteaut 2000];
No new AB for n ≤ 33 [Leander, Langevin 2008];
No new APN for n ≤ 34 and n = 36,38,40,42 [Edel];

gcd(d ,2n − 1) is either 1 or 3;
excluding known APN;
choosing only one representative from cyclotomic coset;
an APN monomial stays APN on subfields.

Adding Sidon and sum-free sets does not exclude
sufficient cases for further progress.
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Open problems on APN monomials since 2000

For d Kasami, Welch, Niho or Dobbertin exponent:
does CCZ-equivalence coincide with EAI-equivalence for
xd?
find permutations of the form xd + L(x) where L(x) ̸= 0
linear.

Find Walsh spectrum of Dobbertin function:
use the conjecture for representation of Walsh coefficients
(2022);
use "optimal" representation for the Dobbertin exponent.

Find new APN monomials:
study xs ◦ L ◦ x t ;
study known special exponents or find and study other
special exponents;
find new properties of APN monomials to facilitate
computer search.
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