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Abstract

The construction of Boolean functions with good cryptographic properties over a subset
of vectors with fixed Hamming weight En,k ⊂ IFn

2 is significant in lightweight stream ciphers
like FLIP [MJSC16]. In this article, we have given a construction for a class of n-variable
weightwise almost perfectly balanced (WAPB) Boolean functions from known support of an
n0-variable WAPB where n0 < n. This is a generalization of constructing a weightwise perfectly
balanced (WPB) Boolean function by Mesnager and Su [MS21]. At the end of this article,
we have also studied some cryptographic properties like ANF, weight, and nonlinearity of the
functions. The ANF of this function is recursive, which would be a low-cost implementation in
a lightweight stream cipher. The nonlinearity of this class of functions is very poor.

Keywords— Boolean function, FLIP cipher, Weightwise perfectly balanced (WPB), Weightwise almost
perfectly balanced (WAPB)

1 Introduction

An n-variable Boolean function f is a mapping from the n-dimensional vector space IFn
2 to IF2, where IF2

is a finite field with two elements {0, 1}. Depending upon the underlying algebraic structure, ‘+’ symbol
is used for the addition operation in both IF2 and R. Generally, the cryptographic criteria of the Boolean
functions are defined over the entire domain of vector space IFn

2 . The study of the Boolean functions over a
restricted domain became interesting after the appearance of the stream cipher FLIP in 2016 [MJSC16]. In
this stream cipher, the Hamming weight of the inputs to the filter function is n

2 .An initial cryptographic study
of Boolean function in a restricted domain is introduced by Carlet et al. in [CMR17]. The Boolean functions
balanced over the subsets of IFn

2 containing vectors with constant Hamming weight are said to be weightwise
perfectly balanced (WPB). The first weightwise perfectly balanced (WPB) Boolean function construction
was introduced in [CMR17] in 2017. Two constructions of WPB Boolean functions are presented in [MS21]
by modifying the support of linear and quadratic functions.

2 Preliminaries

Let Bn be the set of all n-variable Boolean functions. Let denote [i, j] = {i, i+ 1, . . . , j} for two integers i, j
with i ≤ j. For any v = (v1, v2, . . . , vn) ∈ IFn

2 , the Hamming weight of v is defined as wt(v) = |{i ∈ [1, n] :
vi = 1}|. The support of a Boolean function f ∈ Bn is sup(f) = {v ∈ IFn

2 : f(v) = 1} and Hamming weight
of f is wt(f) = |sup(f)|. Let En be the family of subsets En,k = {v ∈ IFn

2 : wt(v) = k} for k ∈ [0, n] of IFn
2 .

The support and Hamming weight of f restricted to En,k are denoted as supk(f) = {v ∈ En,k : f(v) = 1}
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and wtk(f) = |supk(f)| respectively. The Hamming distance between two functions f, g ∈ Bn is given as
d(f, g) = |{v ∈ IFn

2 : f(v) ̸= g(v)}| = wt(f + g). The truth table representation of a Boolean function
f ∈ Bn is the 2n-tuple vector representation, i.e., f = {f(0, 0, . . . , 0), f(0, 0, . . . , 1), . . . , f(1, 1, . . . , 1)}. The
algebraic normal form (ANF) representation is defined as f(x) =

∑
u∈IFn

2
aux

u, where au ∈ IF2 and xu =

xu1
1 xu2

2 · · ·xun
n for x = (x1, x2, . . . , xn). The algebraic degree of the Boolean function f ∈ Bn is defined as

deg(f) = max{wt(u) : u ∈ IFn
2 , au ̸= 0}. Any f ∈ Bn, with deg(f) ≤ 1, is said to be an affine Boolean

function, and the set of all affine Boolean functions in Bn is denoted by An. A Boolean function f ∈ Bn is
balanced, if wt(f) = 2n−1. The nonlinearity of f ∈ Bn, denoted as nl(f), is the Hamming distance of f from
the set of all affine functions. That is, nl(f) = ming∈An

d(f, g). Similarly, all these cryptographic criteria
are also defined for the n-variable Boolean function when the inputs are restricted to En,k.

Definition 2.1. [CMR17] A Boolean function f ∈ Bn is said to be weightwise almost perfectly balanced

(WAPB) if, for k ∈ [0, n], wtk(f) =
(nk)
2 if

(
n
k

)
is even and wtk(f) =

(nk)±1

2 if
(
n
k

)
is odd.

Definition 2.2. [CMR17] A Boolean function f ∈ Bn is said to be weightwise perfectly balanced (WPB) if

the restriction of f to En,k, is balanced for all k ∈ [1, n− 1], i.e.,
(
n
k

)
is even and wtk(f) =

(nk)
2 .

Therefore, a WPB function fn ∈ Bn exists if n = 2m and a WAPB function f ∈ Bn is called WPB
Boolean function for n = 2m for a nonnegative integer m. A WPB Boolean function f ∈ Bn is balanced, if

f(0, 0, . . . , 0) ̸= f(1, 1, . . . , 1). Hence, there are 2

n−1∏
k=1

( (
n
k

)(
n
k

)
/2

)
balanced WPB Boolean functions.

Definition 2.3. [CMR17] The nonlinearity of f ∈ Bn over En,k, denoted as nlk(f), is the Ham-
ming distance of f to the set of all affine functions An when evaluated over En,k. That is, nlk(f) =
ming∈An

dk(f, g) = ming∈An
wtk(f + g).

Proposition 2.4. [MS21] For a positive integer n = 2m, the support of fn ∈ Bn is defined by

sup(fn) = △m
i=1{(x, y, x, y, . . . , x, y) ∈ IFn

2 : x, y ∈ IF2m−i

2 , wt(x) is odd}.

=

{
{(1, y) : y ∈ IF2} if n = 2,

{(x, y) : x, y ∈ IF
n
2
2 , wt(x) is odd}△{(x, x) : x ∈ sup(fn

2
)} if n > 2.

Then the Boolean function fn is a WPB.

The construction proposed in Proposition 2.4 is important for our study as we will provide a construction
that generalizes it.

3 A class of WAPB Boolean functions

We provide several constructions for n-variable of WAPB Boolean functions in this section. In the pa-
per [MS21], Mesnager and Su have proposed a WPB Boolean function over n = 2m variables using an
iterative method (see 2.4) to build its support. Following lemmas are required to construct an n-variable
WAPB from the support of another n0-variable WAPB.

Lemma 3.1. Let n > 1 be an odd integer, and g, h ∈ Bn−1 be two WAPB Boolean functions. Then f ∈ Bn

defined as
f(x1, x2, . . . , xn) = (1 + xn)g(x1, x2, . . . , xn−1) + xnh(x1, x2, . . . , xn−1)

i.e., sup(f) = {(x, 0) ∈ IFn
2 : x ∈ sup(g)} ∪ {(y, 1) ∈ IFn

2 : y ∈ sup(h)}

is a WAPB Boolean function.

The following is a construction of a 2m+1-variable WAPB Boolean function from two 2m-variable WPB
Boolean functions.
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Corollary 3.2. Let n = 2m ≥ 2, and g, h ∈ Bn be two WPB Boolean functions. Then f ∈ Bn+1 such that

f(x1, x2, . . . , xn+1) = (1 + xn+1)g(x1, x2, . . . , xn) + xn+1h(x1, x2, . . . , xn)

is a WAPB Boolean function.

If g = h, then Lemma 3.1 is a case of the construction proposed in [ZS22] for n = 2m +1. Further, if we
take h = 1 + g in the Lemma 3.1 then the following corollary is useful for our main construction.

Corollary 3.3. Let n > 1 be an odd integer, and fn−1 ∈ Bn−1 is a WAPB Boolean function. Then fn ∈ Bn

defined as

fn(x1, x2, . . . , xn) = (1 + xn)fn−1(x1, x2, . . . , xn−1) + xn(1 + fn−1(x1, x2, . . . , xn−1))

= xn + fn−1(x1, x2, . . . , xn−1)

is a WAPB Boolean function.

Lemma 3.4. Let n = n02
m where n0 be an odd positive integer and m ≥ 0 be an integer. Let fn0

∈ Bn0
be

a WAPB Boolean function. Then fn ∈ Bn, recursively defined as

sup(fn) =

{
sup(fn0) if n = n0 is odd ,

{(x, y) ∈ IFn
2 : x, y ∈ IF

n
2
2 , wt(x) is odd}△{(z, z) ∈ IFn

2 : z ∈ sup(fn
2
)}, if n is even,

is a WAPB Boolean function.

We can present a general construction for WAPB Boolean functions on any number of variables using
the Corollary 3.3 and Lemma 3.4.

Theorem 3.5. For n ≥ 2, the support of an n variable Boolean function is defined as

sup(fn) =


{(x, 1) ∈ IF2

2 : x ∈ IF2} = {(0, 1), (1, 1)} if n = 2,

{(x, 0) ∈ IFn
2 : x ∈ sup(fn−1)} ∪ {(x, 1) ∈ IFn

2 : x /∈ sup(fn−1)} if n > 2 and odd,

{(x, y) ∈ IFn
2 : x, y ∈ IF

n
2
2 , wt(x) is odd}△{(z, z) ∈ IFn

2 : z ∈ sup(fn
2
)}, if n > 2 and even,

(1)
is a WAPB Boolean function.

When n = 2m, we get the WPB function presented in [MS21]. The base Boolean function used in
the above recursive construction (i.e., f2) is a linear function. As a result, the nonlinearity of the destined
Boolean function remains very poor. The construction in the Theorem 3.5 can be generalized for having
good cryptographic properties from a base WAPB Boolean function on a higher variable.

Theorem 3.6. For p ≥ 2, let fp be a WAPB Boolean function. Let n be a positive integer such that, for a
m ≥ 0,

p = ⌊ n

2m
⌋ i.e, n = a02

0 + a12
1 + · · ·+ am−12

m−1 + p2m (2)

or,

p+ 1 = ⌊ n

2m
⌋ i.e, n = a02

0 + a12
1 + · · ·+ am−12

m−1 + (p+ 1)2m if p is even. (3)

Then fn ∈ Bn whose support is defined as

sup(fn) =


sup(fp) if n = p,

{(x, 0) ∈ IFn
2 : x ∈ sup(fn−1)} ∪ {(x, 1) ∈ IFn

2 : x /∈ sup(fn−1)} if n > p and odd,

{(x, y) ∈ IFn
2 : x, y ∈ IF

n
2
2 , wt(x) is odd}△{(z, z) ∈ IFn

2 : z ∈ sup(fn
2
)}, if n > p and even,

(4)
is a WAPB Boolean function.
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3.1 Cryptographic Properties

Since there are two different kinds of lifting during the recursive construction (i.e., when n is odd and n is
even), the properties of the Boolean function fn ∈ Bn depend on the binary bits of the integer n. Therefore
the ANF of fn can be computed as the following theorem.

Theorem 3.7. For p ≥ 2, let fp be a WAPB Boolean function. Let n be a positive integer such that, for a
m ≥ 0,

� p = ⌊ n
2m ⌋ i.e, n = a02

0 + a12
1 + · · ·+ am−12

m−1 + p2m or,

� p+ 1 = ⌊ n
2m ⌋ i.e, n = a02

0 + a12
1 + · · ·+ am−12

m−1 + (p+ 1)2m if p is even.

Then the ANF of fn, defined in the Theorem 3.6 is

fn(x1, x2, . . . , xn) =


fp if n = p,

xn + fn−1(x1, x2, . . . , xn−1) if n > p and odd,
n
2∑

i=1

xi + fn
2
(x1, x2, . . . , xn

2
)

n
2∏

i=1

(xi + xn
2 +i + 1) if n > p and even,

(5)

is a WAPB Boolean function.

Therefore, computation of the output of the function needs O(log2 n) time complexity. The algebraic
degree of fn can be computed as follows.

Theorem 3.8. Let fp ∈ Bp be a Boolean function with deg(fp) ≥ 1 and fn ∈ Bn constructed as in the
Theorem 3.6. Then deg(fn) = ⌊n

2 ⌋+ ⌊ n
22 ⌋+ · · ·+ ⌊ n

2m ⌋+ deg(fp). That is,

1. deg(fn) = n− (p+ am−1 + am−2 + · · ·+ a0) + deg(fp) if p = ⌊ n
2m ⌋ as in the Equation 2;

2. deg(fn) = n− (p+ 1 + am−1 + am−2 + · · ·+ a0) + deg(fp) if p+ 1 = ⌊ n
2m ⌋ as in the Equation 3.

The Hamming weight of this class of Boolean functions can be computed using the following two Lemmas.

Lemma 3.9. Let n > 1 be an odd integer and fn−1 ∈ Bn−1 and fn ∈ Bn Boolean function defined in

Corollary 3.3. If we denote wtk(fn) =
(nk)+an

k

2 and wtk(fn−1) =
(n−1

k )+an−1
k

2 , then

ank =


0, if k ⪯̸ n,

an−1
k , if k ⪯ n and even,

−an−1
k−1 , if k ⪯ n and odd,

−an−1
n−1, if k = n.

Lemma 3.10. Let n = n02
m where n0 be an odd positive integer and m ≥ 0 be an integer. Let fn0 ∈ Bn0

and fn ∈ Bn are Boolean function defined in Lemma 3.4. For k = k02
b, the wtk(fn) =

1
2

((
n
k

)
+ ank

)
, where

ank =


0 if m > b,

an0
k

2m
if m < b,

−an0
k

2m
if m = b.

Further, since there are two different kinds of lifting in the recursive construction, we present the non-
linearity bound for both cases.

Lemma 3.11. Let fn ∈ Bn such fn(x1, x2, · · · , xn) = xn + fn−1(x1, x2, · · · , xn−1) for a fn−1 ∈ Bn. Then
nl(fn) = 2nl(fn−1).

Lemma 3.12. Let n > 0 be an even integer and fn ∈ Bn such that

sup(fn) = {(x, y) ∈ IFn
2 : x, y ∈ IF

n
2
2 , wt(x) is odd}△{(z, z) ∈ IFn

2 : z ∈ sup(fn
2
)} where fn

2
∈ Bn

2
.

Then nl(fn) ≤ wt(fn
2
).
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If fn
2
is a balance function, then nl(fn) ≤ wt(fn

2
) = 2

n
2 −1. Therefore, the proposed construction has

very poor nonlinearity. This result happens due to the addition of the linear part {(x, y) ∈ IFn
2 : x, y ∈

IF
n
2
2 , wt(x) is odd}. The researchers may be interested in whether it is possible to get WAPB function by

substituting the linear part with a very nonlinear part. Further, we have a discouraging result for weightwise
nonlinearity.

Corollary 3.13. If n is even and n > p then nlk(fn) = 0 for all odd integer k ∈ [0, n].

The following table presents the nonlinearity and weightwise nonlinearity of the functions fn for n =
10, 11, 12, 13, 14, which are generated using the Theorem 3.5.

n nl nl0 nl1 nl2 nl3 nl4 nl5 nl6 nl7 nl8 nl9 nl10 nl11 nl12 nl13 nl14
10 16 = 24 0 0 3 0 5 0 5 0 3 0 0 − − − −
11 32 0 0 3 3 5 5 5 5 3 3 0 0 − − −
12 32 = 25 0 0 3 0 7 0 10 0 8 0 3 0 0 − −
13 64 0 0 3 3 7 7 10 10 8 8 3 3 0 0 −
14 64 = 26 0 0 4 0 10 0 18 0 18 0 10 0 4 0 0

4 Conclusions and Future work

We have presented a construction of a class of WAPB Boolean functions in n variables from the support of
another WAPB Boolean function in n0 variables, where n0 < n. This construction generalizes a construction
of WPB functions presented by Mesnager and Su [MS21]. We studied some cryptographic properties of the
class of WAPB Boolean functions. The nonlinearity of this class of functions are very poor. For our future
work, we will study some other cryptographic properties of this class of functions and construction of WAPB
Boolean functions of good weightwise nonlinearity.
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