AN OVERVIEW OF ALGEBRAIC GEOMETRY CODES FROM SURFACES

Jade Nardi CNRS, IRMAR, University of Rennes

14th February, 2023 Conference On alGebraic varieties over fiNite fields and Algebraic geometry Codes CIRM

Picture: Vallons des Auffes in Marseille

Outline of the presentation

1 Algebraic geometry codes

- **2** Parameters of AG codes from surfaces
- **3** Effectiveness?
- **4** Local properties of AG codes from surfaces

Table of Contents

1 Algebraic geometry codes

2 Parameters of AG codes from surfaces

3 Effectiveness?

4 Local properties of AG codes from surfaces

Let \mathcal{X} be a smooth projective variety defined over the finite field \mathbb{F}_q .

Definition: Divisors and their properties.

A (Weil) divisor on \mathcal{X} is a formal finite sum of irreducible subvarieties of \mathcal{X} of codimension 1. The set of divisors of the variety \mathcal{X} is denoted by $\text{Div }\mathcal{X}$.

Let \mathcal{X} be a smooth projective variety defined over the finite field \mathbb{F}_q .

Definition: Divisors and their properties.

A (Weil) divisor on \mathcal{X} is a formal finite sum of irreducible subvarieties of \mathcal{X} of codimension 1. The set of divisors of the variety \mathcal{X} is denoted by $\text{Div } \mathcal{X}$.

A divisor $G = \sum n_i \mathcal{Y}_i$ is said to be effective if $n_i \ge 0$ for every *i*. In this case, we write $G \ge 0$. The support of a divisor $G = \sum n_i \mathcal{Y}_i$, is $\operatorname{Supp} G = \bigcup_{i\ge 1} \{\mathcal{Y}_i \mid n_i \ne 0\}$. Its Riemann-Roch space is the \mathbb{F}_a -vector space

$$L(G) = \{ f \in \mathbb{F}_q(X)^* \mid (f) + G \ge 0 \} \cup \{ 0 \}$$

where $(f) = \sum \operatorname{ord}_{\mathcal{Y}}(f)\mathcal{Y}$ is the principal divisor associated to a non-zero function f.

Let \mathcal{X} be a smooth projective variety defined over the finite field \mathbb{F}_q .

Definition: Divisors and their properties.

A (Weil) divisor on \mathcal{X} is a formal finite sum of irreducible subvarieties of \mathcal{X} of codimension 1. The set of divisors of the variety \mathcal{X} is denoted by $\text{Div } \mathcal{X}$.

A divisor $G = \sum n_i \mathcal{Y}_i$ is said to be effective if $n_i \ge 0$ for every i. In this case, we write $G \ge 0$. The support of a divisor $G = \sum n_i \mathcal{Y}_i$, is $\operatorname{Supp} G = \bigcup_{i\ge 1} \{\mathcal{Y}_i \mid n_i \ne 0\}$. Its Riemann-Roch space is the \mathbb{F}_q -vector space global section $L(G) = \{f \in \mathbb{F}_q(X)^* \mid (f) + G \ge 0\} \cup \{0\}$

where $(f) = \sum \operatorname{ord}_{\mathcal{Y}}(f)\mathcal{Y}$ is the principal divisor associated to a non-zero function f.

Let \mathcal{X} be a smooth projective variety defined over the finite field \mathbb{F}_q .

Definition: Divisors and their properties.

A (Weil) divisor on \mathcal{X} is a formal finite sum of irreducible subvarieties of \mathcal{X} of codimension 1. The set of divisors of the variety \mathcal{X} is denoted by $\text{Div } \mathcal{X}$.

A divisor $G = \sum n_i \mathcal{Y}_i$ is said to be effective if $n_i \ge 0$ for every *i*. In this case, we write $G \ge 0$. The support of a divisor $G = \sum n_i \mathcal{Y}_i$, is $\operatorname{Supp} G = \bigcup_{i\ge 1} \{\mathcal{Y}_i \mid n_i \ne 0\}$. Its Riemann-Roch space is the \mathbb{F}_q -vector space global section $L(G) = \{f \in \mathbb{F}_q(X)^* \mid (f) + G \ge 0\} \cup \{0\}$

where $(f) = \sum \operatorname{ord}_{\mathcal{Y}}(f)\mathcal{Y}$ is the principal divisor associated to a non-zero function f.

Definition: Linear equivalence and Picard Group.

Two divisors are linearly equivalent if there is a function h such that G' = G + (h), noted $G' \sim G$. The Picard group $\operatorname{Pic} \mathcal{X}$ is the set of equivalent classes of $\operatorname{Div} \mathcal{X}$ modulo the linear equivalence \sim .

...Codes

Definition: [n, k, d] linear code

A linear code C over \mathbb{F}_q of length n is a vector subspace \mathbb{F}_q^n . We note k its dimension. The weight of a word $x \in \mathbb{F}_q^n$ is given by $\omega(x) = \#\{i \in \{1, \ldots, n\}, x_i \neq 0\}$. The minimum distance of C is defined by $d = \min\{\omega(c) \mid c \in C, c \neq 0\}$.

...Codes

Definition: [n, k, d] linear code

A linear code C over \mathbb{F}_q of length n is a vector subspace \mathbb{F}_q^n . We note k its dimension. The weight of a word $x \in \mathbb{F}_q^n$ is given by $\omega(x) = \#\{i \in \{1, \ldots, n\}, x_i \neq 0\}$. The minimum distance of C is defined by $d = \min\{\omega(c) \mid c \in C, c \neq 0\}$.

Algebraic geometry codes

Tsfasman and Vladut's L-construction

Take $\mathcal{P} = \{P_1, \dots, P_n, \} \subset \mathcal{X}(\mathbb{F}_q)$ and $G \in \text{Div } \mathcal{X}$ s.t. Supp $G \cap \mathcal{P} = \emptyset$. Consider the map $ev_{\mathcal{P}} : \begin{cases} L(G) \to \mathbb{F}_q^n \\ f \mapsto (f(P_1), \dots, f(P_n)) \end{cases}$ well-defined

The AG code associated to G with evaluation support \mathcal{P} is $C(\mathcal{X}, \mathcal{P}, G) = ev_{\mathcal{P}}(L(G))$.

Remark: If $G' \sim G$, then $C(\mathcal{X}, \mathcal{P}, G)$ and $C(\mathcal{X}, \mathcal{P}, G')$ are equivalent.

...Codes

Definition: [n, k, d] linear code

A linear code C over \mathbb{F}_q of length n is a vector subspace \mathbb{F}_q^n . We note k its dimension. The weight of a word $x \in \mathbb{F}_q^n$ is given by $\omega(x) = \#\{i \in \{1, \ldots, n\}, x_i \neq 0\}$. The minimum distance of C is defined by $d = \min\{\omega(c) \mid c \in C, c \neq 0\}$.

Algebraic geometry codes

Tsfasman and Vladut's L-construction

Take $\mathcal{P} = \{P_1, \dots, P_n, \} \subset \mathcal{X}(\mathbb{F}_q) \text{ and } G \in \text{Div } \mathcal{X} \text{ s.t. } \operatorname{Supp} G \cap \mathcal{P} = \emptyset.$ Consider the map

$$\operatorname{ev}_{\mathcal{P}}: \left\{ \begin{array}{ccc} L(G) & \to & \mathbb{F}_q^n \\ f & \mapsto & (f(P_1), \dots, f(P_n)) \end{array} \right\}$$
 well-defined

The AG code associated to G with evaluation support \mathcal{P} is $C(\mathcal{X}, \mathcal{P}, G) = ev_{\mathcal{P}}(L(G))$.

 $\textit{Remark: If } G' \sim G \textit{, then } C(\mathcal{X}, \mathcal{P}, G) \textit{ and } C(\mathcal{X}, \mathcal{P}, G') \textit{ are equivalent.}$

It has length $n = \#\mathcal{P}$ and dimension $k \leq \ell(G)$. $= \dim L(G)$ For $f \in L(G)$, $\omega(\operatorname{ev}_{\mathcal{P}}(f)) = n - \#(\mathcal{Z}(f) \cap \mathcal{P})$ where $\mathcal{Z}(f)$ is the zero locus of f. Then the minimum distance satisfies $d = n - \max_{f \in L(G) \setminus \{0\}} \#(\mathcal{Z}(f) \cap \mathcal{P})$.

Take
$$\mathcal{P} = \{P_1, \dots, P_n, \} \subset \mathcal{X}(\mathbb{F}_q) \text{ and } G \in \text{Div } \mathcal{X} \text{ s.t. } \text{Supp } G \cap \mathcal{P} = \emptyset.$$

 $C(\mathcal{X}, \mathcal{P}, G) = \{(f(P_1), \dots, f(P_n)) \in \mathbb{F}_q^n \mid f \in L(G)\}.$

If $\max_{f \in L(G) \setminus \{0\}} \# (\mathcal{Z}(f) \cap \mathcal{P}) \leq b < n, \text{ then } C(\mathcal{X}, \mathcal{P}, G) \text{ has parameters } [n, \ell(G), \geq n - b].$

Take
$$\mathcal{P} = \{P_1, \dots, P_n, \} \subset \mathcal{X}(\mathbb{F}_q) \text{ and } G \in \text{Div } \mathcal{X} \text{ s.t. } \text{Supp } G \cap \mathcal{P} = \emptyset.$$

 $C(\mathcal{X}, \mathcal{P}, G) = \{(f(P_1), \dots, f(P_n)) \in \mathbb{F}_q^n \mid f \in L(G)\}.$

If $\max_{f \in L(G) \setminus \{0\}} \# (\mathcal{Z}(f) \cap \mathcal{P}) \leq b < n$, then $C(\mathcal{X}, \mathcal{P}, G)$ has parameters $[n, \ell(G), \geq n - b]$.

Take
$$\mathcal{P} = \{P_1, \dots, P_n, \} \subset \mathcal{X}(\mathbb{F}_q) \text{ and } G \in \text{Div } \mathcal{X} \text{ s.t. } \text{Supp } G \cap \mathcal{P} = \emptyset.$$

 $C(\mathcal{X}, \mathcal{P}, G) = \{(f(P_1), \dots, f(P_n)) \in \mathbb{F}_q^n \mid f \in L(G)\}.$

If $\max_{f \in L(G) \setminus \{0\}} \# \left(\mathcal{Z}(f) \cap \mathcal{P} \right) \leq b < n, \text{ then } C(\mathcal{X}, \mathcal{P}, G) \text{ has parameters } [n, \ell(G), \geq n - b].$

If \mathcal{X} is a (smooth projective) curve of genus g, then $G = \sum n_i P_i$ with $\deg G = \sum n_i \deg P_i$.

Hasse-Weil theorem

 $\mathcal{X}(\mathbb{F}_q) \le q + 1 + 2g\sqrt{q}.$

Take
$$\mathcal{P} = \{P_1, \dots, P_n, \} \subset \mathcal{X}(\mathbb{F}_q) \text{ and } G \in \text{Div } \mathcal{X} \text{ s.t. } \text{Supp } G \cap \mathcal{P} = \emptyset.$$

 $C(\mathcal{X}, \mathcal{P}, G) = \{(f(P_1), \dots, f(P_n)) \in \mathbb{F}_q^n \mid f \in L(G)\}.$

If $\max_{f \in L(G) \setminus \{0\}} \# \left(\mathcal{Z}(f) \cap \mathcal{P} \right) \leq b < n, \text{ then } C(\mathcal{X}, \mathcal{P}, G) \text{ has parameters } [n, \ell(G), \geq n - b].$

If \mathcal{X} is a (smooth projective) curve of genus g, then $G = \sum n_i P_i$ with $\deg G = \sum n_i \deg P_i$.

Hasse-Weil theorem

 $\underline{n} \leq \mathcal{X}(\mathbb{F}_q) \leq q + 1 + 2g\sqrt{q}.$

Take
$$\mathcal{P} = \{P_1, \dots, P_n, \} \subset \mathcal{X}(\mathbb{F}_q) \text{ and } G \in \text{Div } \mathcal{X} \text{ s.t. } \text{Supp } G \cap \mathcal{P} = \emptyset.$$

 $C(\mathcal{X}, \mathcal{P}, G) = \{(f(P_1), \dots, f(P_n)) \in \mathbb{F}_q^n \mid f \in L(G)\}.$

If $\max_{f \in L(G) \setminus \{0\}} \# \left(\mathcal{Z}(f) \cap \mathcal{P} \right) \leq b < n, \text{ then } C(\mathcal{X}, \mathcal{P}, G) \text{ has parameters } [n, \ell(G), \geq n - b].$

Hasse–Weil theorem	Riemann–Roch theorem on curves
$\underline{n} \leq \mathcal{X}(\mathbb{F}_q) \leq q + 1 + 2g\sqrt{q}.$	$\ell(G) - \ell(K_{\mathcal{X}} - G) = \deg G - g + 1.$ $f = 0 \text{ if } \deg G > 2g - 2.$
	Canonical divisor of $\mathcal X$

Take
$$\mathcal{P} = \{P_1, \dots, P_n, \} \subset \mathcal{X}(\mathbb{F}_q) \text{ and } G \in \text{Div } \mathcal{X} \text{ s.t. } \text{Supp } G \cap \mathcal{P} = \emptyset.$$

 $C(\mathcal{X}, \mathcal{P}, G) = \{(f(P_1), \dots, f(P_n)) \in \mathbb{F}_q^n \mid f \in L(G)\}.$

If $\max_{f \in L(G) \setminus \{0\}} \# \left(\mathcal{Z}(f) \cap \mathcal{P} \right) \leq b < n, \text{ then } C(\mathcal{X}, \mathcal{P}, G) \text{ has parameters } [n, \ell(G), \geq n - b].$

Hasse–Weil theorem	Riemann–Roch theorem on curves
$\frac{\mathbf{n}}{\mathbf{n}} \le \mathcal{X}(\mathbb{F}_q) \le q + 1 + 2g\sqrt{q}.$	$\ell(G) - \ell(K_{\mathcal{X}} - G) = \deg G - g + 1.$ $f = 0 \text{ if } \deg G > 2g - 2.$
For every $f \in L(G)$, $\#\mathcal{Z}(f) \leq \deg G$.	Canonical divisor of \mathcal{X}

Take
$$\mathcal{P} = \{P_1, \dots, P_n, \} \subset \mathcal{X}(\mathbb{F}_q) \text{ and } G \in \text{Div } \mathcal{X} \text{ s.t. } \text{Supp } G \cap \mathcal{P} = \emptyset.$$

 $C(\mathcal{X}, \mathcal{P}, G) = \{(f(P_1), \dots, f(P_n)) \in \mathbb{F}_q^n \mid f \in L(G)\}.$

If $\max_{f \in L(G) \setminus \{0\}} \# \left(\mathcal{Z}(f) \cap \mathcal{P} \right) \leq b < n, \text{ then } C(\mathcal{X}, \mathcal{P}, G) \text{ has parameters } [n, \ell(G), \geq n - b].$

Hasse–Weil theorem	Riemann–Roch theorem on curves
$\frac{\mathbf{n}}{\mathbf{n}} \le \mathcal{X}(\mathbb{F}_q) \le q + 1 + 2g\sqrt{q}.$	$\ell(G) - \ell(K_{\mathcal{X}} - G) = \deg G - g + 1.$ $f = 0 \text{ if } \deg G > 2g - 2.$
For every $f \in L(G)$, $\#\mathcal{Z}(f) \leq \deg G$.	Canonical divisor of \mathcal{X}

Take
$$\mathcal{P} = \{P_1, \dots, P_n, \} \subset \mathcal{X}(\mathbb{F}_q) \text{ and } G \in \text{Div } \mathcal{X} \text{ s.t. } \text{Supp } G \cap \mathcal{P} = \emptyset.$$

 $C(\mathcal{X}, \mathcal{P}, G) = \{(f(P_1), \dots, f(P_n)) \in \mathbb{F}_q^n \mid f \in L(G)\}.$

If $\max_{f \in L(G) \setminus \{0\}} \# \left(\mathcal{Z}(f) \cap \mathcal{P} \right) \leq b < n, \text{ then } C(\mathcal{X}, \mathcal{P}, G) \text{ has parameters } [n, \ell(G), \geq n - b].$

If \mathcal{X} is a (smooth projective) curve of genus g, then $G = \sum n_i P_i$ with $\deg G = \sum n_i \deg P_i$.

Hasse–Weil theorem	Riemann–Roch theorem on curves
$\underline{n} \leq \mathcal{X}(\mathbb{F}_q) \leq q + 1 + 2g\sqrt{q}.$	$\ell(G) - \ell(K_{\mathcal{X}} - G) = \deg G - g + 1.$ $f = 0 \text{ if } \deg G > 2g - 2.$
For every $f \in L(G)$, $\#\mathcal{Z}(f) \leq \deg G$.	Canonical divisor of \mathcal{X}

Take
$$\mathcal{P} = \{P_1, \dots, P_n, \} \subset \mathcal{X}(\mathbb{F}_q) \text{ and } G \in \text{Div } \mathcal{X} \text{ s.t. } \text{Supp } G \cap \mathcal{P} = \emptyset.$$

 $C(\mathcal{X}, \mathcal{P}, G) = \{(f(P_1), \dots, f(P_n)) \in \mathbb{F}_q^n \mid f \in L(G)\}.$

If $\max_{f \in L(G) \setminus \{0\}} \# \left(\mathcal{Z}(f) \cap \mathcal{P} \right) \leq b < n, \text{ then } C(\mathcal{X}, \mathcal{P}, G) \text{ has parameters } [n, \ell(G), \geq n - b].$

If \mathcal{X} is a (smooth projective) curve of genus g, then $G = \sum n_i P_i$ with $\deg G = \sum n_i \deg P_i$.

Hasse–Weil theorem	Riemann–Roch theorem on curves
$\underline{n} \leq \mathcal{X}(\mathbb{F}_q) \leq q + 1 + 2g\sqrt{q}.$	$\ell(G) - \ell(K_{\mathcal{X}} - G) = \deg G - g + 1.$ $f = 0 \text{ if } \deg G > 2g - 2.$
For every $f \in L(G)$, $\#\mathcal{Z}(f) \leq \deg G$.	Canonical divisor of \mathcal{X}

Take
$$\mathcal{P} = \{P_1, \dots, P_n, \} \subset \mathcal{X}(\mathbb{F}_q) \text{ and } G \in \text{Div } \mathcal{X} \text{ s.t. } \text{Supp } G \cap \mathcal{P} = \emptyset.$$

 $C(\mathcal{X}, \mathcal{P}, G) = \{(f(P_1), \dots, f(P_n)) \in \mathbb{F}_q^n \mid f \in L(G)\}.$

If $\max_{f \in L(G) \setminus \{0\}} \# \left(\mathcal{Z}(f) \cap \mathcal{P} \right) \leq b < n, \text{ then } C(\mathcal{X}, \mathcal{P}, G) \text{ has parameters } [n, \ell(G), \geq n - b].$

If \mathcal{X} is a (smooth projective) curve of genus g, then $G = \sum n_i P_i$ with $\deg G = \sum n_i \deg P_i$.

Hasse–Weil theorem	Riemann–Roch theorem on curves
$\frac{\mathbf{n}}{\mathbf{n}} \leq \mathcal{X}(\mathbb{F}_q) \leq q + 1 + 2g\sqrt{q}.$	$\ell(G) - \ell(K_{\mathcal{X}} - G) = \deg G - g + 1.$ = 0 if deg $G > 2g - 2.$
For every $f \in L(G)$, $\#\mathcal{Z}(f) \leq \deg G$.	Canonical divisor of \mathcal{X}

Take
$$\mathcal{P} = \{P_1, \dots, P_n, \} \subset \mathcal{X}(\mathbb{F}_q) \text{ and } G \in \text{Div } \mathcal{X} \text{ s.t. } \text{Supp } G \cap \mathcal{P} = \emptyset.$$

 $C(\mathcal{X}, \mathcal{P}, G) = \{(f(P_1), \dots, f(P_n)) \in \mathbb{F}_q^n \mid f \in L(G)\}.$

If $\max_{f \in L(G) \setminus \{0\}} \# \left(\mathcal{Z}(f) \cap \mathcal{P} \right) \leq b < n, \text{ then } C(\mathcal{X}, \mathcal{P}, G) \text{ has parameters } [n, \ell(G), \geq n - b].$

If \mathcal{X} is a (smooth projective) curve of genus g, then $G = \sum n_i P_i$ with $\deg G = \sum n_i \deg P_i$.

Hasse–Weil theorem	Riemann–Roch theorem on curves
$\frac{n}{n} \leq \mathcal{X}(\mathbb{F}_q) \leq q + 1 + 2g\sqrt{q}.$	$\ell(G) - \ell(K_{\mathcal{X}} - G) = \deg G - g + 1.$ $f = 0 \text{ if } \deg G > 2g - 2.$
For every $f \in L(G)$, $\#\mathcal{Z}(f) \leq \deg G$.	Canonical divisor of \mathcal{X}

Very first example of AG codes from higher-dimensional varieties: Reed-Muller codes

Definition: Reed-Muller code

Let $N \ge 1$ and $r \ge 0$. We define the Reed–Muller code of order r by

$$\mathsf{RM}(N,r) = \{ (f(\boldsymbol{x}))_{\boldsymbol{x} \in \mathbb{F}_q^N} \mid f \in \mathbb{F}_q[X_1, \dots, X_N]_{\leq r} \}.$$

For $r \leq q$, dim RM $(N, r) = \dim \mathbb{F}_q[X_1, \dots, X_N]_{\leq r}$ and the minimum distance $d = q^N - rq^{N-1}$ is reached by product of linear factors (highly reducible sections).

Very first example of AG codes from higher-dimensional varieties: Reed-Muller codes

Definition: Reed-Muller code

Let $N \ge 1$ and $r \ge 0$. We define the Reed–Muller code of order r by

$$\mathsf{RM}(N,r) = \{ (f(\boldsymbol{x}))_{\boldsymbol{x} \in \mathbb{F}_q^N} \mid f \in \mathbb{F}_q[X_1, \dots, X_N]_{\leq r} \}.$$

For $r \leq q$, dim RM $(N, r) = \dim \mathbb{F}_q[X_1, \dots, X_N]_{\leq r}$ and the minimum distance $d = q^N - rq^{N-1}$ is reached by product of linear factors (highly reducible sections).

Why is it an AG code? Consider $\mathcal{X} = \mathbb{P}^N$ and $\mathcal{P} = \{(1, x_1, \dots, x_N) \in \mathbb{P}^N(\mathbb{F}_q) \mid x_i \in \mathbb{F}_q\} = \mathbb{A}^N(\mathbb{F}_q) \simeq (\mathbb{F}_q)^N$. Let H be the hyperplane of \mathbb{P}^N defined by $X_0 = 0$. Then, for any integer $r \ge 0$

$$L(rH) = \frac{1}{X_0^r} \cdot \mathbb{F}_q[X_0, \dots, X_N]_{=r}^{\mathsf{hom}}.$$

Then $\operatorname{RM}(N, r) = C(\mathbb{P}^N, \mathcal{P}, rH).$

(Non-exhaustive) Bibliography about AG codes from surfaces

- 1954: Reed-Muller codes
- 1986: Projective Reed–Muller (Lachaud)

Parameters studied by Sorensen (1991)

- 1991: Restriction of RM Codes to projective algebraic varieties (Aubry)
- 1992: Quadric surfaces (Aubry)
- 2001: General study by Hansen
- 2001: Restrictions of RM codes when \mathcal{P} is a complete intersection (Duursma, Rentería, Tapia-Recillas) Parameters when \mathcal{P} is in linearly general position by Ballico and Fontanari (2006)
- 2002: Toric varieties (Hansen)

(Non-exhaustive) Bibliography about AG codes from surfaces

- 1954: Reed-Muller codes
- 1986: Projective Reed-Muller (Lachaud)

Parameters studied by Sorensen (1991)

Higher-dimensional varieties

- 1991: Restriction of RM Codes to projective algebraic varieties (Aubry)
- 1992: Quadric surfaces (Aubry)
- 2001: General study by Hansen
- 2001: Restrictions of RM codes when \mathcal{P} is a complete intersection (Duursma, Rentería, Tapia-Recillas) Parameters when \mathcal{P} is in linearly general position by Ballico and Fontanari (2006)
- 2002: Toric varieties (Hansen)
- 2005: Hermitian surface (Edoukou)
- 2007: Exploring surfaces with small Picard rank (Zarzar)
- 2018: $\operatorname{rk}\operatorname{Pic}\mathcal{X}=1$ or sectional genus = 0 (Little, Schenck)
- 2020: Del Pezzo surfaces with Picard rank one (Blache, Couvreur, Hallouin, Madore, N., Rambaud, Randriam)
- 2021: Abelian surfaces (Aubry, Berardini, Herbaut, Perret)

Surfaces

Definition: Restriction of a code

Let $C \subseteq \mathbb{F}_q^n$. Take $I \subset \{1, \ldots, n\}$. The restriction of C to I is $p_I(C)$ where $p_I : \mathbb{F}_q^n \to \mathbb{F}_q^{\#I}$ is defined by $p_I(c_1, \ldots, c_n) = (c_i)_{i \in I}$. (Puncturing outside of I.)

- If $C = C(\mathcal{X}, \mathcal{P}, G)$ and $\mathcal{P}' \subset \mathcal{P}$, then $C' = C(\mathcal{X}, \mathcal{P}', G)$ is a restriction of C.
- If $\mathcal{Y} \subset \mathcal{X}$, we can restrict C to \mathcal{Y} : $C_{|\mathcal{Y}} = C(\mathcal{Y}, \mathcal{P} \cap \mathcal{Y}, \mathcal{G} \cap \mathcal{Y})$ divisor on \mathcal{Y}

Definition: Restriction of a code

Let $C \subseteq \mathbb{F}_q^n$. Take $I \subset \{1, \ldots, n\}$. The restriction of C to I is $p_I(C)$ where $p_I : \mathbb{F}_q^n \to \mathbb{F}_q^{\#I}$ is defined by $p_I(c_1, \ldots, c_n) = (c_i)_{i \in I}$. (Puncturing outside of I.)

- If $C = C(\mathcal{X}, \mathcal{P}, G)$ and $\mathcal{P}' \subset \mathcal{P}$, then $C' = C(\mathcal{X}, \mathcal{P}', G)$ is a restriction of C.
- If $\mathcal{Y} \subset \mathcal{X}$, we can restrict C to \mathcal{Y} : $C_{|\mathcal{Y}} = C(\mathcal{Y}, \mathcal{P} \cap \mathcal{Y}, G \cap \mathcal{Y})$ divisor on \mathcal{Y}

Assume that $\mathcal{X} \subset \mathbb{P}^N$ for some $N \ge 2$. Let H be an hyperplane of \mathbb{P}^N (say $X_0 = 0$ again). Take $\mathcal{P} \subseteq (\mathbb{A}^N \cap \mathcal{X})(\mathbb{F}_q)$. For $r \ge 0$, consider the restriction of $\mathsf{RM}(N, r)$ to \mathcal{P} hyperplane section $H \cap \mathcal{X}$

$$C(\mathbb{P}^N, \mathcal{P}, rH) = \{(f(P))_{P \in \mathcal{P}} \mid f \in L(rH)\} \simeq C(\mathcal{X}, \mathcal{P}, rh).$$

Definition: Restriction of a code

Let $C \subseteq \mathbb{F}_q^n$. Take $I \subset \{1, \ldots, n\}$. The restriction of C to I is $p_I(C)$ where $p_I : \mathbb{F}_q^n \to \mathbb{F}_q^{\#I}$ is defined by $p_I(c_1, \ldots, c_n) = (c_i)_{i \in I}$. (Puncturing outside of I.)

- If $C = C(\mathcal{X}, \mathcal{P}, G)$ and $\mathcal{P}' \subset \mathcal{P}$, then $C' = C(\mathcal{X}, \mathcal{P}', G)$ is a restriction of C.
- If $\mathcal{Y} \subset \mathcal{X}$, we can restrict C to \mathcal{Y} : $C_{|\mathcal{Y}} = C(\mathcal{Y}, \mathcal{P} \cap \mathcal{Y}, G \cap \mathcal{Y})$ divisor on \mathcal{Y}

Assume that $\mathcal{X} \subset \mathbb{P}^N$ for some $N \geq 2$. Let H be an hyperplane of \mathbb{P}^N (say $X_0 = 0$ again). Take $\mathcal{P} \subseteq (\mathbb{A}^N \cap \mathcal{X})(\mathbb{F}_q)$. For $r \geq 0$, consider the restriction of $\mathsf{RM}(N, r)$ to \mathcal{P} hyperplane section $H \cap \mathcal{X}$ $C(\mathbb{P}^N, \mathcal{P}, rH) = \{(f(P))_{P \in \mathcal{P}} \mid f \in L(rH)\} \simeq C(\mathcal{X}, \mathcal{P}, rh).$

To handle the parameters, we can use properties of the 0-dimensional algebraic set $\mathcal{P}.$

 $\begin{array}{c} 0 \to \mathcal{I}_{\mathcal{P}} \to \mathcal{O}_{\mathbb{P}^N} \to \mathcal{O}_{\mathcal{P}} \to 0 & \text{measures how the points in } \mathcal{P} \text{ fail to}\\ & \text{give independent relations in degree } r\\ 0 \to H^0(\mathcal{I}_{\mathcal{P}}(r)) \to H^0(\mathcal{O}_{\mathbb{P}^N}(r)) \to H^0(\mathcal{O}_{\mathcal{P}}(r)) \to H^1(\mathcal{I}_{\mathcal{P}}(r)) \to 0 \end{array}$

Definition: Restriction of a code

Let $C \subseteq \mathbb{F}_q^n$. Take $I \subset \{1, \ldots, n\}$. The restriction of C to I is $p_I(C)$ where $p_I : \mathbb{F}_q^n \to \mathbb{F}_q^{\#I}$ is defined by $p_I(c_1, \ldots, c_n) = (c_i)_{i \in I}$. (Puncturing outside of I.)

- If $C = C(\mathcal{X}, \mathcal{P}, G)$ and $\mathcal{P}' \subset \mathcal{P}$, then $C' = C(\mathcal{X}, \mathcal{P}', G)$ is a restriction of C.
- If $\mathcal{Y} \subset \mathcal{X}$, we can restrict C to \mathcal{Y} : $C_{|\mathcal{Y}} = C(\mathcal{Y}, \mathcal{P} \cap \mathcal{Y}, G \cap \mathcal{Y})$ divisor on \mathcal{Y}

Assume that $\mathcal{X} \subset \mathbb{P}^N$ for some $N \geq 2$. Let H be an hyperplane of \mathbb{P}^N (say $X_0 = 0$ again). Take $\mathcal{P} \subseteq (\mathbb{A}^N \cap \mathcal{X})(\mathbb{F}_q)$. For $r \geq 0$, consider the restriction of $\mathsf{RM}(N, r)$ to \mathcal{P} hyperplane section $H \cap \mathcal{X}$

$$C(\mathbb{P}^{N},\mathcal{P},rH) = \{(f(P))_{P\in\mathcal{P}} \mid f\in L(rH)\} \simeq C(\mathcal{X},\mathcal{P},rh).$$

To handle the parameters, we can use properties of the 0-dimensional algebraic set \mathcal{P} .

 $0 \to \mathcal{I}_{\mathcal{P}} \to \mathcal{O}_{\mathbb{P}^N} \to \mathcal{O}_{\mathcal{P}} \to 0 \quad \text{measures how the points in } \mathcal{P} \text{ fail to}$ give independent relations in degree r $0 \to H^0(\mathcal{I}_{\mathcal{P}}(r)) \to H^0(\mathcal{O}_{\mathbb{P}^N}(r)) \to H^0(\mathcal{O}_{\mathcal{P}}(r)) \to H^1(\mathcal{I}_{\mathcal{P}}(r)) \to 0$

🖒 Explicit generating family.

 $\mathbf{\nabla}$ Cannot explore all the AG codes on $\mathcal{X}_{.~6/21}$

Table of Contents

- 1 Algebraic geometry codes
- 2 Parameters of AG codes from surfaces
- **3** Effectiveness?
- **4** Local properties of AG codes from surfaces

Theorem: Intersection product on a surface

There is a unique pairing $\operatorname{Div} \mathcal{X} \times \operatorname{Div} \mathcal{X} \to \mathbb{Z}$, denoted by $C \cdot D$ for any two divisors C, D, s.t.

- **()** if C and D are nonsingular curves meeting transversally, then $C \cdot D = #(C \cap D)$;
- 2) it is symmetric: $C \cdot D = D \cdot C$;
- **3** it is additive: $(C_1 + C_2) \cdot D = C_1 \cdot D + C_2 \cdot D;$
- (d) it depends only on the linear equivalence classes: if $C_1 \sim C_2$, then $C_1 \cdot D = C_2 \cdot D$.

We denote by $C^2 = C \cdot C$ the *self-intersection* of $C \in \text{Div } \mathcal{X}$.

Theorem: Intersection product on a surface

There is a unique pairing $\operatorname{Div} \mathcal{X} \times \operatorname{Div} \mathcal{X} \to \mathbb{Z}$, denoted by $C \cdot D$ for any two divisors C, D, s.t.

- **()** if C and D are nonsingular curves meeting transversally, then $C \cdot D = #(C \cap D)$;
- **2** it is symmetric: $C \cdot D = D \cdot C$;
- **3** it is additive: $(C_1 + C_2) \cdot D = C_1 \cdot D + C_2 \cdot D;$
- (d) it depends only on the linear equivalence classes: if $C_1 \sim C_2$, then $C_1 \cdot D = C_2 \cdot D$.

We denote by $C^2 = C \cdot C$ the *self-intersection* of $C \in \text{Div } \mathcal{X}$.

Intersection product on $\mathcal{X} = \mathbb{P}^2$

Let L, L' be 2 lines. Then $L \sim L''$ and $L^2 = L'^2 = L \cdot L' = 1$.

Theorem: Intersection product on a surface

There is a unique pairing $\operatorname{Div} \mathcal{X} \times \operatorname{Div} \mathcal{X} \to \mathbb{Z}$, denoted by $C \cdot D$ for any two divisors C, D, s.t.

- **()** if C and D are nonsingular curves meeting transversally, then $C \cdot D = #(C \cap D)$;
- 2) it is symmetric: $C \cdot D = D \cdot C$;
- **3** it is additive: $(C_1 + C_2) \cdot D = C_1 \cdot D + C_2 \cdot D;$
- (d) it depends only on the linear equivalence classes: if $C_1 \sim C_2$, then $C_1 \cdot D = C_2 \cdot D$.

We denote by $C^2 = C \cdot C$ the *self-intersection* of $C \in \text{Div } \mathcal{X}$.

Intersection product on $\mathcal{X} = \mathbb{P}^2$

Let L, L' be 2 lines. Then $L \sim L''$ and $L^2 = L'^2 = L \cdot L' = 1$. Let C be a conic. Then $L \cdot C = L' \cdot C = 2$. Moreover, $C \sim 2L$.

Theorem: Intersection product on a surface

There is a unique pairing $\operatorname{Div} \mathcal{X} \times \operatorname{Div} \mathcal{X} \to \mathbb{Z}$, denoted by $C \cdot D$ for any two divisors C, D, s.t.

- **()** if C and D are nonsingular curves meeting transversally, then $C \cdot D = #(C \cap D)$;
- 2) it is symmetric: $C \cdot D = D \cdot C$;
- **3** it is additive: $(C_1 + C_2) \cdot D = C_1 \cdot D + C_2 \cdot D;$
- (d) it depends only on the linear equivalence classes: if $C_1 \sim C_2$, then $C_1 \cdot D = C_2 \cdot D$.

We denote by $C^2 = C \cdot C$ the *self-intersection* of $C \in \text{Div } \mathcal{X}$.

Intersection product on $\mathcal{X} = \mathbb{P}^2$

Let L, L' be 2 lines. Then $L \sim L''$ and $L^2 = L'^2 = L \cdot L' = 1$. Let C be a conic. Then $L \cdot C = L' \cdot C = 2$. Moreover, $C \sim 2L$. Let C' another conic. Then $C' \sim C$. And $C^2 = C \cdot C' = 4$.

Theorem: Intersection product on a surface

There is a unique pairing $\operatorname{Div} \mathcal{X} \times \operatorname{Div} \mathcal{X} \to \mathbb{Z}$, denoted by $C \cdot D$ for any two divisors C, D, s.t.

- **()** if C and D are nonsingular curves meeting transversally, then $C \cdot D = #(C \cap D)$;
- 2) it is symmetric: $C \cdot D = D \cdot C$;
- **3** it is additive: $(C_1 + C_2) \cdot D = C_1 \cdot D + C_2 \cdot D;$
- (d) it depends only on the linear equivalence classes: if $C_1 \sim C_2$, then $C_1 \cdot D = C_2 \cdot D$.

We denote by $C^2 = C \cdot C$ the *self-intersection* of $C \in \text{Div } \mathcal{X}$.

Intersection product on $\mathcal{X} = \mathbb{P}^2$

Let L, L' be 2 lines. Then $L \sim L''$ and $L^2 = L'^2 = L \cdot L' = 1$. Let C be a conic. Then $L \cdot C = L' \cdot C = 2$. Moreover, $C \sim 2L$. Let C' another conic. Then $C' \sim C$. And $C^2 = C \cdot C' = 4$. For any curve D of degree d, $D \sim dL$. Two curves are linearly equivalent iff they have the same degree. Then $D \cdot D' = dL \cdot d'L = dd'$. (Bézout's theorem)

Dimension of AG codes from surfaces

Denote by $K_{\mathcal{X}}$ a canonical divisor of \mathcal{X} .

Riemann–Roch theorem on surfaces

Dimension of AG codes from surfaces

Denote by $K_{\mathcal{X}}$ a canonical divisor of \mathcal{X} .

Riemann–Roch theorem on surfaces

If
$$G \in \text{Div } \mathcal{X}$$
, then

$$\begin{array}{c} \text{superabundance} \\ h^{1}(\mathcal{X}, \mathcal{L}(G)) \\ \chi(\mathcal{L}(G)) = \ell(G) \\ h^{0}(\mathcal{X}, \mathcal{L}(G)) \\ \end{array} \xrightarrow{(\mathcal{L}(G))} \begin{array}{c} \text{superabundance} \\ h^{1}(\mathcal{X}, \mathcal{L}(G)) \\ \downarrow \\ \mu^{1}(\mathcal{X}, \mathcal{L}(G)) \\ \downarrow \\ h^{2}(\mathcal{X}, \mathcal{L}(G)) \\ + \text{Serre's duality} \end{array}$$

Definition: ample divisor

(Nakai–Moishezon criterion)

A divisor $A \in \text{Div } \mathcal{X}$ is said to be *ample* if $A^2 > 0$ and for every irreducible curve, $C \cdot A > 0$.

Dimension of AG codes from surfaces

Denote by $K_{\mathcal{X}}$ a canonical divisor of \mathcal{X} .

Riemann–Roch theorem on surfaces

If
$$G \in \text{Div } \mathcal{X}$$
, then

$$\begin{array}{c} \text{superabundance} \\ h^{1}(\mathcal{X}, \mathcal{L}(G)) \\ \chi(\mathcal{L}(G)) = \ell(G) \\ h^{0}(\mathcal{X}, \mathcal{L}(G)) \\ \end{array} \xrightarrow{\uparrow} \\ h^{0}(\mathcal{X}, \mathcal{L}(G)) \\ + \text{Serre's duality} \end{array} \xrightarrow{\text{Arithmetic genus of } \mathcal{X}: \\ p_{a}(\mathcal{X}) = \chi(\mathcal{O}_{\mathcal{X}}) + 1. \\ \downarrow \\ p_{a}(\mathcal{X}) = \chi(\mathcal{O}_{\mathcal{X}}) + 1. \\ \downarrow \\ \mu_{a}(\mathcal{X}) \\ + \text{Serre's duality} \end{array}$$

Definition: ample divisor

(Nakai–Moishezon criterion)

A divisor $A \in \text{Div } \mathcal{X}$ is said to be *ample* if $A^2 > 0$ and for every irreducible curve, $C \cdot A > 0$.

Proposition

-1

If there exists an ample divisor A such that $K_{\mathcal{X}} \cdot A < G \cdot A$, then $\ell(K_{\mathcal{X}} - G) = 0$.

$$\Rightarrow \ell(G) \ge \frac{1}{2}G \cdot (G - K_{\mathcal{X}}) + 1 + p_a(\mathcal{X}).$$
8 / 21

How to get a lower bound for the minimum distance?

Assume that $\mathcal{P} = \mathcal{X}(\mathbb{F}_a)$.

For any $f \in L(G)$, we decompose its zero locus $\mathcal{Z}(f) = \sum_{i=1}^{n} n_i \mathcal{Y}_i$ with $n_i > 0$.

Then the minimum distance satisfies

$$l \ge n - \max_{f \in L(G) \setminus \{0\}} \sum \# \mathcal{Y}_i(\mathbb{F}_q).$$

To bound the minimum distance from below, you need an upper bound for

- the number of irreducible components s_f , e.g. Berardini, N. (2022) for $\mathcal{X} \subset \mathbb{P}^3$
- the number of \mathbb{F}_q -rational points of the curves \mathcal{Y}_i .

See Elena Berardini's talk this afternoon

Adjunction formula

If C is a curve of arithmetic genus π on the surface \mathcal{X} , then

$$2\pi - 2 = \mathcal{C} \cdot (\mathcal{C} + K_{\mathcal{X}}).$$

A generic lower bound for the minimum distance: Seshadri constant

Let $\mathcal{P} = \{P_1 \dots, P_n\} \subset \mathcal{X}(\mathbb{F}_q)$ and $G \in \operatorname{Div} \mathcal{X}$ an ample divisor.

🖓 Hard to compute in practice!

Lower bound for the minimum distance: \mathcal{P} -covering curves

Proposition

Fix some curves C_1, \ldots, C_r on \mathcal{X} s.t.

- $\mathcal{P} \subseteq \bigcup_i \mathcal{C}_i(\mathbb{F}_q)$,
- $\#(\mathcal{C}_i(\mathbb{F}_q) \cap \mathcal{P}) \leq N$,
- $G \cdot \mathcal{C}_i \geq 0.$

Set
$$\ell = \max_{f \in L(G)} \#\{i \mid C_i \subseteq \mathcal{Z}(f)\}.$$

Then the minimum distance of $C(\mathcal{X}, \mathcal{P}, G)$ satisfies $d \ge n - \ell N - \sum G \cdot \mathcal{C}_i$.

Lower bound for the minimum distance: \mathcal{P} -covering curves

Proposition

Fix some curves C_1, \ldots, C_r on \mathcal{X} s.t.

- $\mathcal{P} \subseteq \bigcup_i \mathcal{C}_i(\mathbb{F}_q)$,
- $\#(\mathcal{C}_i(\mathbb{F}_q) \cap \mathcal{P}) \leq N$,
- $G \cdot \mathcal{C}_i \geq 0.$

Set
$$\ell = \max_{f \in L(G)} #\{i \mid C_i \subseteq \mathcal{Z}(f)\}.$$

Then the minimum distance of $C(\mathcal{X}, \mathcal{P}, G)$ satisfies $d \ge n - \ell N - \sum_{i=1} G \cdot C_i$. If $G \cdot C_i \le \eta \le N$, then $d \ge n - \ell N - (r - \ell)\eta$.

Lower bound for the minimum distance: \mathcal{P} -covering curves

Proposition

Fix some curves C_1, \ldots, C_r on \mathcal{X} s.t.

- $\mathcal{P} \subseteq \bigcup_i \mathcal{C}_i(\mathbb{F}_q)$,
- $\#(\mathcal{C}_i(\mathbb{F}_q) \cap \mathcal{P}) \leq N$,
- $G \cdot \mathcal{C}_i \geq 0.$

Set
$$\ell = \max_{f \in L(G)} #\{i \mid C_i \subseteq \mathcal{Z}(f)\}.$$

Then the minimum distance of $C(\mathcal{X}, \mathcal{P}, G)$ satisfies $d \ge n - \ell N - \sum_{i=1} G \cdot C_i$. If $G \cdot C_i \le \eta \le N$, then $d \ge n - \ell N - (r - \ell)\eta$. Moreover, if there exists a nef divisor H s.t. $H \cdot C_i > 0$ for every i, then $\ell \le \frac{G \cdot H}{\min_i \{C_i \cdot H\}}$.

 $H \cdot \mathcal{C} \geq 0$ for every curve \mathcal{C} .

Application of the \mathcal{P} -covering curves method to $\mathcal{X} = \mathbb{P}^1 \times \mathbb{P}^1$

Proposition

$$\begin{split} \mathcal{P} &\subseteq \bigcup_{i=1}^{r} \mathcal{C}_{i}(\mathbb{F}_{q}), \ \#(\mathcal{C}_{i}(\mathbb{F}_{q}) \cap \mathcal{P}) \leq N \text{ and } 0 \leq G \cdot \mathcal{C}_{i} \leq \eta \leq N. \\ \ell &= \max_{f \in L(G)} \#\{i \mid \mathcal{C}_{i} \subseteq (f = 0)\} \leq \frac{G \cdot H}{\min_{i}\{\mathcal{C}_{i} \cdot H\}} \text{ if there exists a nef divisor } H \text{ s.t. } H \cdot \mathcal{C}_{i} > 0. \\ d \geq n - \ell N - (r - \ell)\eta. \end{split}$$

Application of the \mathcal{P} -covering curves method to $\mathcal{X} = \mathbb{P}^1 \times \mathbb{P}^1$

Proposition

On $\mathcal{X} = \mathbb{P}^1 imes \mathbb{P}^1$

Pic $\mathcal{X} = \mathbb{Z}[H] \oplus \mathbb{Z}[V]$ with $H^2 = V^2 = 0$ and $H \cdot V = 1$. Take $G = d_1H + d_2V$. We have $L(G) \simeq \{\text{bihomogeneous } f \in \mathbb{F}_a[X_0, X_1, Y_0, Y_1] \mid \deg_X(f) = d_1 \text{ and } \deg_V(f) = d_2\}.$

Application of the \mathcal{P} -covering curves method to $\mathcal{X} = \mathbb{P}^1 \times \mathbb{P}^1$

Proposition

$$\begin{split} \mathcal{P} &\subseteq \bigcup_{i=1}^{r} \mathcal{C}_{i}(\mathbb{F}_{q}), \ \#(\mathcal{C}_{i}(\mathbb{F}_{q}) \cap \mathcal{P}) \leq N \text{ and } 0 \leq G \cdot \mathcal{C}_{i} \leq \eta \leq N. \\ &= \max_{f \in L(G)} \#\{i \mid \mathcal{C}_{i} \subseteq (f = 0)\} \leq \frac{G \cdot H}{\min_{i}\{\mathcal{C}_{i} \cdot H\}} \text{ if there exists a nef divisor } H \text{ s.t. } H + d \geq n - \ell N - (r - \ell)\eta. \end{split}$$

On $\mathcal{X} = \mathbb{P}^1 \times \mathbb{P}^1$

Pic $\mathcal{X} = \mathbb{Z}[H] \oplus \mathbb{Z}[V]$ with $H^2 = V^2 = 0$ and $H \cdot V = 1$. Take $G = d_1H + d_2V$. We have $L(G) \simeq \{\text{bihomogeneous } f \in \mathbb{F}_q[X_0, X_1, Y_0, Y_1] \mid \deg_X(f) = d_1 \text{ and } \deg_Y(f) = d_2\}.$ Choose $\mathcal{P} = \mathcal{X}(\mathbb{F}_q)$ and r = q + 1 vertical lines $\mathcal{C}_i \sim V \Rightarrow N = q + 1$.

12 / 21

Hansen (2001)

 $\mathcal{C}_i > 0.$

Hansen (2001)

 $\cdot \mathcal{C}_i > 0.$

Application of the \mathcal{P} -covering curves method to $\mathcal{X} = \mathbb{P}^1 \times \mathbb{P}^1$

Proposition

On $\mathcal{X} = \mathbb{P}^1 \times \mathbb{P}^1$

Pic $\mathcal{X} = \mathbb{Z}[H] \oplus \mathbb{Z}[V]$ with $H^2 = V^2 = 0$ and $H \cdot V = 1$. Take $G = d_1H + d_2V$. We have $L(G) \simeq \{\text{bihomogeneous } f \in \mathbb{F}_q[X_0, X_1, Y_0, Y_1] \mid \deg_X(f) = d_1 \text{ and } \deg_Y(f) = d_2\}.$ Choose $\mathcal{P} = \mathcal{X}(\mathbb{F}_q)$ and r = q + 1 vertical lines $\mathcal{C}_i \sim V \Rightarrow N = q + 1$. Since $H \cdot \mathcal{C}_i = H \cdot V = 1$, we have $\ell \leq G \cdot H = d_2$. $n = (q+1)^2, \qquad k = (d_1+1)(d_2+1)$ $d \geq n - d_2(q+1) - (q+1-d_2)d_1 = (q+1-d_1)(q+1-d_2)$ D Attained!

Lower bound for the minimum distance: \mathcal{P} -interpolating linear system

Definition: Linear system

- A linear system is a family of linearly equivalent effective divisors.
- The base locus of a linear system Γ is defined as $\bigcap_{D \in \Gamma} \operatorname{Supp} D$.
- For any linear system $\Gamma \subset \text{Div } \mathcal{X}$ and $\mathcal{Y} \subset \mathcal{X}$ a subvariety, we denote by $\Gamma \mathcal{Y}$ the maximal linear subsystem of Γ of elements whose base locus contains \mathcal{Y} .

Lower bound for the minimum distance: \mathcal{P} -interpolating linear system

Definition: Linear system

- A linear system is a family of linearly equivalent effective divisors.
- The base locus of a linear system Γ is defined as $\bigcap_{D \in \Gamma} \operatorname{Supp} D$.
- For any linear system $\Gamma \subset \text{Div } \mathcal{X}$ and $\mathcal{Y} \subset \mathcal{X}$ a subvariety, we denote by $\Gamma \mathcal{Y}$ the maximal linear subsystem of Γ of elements whose base locus contains \mathcal{Y} .

Definition: \mathcal{P} -interpolating linear systemCouvreur, Perret, Lebacque (2020)Given $\mathcal{P} \subseteq \mathcal{X}(\mathbb{F}_q)$, a linear system Γ of divisors on \mathcal{X} is said to be \mathcal{P} -interpolating if**0** $\Gamma - \mathcal{P}$ is non empty;**2** the base locus of $\Gamma - \mathcal{P}$ has dimension 0.

Lower bound for the minimum distance: \mathcal{P} -interpolating linear system

Definition: Linear system

- A *linear system* is a family of linearly equivalent effective divisors.
- The base locus of a linear system Γ is defined as $\bigcap_{D \in \Gamma} \operatorname{Supp} D$.
- For any linear system $\Gamma \subset \text{Div } \mathcal{X}$ and $\mathcal{Y} \subset \mathcal{X}$ a subvariety, we denote by $\Gamma \mathcal{Y}$ the maximal linear subsystem of Γ of elements whose base locus contains \mathcal{Y} .

Definition: \mathcal{P} -interpolating linear system Couvreur, Perret, Lebacque (2020) Given $\mathcal{P} \subseteq \mathcal{X}(\mathbb{F}_q)$, a linear system Γ of divisors on \mathcal{X} is said to be \mathcal{P} -interpolating if **1** $\Gamma - \mathcal{P}$ is non empty:

2 the base locus of $\Gamma - \mathcal{P}$ has dimension 0.

Proposition

Couvreur, Perret, Lebacque (2020)

- The minimum distance d of $C(\mathcal{X}, \mathcal{P}, G)$ satisfies $d \ge n \Gamma \cdot G$.
- If H is very ample, then the complete linear system |(q+1)H| is \mathcal{P} -interpolating.

The map $\phi_H : \mathcal{X} \dashrightarrow \mathbb{P}^{\ell(H)-1}$ is an embedding.

AG codes ooooooo	Parameters of AG codes from surfaces 000000000	Effectiveness? 0000	Local properties ooo	Conclusion c		
Comparison between $\mathcal P$ –covering curves and $\mathcal P$ –interpolating linear system						
Definition	Curves C_1, \ldots, C_r on $\mathcal X$ s.t.	Linear system Γ s.t.				
	1 $\mathcal{P} \subseteq igcup_i \mathcal{C}_i(\mathbb{F}_q);$	0 $\Gamma - \mathcal{P}$ is non empty;				
		$oldsymbol{ heta}$ the base locus of $\Gamma-\mathcal{P}$ has dim. 0.				
	Set $\ell = \max_{f \in L(G)} #\{i \mid C_i \subseteq \mathcal{Z}(f)\}.$					
Lower bound for d	$d \ge n - \sum_{i=1}^{r} G \cdot \mathcal{C}_i - \ell \max \# \mathcal{C}_i(\mathbb{F}_q)$	d	$\geq n - G \cdot \Gamma$			
		I				

AG codes ooooooo	Parameters of AG codes from surfaces 00000000	Effectiveness? 0000 Local properties 000 Conclusion 0				
Comparison between $\mathcal P$ –covering curves and $\mathcal P$ –interpolating linear system						
Definition	Curves C_1,\ldots,C_r on $\mathcal X$ s.t.	Linear system Γ s.t.				
	1 $\mathcal{P} \subseteq igcup_i \mathcal{C}_i(\mathbb{F}_q);$	0 $\Gamma - \mathcal{P}$ is non empty;				
Demittion	$ G \cdot \mathcal{C}_i \geq 0. $	$oldsymbol{ heta}$ the base locus of $\Gamma-\mathcal{P}$ has dim. 0.				
	Set $\ell = \max_{f \in L(G)} \#\{i \mid C_i \subseteq \mathcal{Z}(f)\}.$					
Lower bound for d	$d \ge n - \sum_{\substack{i=1\\ \mathcal{O}}}^{r} G \cdot \mathcal{C}_{i} - \ell \max \# \mathcal{C}_{i}(\mathbb{F}_{q})$	$d \geq n - G \cdot \Gamma$				
Relation	$\Gamma = \Gamma - \mathcal{P} = \left\{ \sum_{i=1}^{r} \mathcal{C}_i \right\}$	$A = \sum n_i \mathcal{C}_i \in \Gamma \text{ with } n_i \ge 0.$				
Similarities	$0 \Rightarrow 0$	$A\in \Gamma-\mathcal{P}$ (exists by $oldsymbol{0}$) satisfies $oldsymbol{0}$.				
Differences	$\boldsymbol{ \oslash} \Rightarrow \#(\Gamma - \mathcal{P}) \geq 2.$					

AG codes oooooc	Parameters of AG codes from surfaces 00000000	Effectiveness? 0000 Local properties 000 Conclusion 0				
Comparison between $\mathcal P$ –covering curves and $\mathcal P$ –interpolating linear system						
Definition	Curves C_1, \ldots, C_r on $\mathcal X$ s.t.	Linear system Γ s.t.				
	1 $\mathcal{P} \subseteq igcup_i \mathcal{C}_i(\mathbb{F}_q);$	1 $\Gamma - \mathcal{P}$ is non empty;				
Demition	$ G \cdot \mathcal{C}_i \geq 0. $	2 the base locus of $\Gamma - \mathcal{P}$ has dim. 0.				
	Set $\ell = \max_{f \in L(G)} \#\{i \mid C_i \subseteq \mathcal{Z}(f)\}.$					
Lower bou	nd $d \ge n - \sum_{i=1}^{r} G \cdot \mathcal{C}_i - \frac{\ell \max \# \mathcal{C}_i(\mathbb{F}_q)}{\ell \max \# \mathcal{C}_i(\mathbb{F}_q)}$	$d \geq n - G \cdot \Gamma$				
for d	$\sum_{i=1}^{n-1} e^{-i t} e^{-i t}$					
	🖒 Better bound					
Relation	$\Gamma = \Gamma - \mathcal{P} = \left\{ \sum_{i=1}^{r} \mathcal{C}_i \right\}$	$A = \sum n_i \mathcal{C}_i \in \Gamma$ with $n_i \ge 0$.				
Similarities	$0 \Rightarrow 0$	$A\in \Gamma-\mathcal{P}$ (exists by $oldsymbol{0}$) satisfies $oldsymbol{0}$.				
Differences						
Behaviour	If $\pi: \mathcal{X}' \to \mathcal{X}$ and $\mathcal{P}' \subseteq \pi^{-1}(\mathcal{P})$					
under	$\mathfrak{O} \ \pi^*(\mathcal{C}_i)$ are \mathcal{P}' –covering,					
morphisms	Few control over the analogue of	$\mathfrak{O} \pi^*(\Gamma)$ is \mathcal{P}' -interpolating.				
	$\ell.$	14 / 21				
		14 / 21				

AG codes from curves are well-known for having better parameters than random codes asymptotically for q square and $q \ge 49$. Ihara (1981), Tsfasman, Vlăduţ, Zink (1982)

Paving the ground towards codes from towers of surfaces

Couvreur, Lebacque, Perret (2020)

AG codes from curves are well-known for having better parameters than random codes asymptotically for q square and $q \ge 49$. Ihara (1981), Tsfasman, Vlăduţ, Zink (1982)

Constructions of *asymptotically good codes* are based on **tower of curves**:

- 1 modular curves Ihara (1981), Tsfasman, Vlăduţ, Zink (1982),
- 2 recursive towers Garcia, Stichtenoth (1995)...,
- **3** class field theory.

Paving the ground towards codes from towers of surfaces

Couvreur, Lebacque, Perret (2020)

AG codes from curves are well-known for having better parameters than random codes asymptotically for q square and $q \ge 49$. Ihara (1981), Tsfasman, Vlăduţ, Zink (1982)

Constructions of *asymptotically good codes* are based on **tower of curves**:

- 1 modular curves Ihara (1981), Tsfasman, Vlăduț, Zink (1982),
- 2 recursive towers Garcia, Stichtenoth (1995)...,
- **3** class field theory.

In the context of curves, the key is to control $\#\mathcal{X}(\mathbb{F}_q)/g(\mathcal{X})$.

Working with towers of surfaces, we may get longer codes. But several invariants come into play (e.g. $K_{\mathcal{X}}^2$ and $\deg c_2(\mathcal{X})$ or $\chi(\mathcal{O}_{\mathcal{X}})$).

 \rightarrow Criterion for a surface to admit an infinite tower of étale covers where a finite set of points of the surface splits completely.

Table of Contents

1 Algebraic geometry codes

- 2 Parameters of AG codes from surfaces
- **3** Effectiveness?

4 Local properties of AG codes from surfaces

To use an AG code $C(\mathcal{X}, \mathcal{P}, G)$ for practical applications, we need to **1 encode**: basis of L(G) + (fast) evaluation at points of \mathcal{P} ;

2 decode

To use an AG code $C(\mathcal{X},\mathcal{P},G)$ for practical applications, we need to

() encode: basis of L(G) + (fast) evaluation at points of \mathcal{P} ;

On curves, several algorithms to compute Riemann-Roch spaces :

- Arithmetic method (ideals in function fields) Hensel-Landberg (1902), Coated (1970), Davenport (1981), Hess (2001)...
- Geometric method (Brill–Noether's theory) Goppa, Le Brigand–Risler (80's), Huang–Ierardi (90's), Khuri–Makdisi (2007), Le Gluher–Spaenlehauer (2018), Abelard–Couvreur–Lecerf (2020),...

Fast encoding on families of curves with structured \mathcal{P} e.g. Beelen, Rosenkilde, Solomatov (2020)

2 decode

To use an AG code $C(\mathcal{X},\mathcal{P},G)$ for practical applications, we need to

1 encode: basis of L(G) + (fast) evaluation at points of \mathcal{P} ;

On curves, several algorithms to compute Riemann-Roch spaces :

- Arithmetic method (ideals in function fields) Hensel-Landberg (1902), Coated (1970), Davenport (1981), Hess (2001)...
- Geometric method (Brill–Noether's theory) Goppa, Le Brigand–Risler (80's), Huang–Ierardi (90's), Khuri–Makdisi (2007), Le Gluher–Spaenlehauer (2018), Abelard–Couvreur–Lecerf (2020),...

Fast encoding on families of curves with structured \mathcal{P} e.g. Beelen, Rosenkilde, Solomatov (2020)

2 decode

To use an AG code $C(\mathcal{X},\mathcal{P},G)$ for practical applications, we need to

1 encode: basis of L(G) + (fast) evaluation at points of \mathcal{P} ;

On curves, several algorithms to compute Riemann-Roch spaces :

- Arithmetic method (ideals in function fields) Hensel-Landberg (1902), Coated (1970), Davenport (1981), Hess (2001)...
- Geometric method (Brill–Noether's theory)
 Goppa, Le Brigand–Risler (80's), Huang–Ierardi (90's), Khuri–Makdisi (2007), Le
 Gluher–Spaenlehauer (2018), Abelard–Couvreur–Lecerf (2020),...

Fast encoding on families of curves with structured \mathcal{P} e.g. Beelen, Rosenkilde, Solomatov (2020)

On **surfaces**: \mathbf{v} no generic method to compute Riemann–Roch spaces, \mathbf{c} families of varieties with explicit bases of Riemann–Roch spaces.

2 decode

On curves:

- Unique decoding via Error Correcting Pairs Pelikaan (1992), Kötter (1992)
- List decoding Couvreur, Panaccione (2020)

To use an AG code $C(\mathcal{X},\mathcal{P},G)$ for practical applications, we need to

1 encode: basis of L(G) + (fast) evaluation at points of \mathcal{P} ;

On curves, several algorithms to compute Riemann-Roch spaces :

- Arithmetic method (ideals in function fields) Hensel-Landberg (1902), Coated (1970), Davenport (1981), Hess (2001)...
- Geometric method (Brill–Noether's theory)
 Goppa, Le Brigand–Risler (80's), Huang–Ierardi (90's), Khuri–Makdisi (2007), Le
 Gluher–Spaenlehauer (2018), Abelard–Couvreur–Lecerf (2020),...

Fast encoding on families of curves with structured \mathcal{P} e.g. Beelen, Rosenkilde, Solomatov (2020)

On **surfaces**: $\[mathbf{scale}$ no generic method to compute Riemann–Roch spaces, $\[mathbf{complex}$ families of varieties with explicit bases of Riemann–Roch spaces.

2 decode

On curves:

- Unique decoding via Error Correcting Pairs Pelikaan (1992), Kötter (1992)
- List decoding Couvreur, Panaccione (2020)

On **surfaces**: **\$** no generic global decoding algorithm, **b** natural local decoding.

Some varieties with explicit bases of Riemann–Roch spaces: toric varieties

Toric varieties come with a handy combinatorial description.

An integral polytope $P \subset \mathbb{R}^N$ (vertices in \mathbb{Z}^N) defines a N-dimensional polarized toric variety \mathcal{X}_P , *i.e.* with a divisor G and a monomial basis of L(G) (set of polynomials of a certain *degree*).

Some varieties with explicit bases of Riemann-Roch spaces: toric varieties

Toric varieties come with a handy combinatorial description.

An integral polytope $P \subset \mathbb{R}^N$ (vertices in \mathbb{Z}^N) defines a N-dimensional polarized toric variety \mathcal{X}_P , *i.e.* with a divisor G and a monomial basis of L(G) (set of polynomials of a certain *degree*).

$$L(G) \simeq \operatorname{Span}\{ \boldsymbol{x}^m, m \in P \cap \mathbb{Z}^N \}.$$

Size of $P \leftrightarrow Degree$ in L(G)

Some varieties with explicit bases of Riemann-Roch spaces: toric varieties

Toric varieties come with a handy combinatorial description.

An integral polytope $P \subset \mathbb{R}^N$ (vertices in \mathbb{Z}^N) defines a N-dimensional polarized toric variety \mathcal{X}_P , *i.e.* with a divisor G and a monomial basis of L(G) (set of polynomials of a certain *degree*).

Why toric?

 \mathcal{X}_P contains a dense torus $\mathbb{T}_P \simeq \left(\overline{\mathbb{F}_q}^*\right)^N$ whose rational points are $\mathbb{T}_P(\mathbb{F}_q) \simeq (\mathbb{F}_q^*)^N$.

Toric code: $C(\mathcal{X}_P, \mathbb{T}_P(\mathbb{F}_q), G)$ (generalization of Reed–Muller codes) Hansen (2002), Little-Schwarz (2005), Ruano (2007), Soprunov-Soprunova (2009),... **Projective toric code:** $C(\mathcal{X}_P, \mathcal{X}_P(\mathbb{F}_q), G)$. (generalization of *projective* Reed–Muller codes) Carvalho, Neumann (2014), N. (2020)...

Voloch, Zarzar (2011)

Conclusion o

Globally decoding via local decoding

Consider an AG code $C = C(\mathcal{X}, \mathcal{P}, G)$ on \mathcal{X} . Assume we have a family of \mathcal{P} -covering curves $C_i \subset \mathcal{X}$ s.t.

- $\mathcal{P} \subseteq \bigcup \mathcal{C}_i(\mathbb{F}_q)$ (\mathcal{P} -covering),
- $c \in C \Leftrightarrow \forall i, c_{|C_i} \in C_{|C_i} \leftarrow C(C_i, \mathcal{P} \cap C_i, G \cap C_i)$ The restrictions to the curves C_i completely characterizes C.

Voloch, Zarzar (2011)

Conclusion o

Globally decoding via local decoding

Consider an AG code $C = C(\mathcal{X}, \mathcal{P}, G)$ on \mathcal{X} . Assume we have a family of \mathcal{P} -covering curves $C_i \subset \mathcal{X}$ s.t.

- $\mathcal{P} \subseteq \bigcup \mathcal{C}_i(\mathbb{F}_q)$ (\mathcal{P} -covering),
- $c \in C \Leftrightarrow \forall i, c_{|C_i} \in \underline{C_{|C_i}} \leftarrow \underline{C(C_i, \mathcal{P} \cap C_i, G \cap C_i)}$ The restrictions to the curves C_i completely characterizes C_i

Then we have a procedure to decode a word w with respect to C.

- **1** Pick a curve C_i at random;
- 2 Use a decoding algorithm to decode $w_{|C_i|}$ w.r.t. $C_{|C_i|}$ and replace the coordinates in w_i ;
- **3** Repeat **1** and **2** as many times as necessary so that for each $i, w_{|C_i} \in \frac{C_{|C_i}}{C_i} (\Rightarrow w \in C)$.
- ${\mathfrak O}$ Successfully applied to AG codes from cubic surfaces of ${\mathbb P}^3$;
- Solution May fail if too many errors gather on one curve;
- $\mathbf{\nabla}$ Characterizing codes from restrictions may not be possible.

Table of Contents

1 Algebraic geometry codes

2 Parameters of AG codes from surfaces

3 Effectiveness?

4 Local properties of AG codes from surfaces

Definition: Locally recoverable code

A code C is said to be locally recoverable (LR) with locality ℓ if, for each $i \in \{1, \ldots, n\}$, there is a subset $J_i \subseteq \{1, \ldots, n\} \setminus \{i\}, \#J_i = \ell$ (called the *recovery set*), such that for any $c \in C$, we can recover the coordinate c_i knowing the values c_j for $j \in J_i$.

Definition: Locally recoverable code

A code C is said to be locally recoverable (LR) with locality ℓ if, for each $i \in \{1, \ldots, n\}$, there is a subset $J_i \subseteq \{1, \ldots, n\} \setminus \{i\}, \#J_i = \ell$ (called the *recovery set*), such that for any $c \in C$, we can recover the coordinate c_i knowing the values c_j for $j \in J_i$.

Singleton bound for LRCs

A LRC C with parameters [n, k, d] and locality ℓ satisfies $d \le n - k - \left\lfloor \frac{k}{\ell} \right\rfloor + 2$.

Definition: Locally recoverable code

A code C is said to be locally recoverable (LR) with locality ℓ if, for each $i \in \{1, \ldots, n\}$, there is a subset $J_i \subseteq \{1, \ldots, n\} \setminus \{i\}$, $\#J_i = \ell$ (called the *recovery set*), such that for any $c \in C$, we can recover the coordinate c_i knowing the values c_j for $j \in J_i$.

Singleton bound for LRCs

A LRC *C* with parameters [n, k, d] and locality ℓ satisfies $d \le n - k - \left\lfloor \frac{k}{\ell} \right\rfloor + 2$.

Reed–Muller codes are locally recoverable of locality $\ell = q - 1$.

$$\mathsf{RM}(2,r) = \left\{ (f(P_1), f(P_2), \dots, f(P_{q^2})) \mid f \in \mathbb{F}_q[X,Y]_{\leq r} \right\}.$$

Definition: Locally recoverable code

A code C is said to be locally recoverable (LR) with locality ℓ if, for each $i \in \{1, \ldots, n\}$, there is a subset $J_i \subseteq \{1, \ldots, n\} \setminus \{i\}$, $\#J_i = \ell$ (called the *recovery set*), such that for any $c \in C$, we can recover the coordinate c_i knowing the values c_j for $j \in J_i$.

Singleton bound for LRCs

A LRC *C* with parameters [n, k, d] and locality ℓ satisfies $d \le n - k - \left\lfloor \frac{k}{\ell} \right\rfloor + 2$.

Reed–Muller codes are locally recoverable of locality $\ell = q - 1$.

$$\mathsf{RM}(2,r) = \left\{ (f(P_1), f(P_2), \dots, f(P_{q^2})) \mid f \in \mathbb{F}_q[X,Y]_{\leq r} \right\}.$$

• Pick a
$$\mathbb{F}_q$$
-line *L* containing P_0 ($x = \alpha t + \beta, y = \gamma t + \delta$),

Definition: Locally recoverable code

A code C is said to be locally recoverable (LR) with locality ℓ if, for each $i \in \{1, \ldots, n\}$, there is a subset $J_i \subseteq \{1, \ldots, n\} \setminus \{i\}$, $\#J_i = \ell$ (called the *recovery set*), such that for any $c \in C$, we can recover the coordinate c_i knowing the values c_j for $j \in J_i$.

Singleton bound for LRCs

A LRC *C* with parameters [n, k, d] and locality ℓ satisfies $d \le n - k - \left\lfloor \frac{k}{\ell} \right\rfloor + 2$.

Reed–Muller codes are locally recoverable of locality $\ell = q - 1$.

$$\mathsf{RM}(2,r) = \left\{ (f(P_1), f(P_2), \dots, f(P_{q^2})) \mid f \in \mathbb{F}_q[X,Y]_{\leq r} \right\}.$$

- Pick a \mathbb{F}_q -line *L* containing P_0 ($x = \alpha t + \beta, y = \gamma t + \delta$),
- $\Rightarrow \mathsf{RM}(2,r)_{|L} = \{(f(t))_{t \in \mathbb{F}_q} \mid f \in \mathbb{F}_q[T]_{\leq r}\} = \mathsf{RS}_{r+1}(\mathbb{F}_q).$

Definition: Locally recoverable code

A code C is said to be locally recoverable (LR) with locality ℓ if, for each $i \in \{1, \ldots, n\}$, there is a subset $J_i \subseteq \{1, \ldots, n\} \setminus \{i\}$, $\#J_i = \ell$ (called the *recovery set*), such that for any $c \in C$, we can recover the coordinate c_i knowing the values c_j for $j \in J_i$.

Singleton bound for LRCs

A LRC *C* with parameters [n, k, d] and locality ℓ satisfies $d \le n - k - \left\lfloor \frac{k}{\ell} \right\rfloor + 2$.

Reed–Muller codes are locally recoverable of locality $\ell = q - 1$.

$$\mathsf{RM}(2,r) = \left\{ (f(P_1), f(P_2), \dots, f(P_{q^2})) \mid f \in \mathbb{F}_q[X,Y]_{\leq r} \right\}.$$

- Pick a \mathbb{F}_q -line L containing P_0 $(x = \alpha t + \beta, y = \gamma t + \delta)$,
- $\Rightarrow \mathsf{RM}(2,r)_{|L} = \{(f(t))_{t \in \mathbb{F}_q} \mid f \in \mathbb{F}_q[T]_{\leq r}\} = \mathsf{RS}_{r+1}(\mathbb{F}_q).$
- Recover using the correction algorithm of Reed-Solomon codes.

How to achieve local recoverability for codes from surfaces?

From a family of \mathcal{P} -covering curves $\mathcal{C}_i \subset \mathcal{X}$ s.t.

- $\mathcal{P} \subseteq \bigcup \mathcal{C}_i(\mathbb{F}_q)$ (\mathcal{P} -covering),
- $#(\mathcal{P} \cap \mathcal{C}_i) = \ell + 1;$

any AG code $C = C(\mathcal{X}, \mathcal{P}, G)$ is LR with locality ℓ , provided that we know how to correct in the codes $C_{|C_i|}$.

In most constructions, $C_i \simeq C_j$ and the restricted codes are equivalent (e.g. $G \cap C_i \simeq G \cap C_j$).

How to achieve local recoverability for codes from surfaces?

From a family of \mathcal{P} -covering curves $\mathcal{C}_i \subset \mathcal{X}$ s.t.

- $\mathcal{P} \subseteq \bigcup \mathcal{C}_i(\mathbb{F}_q)$ (\mathcal{P} -covering),
- $#(\mathcal{P} \cap \mathcal{C}_i) = \ell + 1;$

any AG code $C = C(\mathcal{X}, \mathcal{P}, G)$ is LR with locality ℓ , provided that we know how to correct in the codes $C_{|C_i}$.

In most constructions, $C_i \simeq C_j$ and the restricted codes are equivalent (e.g. $G \cap C_i \simeq G \cap C_j$). Alternative: fix an AG code $C' = C(C, \mathcal{P}', G')$ on the curves $C \simeq C_i$ and consider

 $\{ \boldsymbol{c} \in C(\mathcal{X}, \mathcal{P}, G) \mid \forall i, \ \boldsymbol{c}_{|\mathcal{C}_i| \in \boldsymbol{\phi}_i(C') } \}.$

How to achieve local recoverability for codes from surfaces?

From a family of \mathcal{P} -covering curves $\mathcal{C}_i \subset \mathcal{X}$ s.t.

- $\mathcal{P} \subseteq \bigcup \mathcal{C}_i(\mathbb{F}_q)$ (\mathcal{P} -covering),
- $#(\mathcal{P} \cap \mathcal{C}_i) = \ell + 1;$

any AG code $C = C(\mathcal{X}, \mathcal{P}, G)$ is LR with locality ℓ , provided that we know how to correct in the codes $C_{|C_i}$.

In most constructions, $C_i \simeq C_j$ and the restricted codes are equivalent (e.g. $G \cap C_i \simeq G \cap C_j$). Alternative: fix an AG code $C' = C(C, \mathcal{P}', G')$ on the curves $C \simeq C_i$ and consider

 $\{\boldsymbol{c} \in C(\mathcal{X}, \mathcal{P}, G) \mid \forall i, \ \boldsymbol{c}_{|\mathcal{C}_i} \in \boldsymbol{\phi_i}(C')\}.$

LRC on ruled surfaces

Salgado, Varilly-Alvarado, Voloch (2021)

Fibers $\pi^{-1}(\{P\}) \simeq \mathbb{P}^1$ for every $P \in \mathcal{B}$. Take $\mathcal{C}_i = \{\text{fibers of } \mathbb{F}_q\text{-points of } \mathcal{B} \text{ covering } \mathcal{P}\}.$

 \to Design codes from ${\cal X}$ whose restrictions to the ${\cal C}_i$ are Reed–Solomon codes of given degree.

Take–away

We should study AG codes from surfaces because

- we can constructed longer codes from small alphabets,
- their *richer geometry* compared to curves grants them with natural local properties which can be useful in applications (*e.g.* distributed storage),
- we have many ingredients to design new families of asymptotically good codes.

Take–away

We should study AG codes from surfaces because

- we can constructed longer codes from small alphabets,
- their *richer geometry* compared to curves grants them with natural local properties which can be useful in applications (*e.g.* distributed storage),
- we have many ingredients to design new families of asymptotically good codes.

But for the moment

- we lack generic algorithms to encode and decode,
- we have to explore families of surfaces with the right features to get the expected properties on codes,
- we need a better understanding of the classification of surfaces over finite fields.

Take–away

We should study AG codes from surfaces because

- we can constructed longer codes from small alphabets,
- their *richer geometry* compared to curves grants them with natural local properties which can be useful in applications (*e.g.* distributed storage),
- we have many ingredients to design new families of asymptotically good codes.

But for the moment

- we lack generic algorithms to encode and decode,
- we have to explore families of surfaces with the right features to get the expected properties on codes,
- we need a better understanding of the classification of surfaces over finite fields.

Thank you for your attention!