An overview of ALGEBRAIC GEOMETRY CODES FROM SURFACES

Jade Nardi

CNRS, IRMAR, University of Rennes
$14^{\text {th }}$ February, 2023
Conference On alGebraic varieties over fiNite fields and Algebraic geometry Codes CIRM

Picture: Vallons des Auffes in Marseille

Outline of the presentation

(1) Algebraic geometry codes
(2) Parameters of AG codes from surfaces
(3) Effectiveness?
(4) Local properties of AG codes from surfaces

Table of Contents

(1) Algebraic geometry codes

(2) Parameters of AG codes from surfaces

3 Effectiveness?

(4) Local properties of AG codes from surfaces

Algebraic geometry...

Let \mathcal{X} be a smooth projective variety defined over the finite field \mathbb{F}_{q}.

Definition: Divisors and their properties.

A (Weil) divisor on \mathcal{X} is a formal finite sum of irreducible subvarieties of \mathcal{X} of codimension 1. The set of divisors of the variety \mathcal{X} is denoted by $\operatorname{Div} \mathcal{X}$.

Algebraic geometry...

Let \mathcal{X} be a smooth projective variety defined over the finite field \mathbb{F}_{q}.

Definition: Divisors and their properties.

A (Weil) divisor on \mathcal{X} is a formal finite sum of irreducible subvarieties of \mathcal{X} of codimension 1. The set of divisors of the variety \mathcal{X} is denoted by $\operatorname{Div} \mathcal{X}$.

A divisor $G=\sum n_{i} \mathcal{Y}_{i}$ is said to be effective if $n_{i} \geq 0$ for every i. In this case, we write $G \geq 0$.
The support of a divisor $G=\sum n_{i} \mathcal{Y}_{i}$, is $\operatorname{Supp} G=\bigcup_{i \geq 1}\left\{\mathcal{Y}_{i} \mid n_{i} \neq 0\right\}$.
Its Riemann-Roch space is the \mathbb{F}_{q}-vector space

$$
L(G)=\left\{f \in \mathbb{F}_{q}(X)^{*} \mid(f)+G \geq 0\right\} \cup\{0\}
$$

where $(f)=\sum \operatorname{ord}_{\mathcal{Y}}(f) \mathcal{Y}$ is the principal divisor associated to a non-zero function f.

Algebraic geometry...

Let \mathcal{X} be a smooth projective variety defined over the finite field \mathbb{F}_{q}.

Definition: Divisors and their properties.

A (Weil) divisor on \mathcal{X} is a formal finite sum of irreducible subvarieties of \mathcal{X} of codimension 1. The set of divisors of the variety \mathcal{X} is denoted by $\operatorname{Div} \mathcal{X}$.

A divisor $G=\sum n_{i} \mathcal{Y}_{i}$ is said to be effective if $n_{i} \geq 0$ for every i. In this case, we write $G \geq 0$.
The support of a divisor $G=\sum n_{i} \mathcal{Y}_{i}$, is $\operatorname{Supp} G=\bigcup_{i \geq 1}\left\{\mathcal{Y}_{i} \mid n_{i} \neq 0\right\}$.
Its Riemann-Roch space is the \mathbb{F}_{q}-vector space

$$
L(G)=\left\{\overleftarrow{\left.f \in \mathbb{F}_{q}(X)^{*} \mid(f)+G \geq 0\right\} \cup\{0\}}\right.
$$

where $(f)=\sum \operatorname{ord}_{\mathcal{Y}}(f) \mathcal{Y}$ is the principal divisor associated to a non-zero function f.

Algebraic geometry...

Let \mathcal{X} be a smooth projective variety defined over the finite field \mathbb{F}_{q}.

Definition: Divisors and their properties.

A (Weil) divisor on \mathcal{X} is a formal finite sum of irreducible subvarieties of \mathcal{X} of codimension 1. The set of divisors of the variety \mathcal{X} is denoted by $\operatorname{Div} \mathcal{X}$.

A divisor $G=\sum n_{i} \mathcal{Y}_{i}$ is said to be effective if $n_{i} \geq 0$ for every i. In this case, we write $G \geq 0$.
The support of a divisor $G=\sum n_{i} \mathcal{Y}_{i}$, is $\operatorname{Supp} G=\bigcup_{i \geq 1}\left\{\mathcal{Y}_{i} \mid n_{i} \neq 0\right\}$.
Its Riemann-Roch space is the \mathbb{F}_{q}-vector space global section

$$
L(G)=\left\{f \in \mathbb{F}_{q}(X)^{*} \mid(f)+G \geq 0\right\} \cup\{0\}
$$

where $(f)=\sum \operatorname{ord}_{\mathcal{Y}}(f) \mathcal{Y}$ is the principal divisor associated to a non-zero function f.

Definition: Linear equivalence and Picard Group.

Two divisors are linearly equivalent if there is a function h such that $G^{\prime}=G+(h)$, noted $G^{\prime} \sim G$. The Picard group Pic \mathcal{X} is the set of equivalent classes of $\operatorname{Div} \mathcal{X}$ modulo the linear equivalence \sim.

...Codes

Definition: $[n, k, d]$ linear code
A linear code C over \mathbb{F}_{q} of length n is a vector subspace \mathbb{F}_{q}^{n}. We note k its dimension.
The weight of a word $\boldsymbol{x} \in \mathbb{F}_{q}^{n}$ is given by $\omega(\boldsymbol{x})=\#\left\{i \in\{1, \ldots, n\}, x_{i} \neq 0\right\}$.
The minimum distance of C is defined by $d=\min \{\omega(\boldsymbol{c}) \mid \boldsymbol{c} \in C, \boldsymbol{c} \neq \mathbf{0}\}$.

...Codes

Definition: $[n, k, d]$ linear code

A linear code C over \mathbb{F}_{q} of length n is a vector subspace \mathbb{F}_{q}^{n}. We note k its dimension.
The weight of a word $\boldsymbol{x} \in \mathbb{F}_{q}^{n}$ is given by $\omega(\boldsymbol{x})=\#\left\{i \in\{1, \ldots, n\}, x_{i} \neq 0\right\}$.
The minimum distance of C is defined by $d=\min \{\omega(\boldsymbol{c}) \mid \boldsymbol{c} \in C, \boldsymbol{c} \neq \mathbf{0}\}$.

Algebraic geometry codes

Tsfasman and Vladut's L-construction

Take $\mathcal{P}=\left\{P_{1}, \ldots, P_{n},\right\} \subset \mathcal{X}\left(\mathbb{F}_{q}\right)$ and $G \in \operatorname{Div} \mathcal{X}$ s.t. Supp $G \cap \mathcal{P}=\varnothing$. Consider the map

$$
\operatorname{ev}_{\mathcal{P}}:\left\{\begin{array}{ccc}
L(G) & \rightarrow & \mathbb{F}_{q}^{n} \\
f & \mapsto & \left(f\left(P_{1}\right), \ldots, f\left(P_{n}\right)\right)
\end{array}\right.
$$

The AG code associated to G with evaluation support \mathcal{P} is $C(\mathcal{X}, \mathcal{P}, G)=\operatorname{ev}_{\mathcal{P}}(L(G))$.
Remark: If $G^{\prime} \sim G$, then $C(\mathcal{X}, \mathcal{P}, G)$ and $C\left(\mathcal{X}, \mathcal{P}, G^{\prime}\right)$ are equivalent.

...Codes

Definition: $[n, k, d]$ linear code

A linear code C over \mathbb{F}_{q} of length n is a vector subspace \mathbb{F}_{q}^{n}. We note k its dimension.
The weight of a word $\boldsymbol{x} \in \mathbb{F}_{q}^{n}$ is given by $\omega(\boldsymbol{x})=\#\left\{i \in\{1, \ldots, n\}, x_{i} \neq 0\right\}$.
The minimum distance of C is defined by $d=\min \{\omega(\boldsymbol{c}) \mid \boldsymbol{c} \in C, \boldsymbol{c} \neq \mathbf{0}\}$.

Algebraic geometry codes

Tsfasman and Vladut's L-construction

Take $\mathcal{P}=\left\{P_{1}, \ldots, P_{n},\right\} \subset \mathcal{X}\left(\mathbb{F}_{q}\right)$ and $G \in \operatorname{Div} \mathcal{X}$ s.t. Supp $G \cap \mathcal{P}=\varnothing$. Consider the map

$$
\operatorname{ev}_{\mathcal{P}}:\left\{\begin{array}{ccc}
L(G) & \rightarrow & \mathbb{F}_{q}^{n} \\
f & \mapsto & \left(f\left(P_{1}\right), \ldots, f\left(P_{n}\right)\right)
\end{array} \quad\right. \text { well-defined }
$$

The AG code associated to G with evaluation support \mathcal{P} is $C(\mathcal{X}, \mathcal{P}, G)=\operatorname{ev}_{\mathcal{P}}(L(G))$.
Remark: If $G^{\prime} \sim G$, then $C(\mathcal{X}, \mathcal{P}, G)$ and $C\left(\mathcal{X}, \mathcal{P}, G^{\prime}\right)$ are equivalent.
It has length $n=\# \mathcal{P}$ and dimension $k \leq \ell(G) .=\operatorname{dim} L(G)$
For $f \in L(G), \omega\left(\operatorname{ev}_{\mathcal{P}}(f)\right)=n-\#(\mathcal{Z}(f) \cap \mathcal{P})$ where $\mathcal{Z}(f)$ is the zero locus of f.
Then the minimum distance satisfies $d=n-\max _{f \in L(G) \backslash\{0\}} \#(\mathcal{Z}(f) \cap \mathcal{P})$.

Algebraic geometry codes: parameters
Take $\mathcal{P}=\left\{P_{1}, \ldots, P_{n},\right\} \subset \mathcal{X}\left(\mathbb{F}_{q}\right)$ and $G \in \operatorname{Div} \mathcal{X}$ s.t. $\operatorname{Supp} G \cap \mathcal{P}=\varnothing$.

$$
C(\mathcal{X}, \mathcal{P}, G)=\left\{\left(f\left(P_{1}\right), \ldots, f\left(P_{n}\right)\right) \in \mathbb{F}_{q}^{n} \mid f \in L(G)\right\} .
$$

If $\max _{f \in L(G) \backslash\{0\}} \#(\mathcal{Z}(f) \cap \mathcal{P}) \leq b<n$, then $C(\mathcal{X}, \mathcal{P}, G)$ has parameters $[n, \ell(G), \geq n-b]$.

Algebraic geometry codes: parameters

Take $\mathcal{P}=\left\{P_{1}, \ldots, P_{n},\right\} \subset \mathcal{X}\left(\mathbb{F}_{q}\right)$ and $G \in \operatorname{Div} \mathcal{X}$ s.t. $\operatorname{Supp} G \cap \mathcal{P}=\varnothing$.

$$
C(\mathcal{X}, \mathcal{P}, G)=\left\{\left(f\left(P_{1}\right), \ldots, f\left(P_{n}\right)\right) \in \mathbb{F}_{q}^{n} \mid f \in L(G)\right\}
$$

If $\max _{f \in L(G) \backslash\{0\}} \#(\mathcal{Z}(f) \cap \mathcal{P}) \leq b<n$, then $C(\mathcal{X}, \mathcal{P}, G)$ has parameters $[n, \ell(G), \geq n-b]$.
If \mathcal{X} is a (smooth projective) curve of genus g, then $G=\sum n_{i} P_{i}$ with $\operatorname{deg} G=\sum n_{i} \operatorname{deg} P_{i}$.

Algebraic geometry codes: parameters

Take $\mathcal{P}=\left\{P_{1}, \ldots, P_{n},\right\} \subset \mathcal{X}\left(\mathbb{F}_{q}\right)$ and $G \in \operatorname{Div} \mathcal{X}$ s.t. $\operatorname{Supp} G \cap \mathcal{P}=\varnothing$.

$$
C(\mathcal{X}, \mathcal{P}, G)=\left\{\left(f\left(P_{1}\right), \ldots, f\left(P_{n}\right)\right) \in \mathbb{F}_{q}^{n} \mid f \in L(G)\right\}
$$

If $\max _{f \in L(G) \backslash\{0\}} \#(\mathcal{Z}(f) \cap \mathcal{P}) \leq b<n$, then $C(\mathcal{X}, \mathcal{P}, G)$ has parameters $[n, \ell(G), \geq n-b]$.
If \mathcal{X} is a (smooth projective) curve of genus g, then $G=\sum n_{i} P_{i}$ with $\operatorname{deg} G=\sum n_{i} \operatorname{deg} P_{i}$.

Hasse-Weil theorem

$$
\mathcal{X}\left(\mathbb{F}_{q}\right) \leq q+1+2 g \sqrt{q} .
$$

Algebraic geometry codes: parameters

Take $\mathcal{P}=\left\{P_{1}, \ldots, P_{n},\right\} \subset \mathcal{X}\left(\mathbb{F}_{q}\right)$ and $G \in \operatorname{Div} \mathcal{X}$ s.t. $\operatorname{Supp} G \cap \mathcal{P}=\varnothing$.

$$
C(\mathcal{X}, \mathcal{P}, G)=\left\{\left(f\left(P_{1}\right), \ldots, f\left(P_{n}\right)\right) \in \mathbb{F}_{q}^{n} \mid f \in L(G)\right\}
$$

If $\max _{f \in L(G) \backslash\{0\}} \#(\mathcal{Z}(f) \cap \mathcal{P}) \leq b<n$, then $C(\mathcal{X}, \mathcal{P}, G)$ has parameters $[n, \ell(G), \geq n-b]$.
If \mathcal{X} is a (smooth projective) curve of genus g, then $G=\sum n_{i} P_{i}$ with $\operatorname{deg} G=\sum n_{i} \operatorname{deg} P_{i}$.

Hasse-Weil theorem

$$
n \leq \mathcal{X}\left(\mathbb{F}_{q}\right) \leq q+1+2 g \sqrt{q} .
$$

Algebraic geometry codes: parameters

Take $\mathcal{P}=\left\{P_{1}, \ldots, P_{n},\right\} \subset \mathcal{X}\left(\mathbb{F}_{q}\right)$ and $G \in \operatorname{Div} \mathcal{X}$ s.t. $\operatorname{Supp} G \cap \mathcal{P}=\varnothing$.

$$
C(\mathcal{X}, \mathcal{P}, G)=\left\{\left(f\left(P_{1}\right), \ldots, f\left(P_{n}\right)\right) \in \mathbb{F}_{q}^{n} \mid f \in L(G)\right\}
$$

If $\max _{f \in L(G) \backslash\{0\}} \#(\mathcal{Z}(f) \cap \mathcal{P}) \leq b<n$, then $C(\mathcal{X}, \mathcal{P}, G)$ has parameters $[n, \ell(G), \geq n-b]$.
If \mathcal{X} is a (smooth projective) curve of genus g, then $G=\sum n_{i} P_{i}$ with $\operatorname{deg} G=\sum n_{i} \operatorname{deg} P_{i}$.

Hasse-Weil theorem

$$
n \leq \mathcal{X}\left(\mathbb{F}_{q}\right) \leq q+1+2 g \sqrt{q} .
$$

Riemann-Roch theorem on curves

$$
\begin{array}{r}
\ell(G)-\ell\left(K_{\mathcal{X}}-G\right)=\operatorname{deg} G-g+1 . \\
=0 \text { if } \operatorname{deg} G>2 g-2 .
\end{array}
$$

Canonical divisor of \mathcal{X}

Algebraic geometry codes: parameters

Take $\mathcal{P}=\left\{P_{1}, \ldots, P_{n},\right\} \subset \mathcal{X}\left(\mathbb{F}_{q}\right)$ and $G \in \operatorname{Div} \mathcal{X}$ s.t. $\operatorname{Supp} G \cap \mathcal{P}=\varnothing$.

$$
C(\mathcal{X}, \mathcal{P}, G)=\left\{\left(f\left(P_{1}\right), \ldots, f\left(P_{n}\right)\right) \in \mathbb{F}_{q}^{n} \mid f \in L(G)\right\}
$$

If $\max _{f \in L(G) \backslash\{0\}} \#(\mathcal{Z}(f) \cap \mathcal{P}) \leq b<n$, then $C(\mathcal{X}, \mathcal{P}, G)$ has parameters $[n, \ell(G), \geq n-b]$.
If \mathcal{X} is a (smooth projective) curve of genus g, then $G=\sum n_{i} P_{i}$ with $\operatorname{deg} G=\sum n_{i} \operatorname{deg} P_{i}$.

Hasse-Weil theorem

$$
n \leq \mathcal{X}\left(\mathbb{F}_{q}\right) \leq q+1+2 g \sqrt{q} .
$$

For every $f \in L(G), \# \mathcal{Z}(f) \leq \operatorname{deg} G$.

Riemann-Roch theorem on curves

$$
\begin{array}{r}
\ell(G)-\ell\left(K_{\mathcal{X}}-G\right)=\operatorname{deg} G-g+1 . \\
=0 \text { if } \operatorname{deg} G>2 g-2 .
\end{array}
$$

Canonical divisor of \mathcal{X}

Algebraic geometry codes: parameters

Take $\mathcal{P}=\left\{P_{1}, \ldots, P_{n},\right\} \subset \mathcal{X}\left(\mathbb{F}_{q}\right)$ and $G \in \operatorname{Div} \mathcal{X}$ s.t. $\operatorname{Supp} G \cap \mathcal{P}=\varnothing$.

$$
C(\mathcal{X}, \mathcal{P}, G)=\left\{\left(f\left(P_{1}\right), \ldots, f\left(P_{n}\right)\right) \in \mathbb{F}_{q}^{n} \mid f \in L(G)\right\}
$$

If $\max _{f \in L(G) \backslash\{0\}} \#(\mathcal{Z}(f) \cap \mathcal{P}) \leq b<n$, then $C(\mathcal{X}, \mathcal{P}, G)$ has parameters $[n, \ell(G), \geq n-b]$.
If \mathcal{X} is a (smooth projective) curve of genus g, then $G=\sum n_{i} P_{i}$ with $\operatorname{deg} G=\sum n_{i} \operatorname{deg} P_{i}$.

Hasse-Weil theorem

$$
n \leq \mathcal{X}\left(\mathbb{F}_{q}\right) \leq q+1+2 g \sqrt{q} .
$$

For every $f \in L(G), \# \mathcal{Z}(f) \leq \operatorname{deg} G$.

Riemann-Roch theorem on curves

$$
\begin{array}{r}
\ell(G)-\ell\left(K_{\mathcal{X}}-G\right)=\operatorname{deg} G-g+1 . \\
=0 \text { if } \operatorname{deg} G>2 g-2 .
\end{array}
$$

Canonical divisor of \mathcal{X}

Algebraic geometry codes: parameters

Take $\mathcal{P}=\left\{P_{1}, \ldots, P_{n},\right\} \subset \mathcal{X}\left(\mathbb{F}_{q}\right)$ and $G \in \operatorname{Div} \mathcal{X}$ s.t. $\operatorname{Supp} G \cap \mathcal{P}=\varnothing$.

$$
C(\mathcal{X}, \mathcal{P}, G)=\left\{\left(f\left(P_{1}\right), \ldots, f\left(P_{n}\right)\right) \in \mathbb{F}_{q}^{n} \mid f \in L(G)\right\}
$$

If $\max _{f \in L(G) \backslash\{0\}} \#(\mathcal{Z}(f) \cap \mathcal{P}) \leq b<n$, then $C(\mathcal{X}, \mathcal{P}, G)$ has parameters $[n, \ell(G), \geq n-b]$.
If \mathcal{X} is a (smooth projective) curve of genus g, then $G=\sum n_{i} P_{i}$ with $\operatorname{deg} G=\sum n_{i} \operatorname{deg} P_{i}$.

Hasse-Weil theorem

$$
n \leq \mathcal{X}\left(\mathbb{F}_{q}\right) \leq q+1+2 g \sqrt{q} .
$$

For every $f \in L(G), \# \mathcal{Z}(f) \leq \operatorname{deg} G$.

Riemann-Roch theorem on curves

$$
\begin{array}{r}
\ell(G)-\ell\left(K_{\mathcal{X}}-G\right)=\operatorname{deg} G-g+1 . \\
\quad=0 \text { if } \operatorname{deg} G>2 g-2 .
\end{array}
$$

Canonical divisor of \mathcal{X}

If \mathcal{X} is a surface, $\mathcal{Z}(f)$ is a (possibly reducible) curve on \mathcal{X}. Computing $\# \mathcal{Z}(f) \cap \mathcal{P}$ is harder...

Algebraic geometry codes: parameters

Take $\mathcal{P}=\left\{P_{1}, \ldots, P_{n},\right\} \subset \mathcal{X}\left(\mathbb{F}_{q}\right)$ and $G \in \operatorname{Div} \mathcal{X}$ s.t. $\operatorname{Supp} G \cap \mathcal{P}=\varnothing$.

$$
C(\mathcal{X}, \mathcal{P}, G)=\left\{\left(f\left(P_{1}\right), \ldots, f\left(P_{n}\right)\right) \in \mathbb{F}_{q}^{n} \mid f \in L(G)\right\}
$$

If $\max _{f \in L(G) \backslash\{0\}} \#(\mathcal{Z}(f) \cap \mathcal{P}) \leq b<n$, then $C(\mathcal{X}, \mathcal{P}, G)$ has parameters $[n, \ell(G), \geq n-b]$.
If \mathcal{X} is a (smooth projective) curve of genus g, then $G=\sum n_{i} P_{i}$ with $\operatorname{deg} G=\sum n_{i} \operatorname{deg} P_{i}$.

Hasse-Weil theorem

$$
n \leq \mathcal{X}\left(\mathbb{F}_{q}\right) \leq q+1+2 g \sqrt{q} .
$$

For every $f \in L(G), \# \mathcal{Z}(f) \leq \operatorname{deg} G$.

Riemann-Roch theorem on curves

$$
\begin{array}{r}
\ell(G)-\ell\left(K_{\mathcal{X}}-G\right)=\operatorname{deg} G-g+1 . \\
\quad=0 \text { if } \operatorname{deg} G>2 g-2 .
\end{array}
$$

Canonical divisor of \mathcal{X}

If \mathcal{X} is a surface, $\mathcal{Z}(f)$ is a (possibly reducible) curve on \mathcal{X}. Computing $\# \mathcal{Z}(f) \cap \mathcal{P}$ is harder...

Algebraic geometry codes: parameters

Take $\mathcal{P}=\left\{P_{1}, \ldots, P_{n},\right\} \subset \mathcal{X}\left(\mathbb{F}_{q}\right)$ and $G \in \operatorname{Div} \mathcal{X}$ s.t. $\operatorname{Supp} G \cap \mathcal{P}=\varnothing$.

$$
C(\mathcal{X}, \mathcal{P}, G)=\left\{\left(f\left(P_{1}\right), \ldots, f\left(P_{n}\right)\right) \in \mathbb{F}_{q}^{n} \mid f \in L(G)\right\}
$$

If $\max _{f \in L(G) \backslash\{0\}} \#(\mathcal{Z}(f) \cap \mathcal{P}) \leq b<n$, then $C(\mathcal{X}, \mathcal{P}, G)$ has parameters $[n, \ell(G), \geq n-b]$.
If \mathcal{X} is a (smooth projective) curve of genus g, then $G=\sum n_{i} P_{i}$ with $\operatorname{deg} G=\sum n_{i} \operatorname{deg} P_{i}$.

Hasse-Weil theorem

$$
n \leq \mathcal{X}\left(\mathbb{F}_{q}\right) \leq q+1+2 g \sqrt{q} .
$$

For every $f \in L(G), \# \mathcal{Z}(f) \leq \operatorname{deg} G$.

Riemann-Roch theorem on curves

$$
\begin{array}{r}
\ell(G)-\ell\left(K_{\mathcal{X}}-G\right)=\operatorname{deg} G-g+1 . \\
\quad=0 \text { if } \operatorname{deg} G>2 g-2 .
\end{array}
$$

Canonical divisor of \mathcal{X}

If \mathcal{X} is a surface, $\mathcal{Z}(f)$ is a (possibly reducible) curve on \mathcal{X}. Computing $\# \mathcal{Z}(f) \cap \mathcal{P}$ is harder...

Algebraic geometry codes: parameters

Take $\mathcal{P}=\left\{P_{1}, \ldots, P_{n},\right\} \subset \mathcal{X}\left(\mathbb{F}_{q}\right)$ and $G \in \operatorname{Div} \mathcal{X}$ s.t. $\operatorname{Supp} G \cap \mathcal{P}=\varnothing$.

$$
C(\mathcal{X}, \mathcal{P}, G)=\left\{\left(f\left(P_{1}\right), \ldots, f\left(P_{n}\right)\right) \in \mathbb{F}_{q}^{n} \mid f \in L(G)\right\}
$$

If $\max _{f \in L(G) \backslash\{0\}} \#(\mathcal{Z}(f) \cap \mathcal{P}) \leq b<n$, then $C(\mathcal{X}, \mathcal{P}, G)$ has parameters $[n, \ell(G), \geq n-b]$.
If \mathcal{X} is a (smooth projective) curve of genus g, then $G=\sum n_{i} P_{i}$ with $\operatorname{deg} G=\sum n_{i} \operatorname{deg} P_{i}$.

Hasse-Weil theorem

$$
n \leq \mathcal{X}\left(\mathbb{F}_{q}\right) \leq q+1+2 g \sqrt{q} .
$$

For every $f \in L(G), \# \mathcal{Z}(f) \leq \operatorname{deg} G$.

Riemann-Roch theorem on curves

$$
\begin{array}{r}
\ell(G)-\ell\left(K_{\mathcal{X}}-G\right)=\operatorname{deg} G-g+1 . \\
=0 \text { if } \operatorname{deg} G>2 g-2 .
\end{array}
$$

Canonical divisor of \mathcal{X}

If \mathcal{X} is a surface, $\mathcal{Z}(f)$ is a (possibly reducible) curve on \mathcal{X}. Computing $\# \mathcal{Z}(f) \cap \mathcal{P}$ is harder...

Very first example of AG codes from higher-dimensional varieties: Reed-Muller codes

Definition: Reed-Muller code

Let $N \geq 1$ and $r \geq 0$. We define the Reed-Muller code of order r by

$$
\operatorname{RM}(N, r)=\left\{(f(\boldsymbol{x}))_{\boldsymbol{x} \in \mathbb{F}_{q}^{N}} \mid f \in \mathbb{F}_{q}\left[X_{1}, \ldots, X_{N}\right]_{\leq r}\right\} .
$$

For $r \leq q, \operatorname{dim} \mathrm{RM}(N, r)=\operatorname{dim} \mathbb{F}_{q}\left[X_{1}, \ldots, X_{N}\right]_{\leq r}$ and the minimum distance $d=q^{N}-r q^{N-1}$ is reached by product of linear factors (highly reducible sections).

Very first example of AG codes from higher-dimensional varieties: Reed-Muller codes

Definition: Reed-Muller code

Let $N \geq 1$ and $r \geq 0$. We define the Reed-Muller code of order r by

$$
\operatorname{RM}(N, r)=\left\{(f(\boldsymbol{x}))_{\boldsymbol{x} \in \mathbb{F}_{q}^{N}} \mid f \in \mathbb{F}_{q}\left[X_{1}, \ldots, X_{N}\right]_{\leq r}\right\} .
$$

For $r \leq q, \operatorname{dim} \mathrm{RM}(N, r)=\operatorname{dim} \mathbb{F}_{q}\left[X_{1}, \ldots, X_{N}\right]_{\leq r}$ and the minimum distance $d=q^{N}-r q^{N-1}$ is reached by product of linear factors (highly reducible sections).

Why is it an AG code?

Consider $\mathcal{X}=\mathbb{P}^{N}$ and $\mathcal{P}=\left\{\left(1, x_{1}, \ldots, x_{N}\right) \in \mathbb{P}^{N}\left(\mathbb{F}_{q}\right) \mid x_{i} \in \mathbb{F}_{q}\right\}=\mathbb{A}^{N}\left(\mathbb{F}_{q}\right) \simeq\left(\mathbb{F}_{q}\right)^{N}$.
Let H be the hyperplane of \mathbb{P}^{N} defined by $X_{0}=0$. Then, for any integer $r \geq 0$

$$
L(r H)=\frac{1}{X_{0}^{r}} \cdot \mathbb{F}_{q}\left[X_{0}, \ldots, X_{N}\right]_{=r}^{\mathrm{hom}} .
$$

Then $\operatorname{RM}(N, r)=C\left(\mathbb{P}^{N}, \mathcal{P}, r H\right)$.

(Non-exhaustive) Bibliography about AG codes from surfaces

- 1954: Reed-Muller codes
- 1986: Projective Reed-Muller (Lachaud)
- 1991: Restriction of RM Codes to projective algebraic varieties (Aubry)
- 1992: Quadric surfaces (Aubry)
- 2001: General study by Hansen
- 2001: Restrictions of RM codes when \mathcal{P} is a complete intersection (Duursma, Rentería, Tapia-Recillas) Parameters when \mathcal{P} is in linearly general position by Ballico and Fontanari (2006)
- 2002: Toric varieties (Hansen)

(Non-exhaustive) Bibliography about AG codes from surfaces

- 1954: Reed-Muller codes
- 1986: Projective Reed-Muller (Lachaud)

Parameters studied by Sorensen (1991)

- 1991: Restriction of RM Codes to projective algebraic varieties (Aubry)
- 1992: Quadric surfaces (Aubry)
- 2001: General study by Hansen
- 2001: Restrictions of RM codes when \mathcal{P} is a complete intersection (Duursma, Rentería, Tapia-Recillas) Parameters when \mathcal{P} is in linearly general position by Ballico and Fontanari (2006)

- 2005: Hermitian surface (Edoukou)

Surfaces

- 2007: Exploring surfaces with small Picard rank (Zarzar)
- 2018: rk Pic $\mathcal{X}=1$ or sectional genus $=0$ (Little, Schenck)
- 2020: Del Pezzo surfaces with Picard rank one (Blache, Couvreur, Hallouin, Madore, N., Rambaud, Randriam)
- 2021: Abelian surfaces (Aubry, Berardini, Herbaut, Perret)

Embedded case

Definition: Restriction of a code

Let $C \subseteq \mathbb{F}_{q}^{n}$. Take $I \subset\{1, \ldots, n\}$. The restriction of C to I is $p_{I}(C)$ where $p_{I}: \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}^{\# I}$ is defined by $p_{I}\left(c_{1}, \ldots, c_{n}\right)=\left(c_{i}\right)_{i \in I}$.

- If $C=C(\mathcal{X}, \mathcal{P}, G)$ and $\mathcal{P}^{\prime} \subset \mathcal{P}$, then $C^{\prime}=C\left(\mathcal{X}, \mathcal{P}^{\prime}, G\right)$ is a restriction of C.
- If $\mathcal{Y} \subset \mathcal{X}$, we can restrict C to $\mathcal{Y}: C_{\mid \mathcal{Y}}=C(\mathcal{Y}, \mathcal{P} \cap \mathcal{Y}, G \cap \mathcal{Y}) \longleftarrow$ divisor on \mathcal{Y}

Embedded case

Definition: Restriction of a code

Let $C \subseteq \mathbb{F}_{q}^{n}$. Take $I \subset\{1, \ldots, n\}$. The restriction of C to I is $p_{I}(C)$ where $p_{I}: \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}^{\# I}$ is defined by $p_{I}\left(c_{1}, \ldots, c_{n}\right)=\left(c_{i}\right)_{i \in I}$. (Puncturing outside of I.)

- If $C=C(\mathcal{X}, \mathcal{P}, G)$ and $\mathcal{P}^{\prime} \subset \mathcal{P}$, then $C^{\prime}=C\left(\mathcal{X}, \mathcal{P}^{\prime}, G\right)$ is a restriction of C.
- If $\mathcal{Y} \subset \mathcal{X}$, we can restrict C to $\mathcal{Y}: C_{\mid \mathcal{Y}}=C(\mathcal{Y}, \mathcal{P} \cap \mathcal{Y}, G \cap \mathcal{Y}) \longleftarrow$ divisor on \mathcal{Y}

Assume that $\mathcal{X} \subset \mathbb{P}^{N}$ for some $N \geq 2$. Let H be an hyperplane of \mathbb{P}^{N} (say $X_{0}=0$ again).
Take $\mathcal{P} \subseteq\left(\mathbb{A}^{N} \cap \mathcal{X}\right)\left(\mathbb{F}_{q}\right)$. For $r \geq 0$, consider the restriction of $\operatorname{RM}(N, r)$ to \mathcal{P}
hyperplane section $H \cap \mathcal{X}$

$$
C\left(\mathbb{P}^{N}, \mathcal{P}, r H\right)=\left\{(f(P))_{P \in \mathcal{P}} \mid f \in L(r H)\right\} \simeq C(\mathcal{X}, \mathcal{P}, r h)
$$

Embedded case

Definition: Restriction of a code

Let $C \subseteq \mathbb{F}_{q}^{n}$. Take $I \subset\{1, \ldots, n\}$. The restriction of C to I is $p_{I}(C)$ where $p_{I}: \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}^{\# I}$ is defined by $p_{I}\left(c_{1}, \ldots, c_{n}\right)=\left(c_{i}\right)_{i \in I}$.

- If $C=C(\mathcal{X}, \mathcal{P}, G)$ and $\mathcal{P}^{\prime} \subset \mathcal{P}$, then $C^{\prime}=C\left(\mathcal{X}, \mathcal{P}^{\prime}, G\right)$ is a restriction of C.
- If $\mathcal{Y} \subset \mathcal{X}$, we can restrict C to $\mathcal{Y}: C \mid \mathcal{Y}=C(\mathcal{Y}, \mathcal{P} \cap \mathcal{Y}, G \cap \mathcal{Y}) \longleftarrow$ divisor on \mathcal{Y}

Assume that $\mathcal{X} \subset \mathbb{P}^{N}$ for some $N \geq 2$. Let H be an hyperplane of \mathbb{P}^{N} (say $X_{0}=0$ again).
Take $\mathcal{P} \subseteq\left(\mathbb{A}^{N} \cap \mathcal{X}\right)\left(\mathbb{F}_{q}\right)$. For $r \geq 0$, consider the restriction of $\operatorname{RM}(N, r)$ to \mathcal{P}
hyperplane section $H \cap \mathcal{X}$

$$
C\left(\mathbb{P}^{N}, \mathcal{P}, r H\right)=\left\{(f(P))_{P \in \mathcal{P}} \mid f \in L(r H)\right\} \simeq C(\mathcal{X}, \mathcal{P}, r h)
$$

To handle the parameters, we can use properties of the 0 -dimensional algebraic set \mathcal{P}.

$$
0 \rightarrow \mathcal{I}_{\mathcal{P}} \rightarrow \mathcal{O}_{\mathbb{P}^{N}} \rightarrow \mathcal{O}_{\mathcal{P}} \rightarrow 0 \text { measures how the points in } \mathcal{P} \text { fail to }
$$ give independent relations in degree r

$$
0 \rightarrow H^{0}\left(\mathcal{I}_{\mathcal{P}}(r)\right) \rightarrow H^{0}\left(\mathcal{O}_{\mathbb{P}^{N}}(r)\right) \rightarrow H^{0}\left(\mathcal{O}_{\mathcal{P}}(r)\right) \rightarrow H^{1}\left(\mathcal{I}_{\mathcal{P}}(r)\right) \rightarrow 0
$$

Embedded case

Definition: Restriction of a code

Let $C \subseteq \mathbb{F}_{q}^{n}$. Take $I \subset\{1, \ldots, n\}$. The restriction of C to I is $p_{I}(C)$ where $p_{I}: \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}^{\# I}$ is defined by $p_{I}\left(c_{1}, \ldots, c_{n}\right)=\left(c_{i}\right)_{i \in I}$. (Puncturing outside of I.)

- If $C=C(\mathcal{X}, \mathcal{P}, G)$ and $\mathcal{P}^{\prime} \subset \mathcal{P}$, then $C^{\prime}=C\left(\mathcal{X}, \mathcal{P}^{\prime}, G\right)$ is a restriction of C.
- If $\mathcal{Y} \subset \mathcal{X}$, we can restrict C to $\mathcal{Y}: C_{\mid \mathcal{Y}}=C(\mathcal{Y}, \mathcal{P} \cap \mathcal{Y}, G \cap \mathcal{Y}) \longleftarrow$ divisor on \mathcal{Y}

Assume that $\mathcal{X} \subset \mathbb{P}^{N}$ for some $N \geq 2$. Let H be an hyperplane of \mathbb{P}^{N} (say $X_{0}=0$ again).
Take $\mathcal{P} \subseteq\left(\mathbb{A}^{N} \cap \mathcal{X}\right)\left(\mathbb{F}_{q}\right)$. For $r \geq \overline{0}$, consider the restriction of $\operatorname{RM}(N, r)$ to \mathcal{P}
hyperplane section $H \cap \mathcal{X}$

$$
C\left(\mathbb{P}^{N}, \mathcal{P}, r H\right)=\left\{(f(P))_{P \in \mathcal{P}} \mid f \in L(r H)\right\} \simeq C(\mathcal{X}, \mathcal{P}, r h)
$$

To handle the parameters, we can use properties of the 0 -dimensional algebraic set \mathcal{P}.

$$
0 \rightarrow \mathcal{I}_{\mathcal{P}} \rightarrow \mathcal{O}_{\mathbb{P}^{N}} \rightarrow \mathcal{O}_{\mathcal{P}} \rightarrow 0 \text { measures how the points in } \mathcal{P} \text { fail to }
$$ give independent relations in degree r

$$
0 \rightarrow H^{0}\left(\mathcal{I}_{\mathcal{P}}(r)\right) \rightarrow H^{0}\left(\mathcal{O}_{\mathbb{P}^{N}}(r)\right) \rightarrow H^{0}\left(\mathcal{O}_{\mathcal{P}}(r)\right) \rightarrow H^{1}\left(\mathcal{I}_{\mathcal{P}}(r)\right) \rightarrow 0
$$

\leftrightarrow Explicit generating family.
Cannot explore all the AG codes on $\mathcal{X} ._{6 / 21}$

Table of Contents

(1) Algebraic geometry codes
(2) Parameters of AG codes from surfaces
(3) Effectiveness?
(4) Local properties of AG codes from surfaces

An important tool on surfaces

Theorem: Intersection product on a surface

There is a unique pairing $\operatorname{Div} \mathcal{X} \times \operatorname{Div} \mathcal{X} \rightarrow \mathbb{Z}$, denoted by $C \cdot D$ for any two divisors C, D, s.t.
(1) if C and D are nonsingular curves meeting transversally, then $C \cdot D=\#(C \cap D)$;
(2) it is symmetric: $C \cdot D=D \cdot C$;
(3) it is additive: $\left(C_{1}+C_{2}\right) \cdot D=C_{1} \cdot D+C_{2} \cdot D$;
(4) it depends only on the linear equivalence classes: if $C_{1} \sim C_{2}$, then $C_{1} \cdot D=C_{2} \cdot D$.

We denote by $C^{2}=C \cdot C$ the self-intersection of $C \in \operatorname{Div} \mathcal{X}$.

An important tool on surfaces

Theorem: Intersection product on a surface

There is a unique pairing $\operatorname{Div} \mathcal{X} \times \operatorname{Div} \mathcal{X} \rightarrow \mathbb{Z}$, denoted by $C \cdot D$ for any two divisors C, D, s.t.
(1) if C and D are nonsingular curves meeting transversally, then $C \cdot D=\#(C \cap D)$;
(2) it is symmetric: $C \cdot D=D \cdot C$;
(3) it is additive: $\left(C_{1}+C_{2}\right) \cdot D=C_{1} \cdot D+C_{2} \cdot D$;
(4) it depends only on the linear equivalence classes: if $C_{1} \sim C_{2}$, then $C_{1} \cdot D=C_{2} \cdot D$.

We denote by $C^{2}=C \cdot C$ the self-intersection of $C \in \operatorname{Div} \mathcal{X}$.
Intersection product on $\mathcal{X}=\mathbb{P}^{2}$

Let L, L^{\prime} be 2 lines. Then $L \sim L^{\prime \prime}$ and $L^{2}=L^{\prime 2}=L \cdot L^{\prime}=1$.

An important tool on surfaces

Theorem: Intersection product on a surface

There is a unique pairing $\operatorname{Div} \mathcal{X} \times \operatorname{Div} \mathcal{X} \rightarrow \mathbb{Z}$, denoted by $C \cdot D$ for any two divisors C, D, s.t.
(1) if C and D are nonsingular curves meeting transversally, then $C \cdot D=\#(C \cap D)$;
(2) it is symmetric: $C \cdot D=D \cdot C$;
(3) it is additive: $\left(C_{1}+C_{2}\right) \cdot D=C_{1} \cdot D+C_{2} \cdot D$;
(4) it depends only on the linear equivalence classes: if $C_{1} \sim C_{2}$, then $C_{1} \cdot D=C_{2} \cdot D$.

We denote by $C^{2}=C \cdot C$ the self-intersection of $C \in \operatorname{Div} \mathcal{X}$.

Intersection product on $\mathcal{X}=\mathbb{P}^{2}$

Let L, L^{\prime} be 2 lines. Then $L \sim L^{\prime \prime}$ and $L^{2}=L^{\prime 2}=L \cdot L^{\prime}=1$. Let C be a conic. Then $L \cdot C=L^{\prime} \cdot C=2$. Moreover, $C \sim 2 L$.

An important tool on surfaces

Theorem: Intersection product on a surface

There is a unique pairing $\operatorname{Div} \mathcal{X} \times \operatorname{Div} \mathcal{X} \rightarrow \mathbb{Z}$, denoted by $C \cdot D$ for any two divisors C, D, s.t.
(1) if C and D are nonsingular curves meeting transversally, then $C \cdot D=\#(C \cap D)$;
(2) it is symmetric: $C \cdot D=D \cdot C$;
(3) it is additive: $\left(C_{1}+C_{2}\right) \cdot D=C_{1} \cdot D+C_{2} \cdot D$;
(4) it depends only on the linear equivalence classes: if $C_{1} \sim C_{2}$, then $C_{1} \cdot D=C_{2} \cdot D$.

We denote by $C^{2}=C \cdot C$ the self-intersection of $C \in \operatorname{Div} \mathcal{X}$.

Intersection product on $\mathcal{X}=\mathbb{P}^{2}$

Let L, L^{\prime} be 2 lines. Then $L \sim L^{\prime \prime}$ and $L^{2}=L^{\prime 2}=L \cdot L^{\prime}=1$.
Let C be a conic. Then $L \cdot C=L^{\prime} \cdot C=2$. Moreover, $C \sim 2 L$. Let C^{\prime} another conic. Then $C^{\prime} \sim C$. And $C^{2}=C \cdot C^{\prime}=4$.

An important tool on surfaces

Theorem: Intersection product on a surface

There is a unique pairing $\operatorname{Div} \mathcal{X} \times \operatorname{Div} \mathcal{X} \rightarrow \mathbb{Z}$, denoted by $C \cdot D$ for any two divisors C, D, s.t.
(1) if C and D are nonsingular curves meeting transversally, then $C \cdot D=\#(C \cap D)$;
(2) it is symmetric: $C \cdot D=D \cdot C$;
(3) it is additive: $\left(C_{1}+C_{2}\right) \cdot D=C_{1} \cdot D+C_{2} \cdot D$;
(4) it depends only on the linear equivalence classes: if $C_{1} \sim C_{2}$, then $C_{1} \cdot D=C_{2} \cdot D$.

We denote by $C^{2}=C \cdot C$ the self-intersection of $C \in \operatorname{Div} \mathcal{X}$.

Intersection product on $\mathcal{X}=\mathbb{P}^{2}$

Let L, L^{\prime} be 2 lines. Then $L \sim L^{\prime \prime}$ and $L^{2}=L^{\prime 2}=L \cdot L^{\prime}=1$.
Let C be a conic. Then $L \cdot C=L^{\prime} \cdot C=2$. Moreover, $C \sim 2 L$.
Let C^{\prime} another conic. Then $C^{\prime} \sim C$. And $C^{2}=C \cdot C^{\prime}=4$.
For any curve D of degree $d, D \sim d L$.
Two curves are linearly equivalent iff they have the same degree.
Then $D \cdot D^{\prime}=d L \cdot d^{\prime} L=d d^{\prime}$. (Bézout's theorem)

Dimension of AG codes from surfaces

Denote by $K_{\mathcal{X}}$ a canonical divisor of \mathcal{X}.

Riemann-Roch theorem on surfaces

If $G \in \operatorname{Div} \mathcal{X}$, then superabundance

Arithmetic genus of \mathcal{X} :

$h^{1}(\mathcal{X}, \mathcal{L}(G))$
$\downarrow(\mathcal{L}(G))=\ell(G)-s(G)+\ell\left(K_{\mathcal{X}}-G\right)=\frac{1}{2} G \cdot\left(G-K_{\mathcal{X}}\right)+1+p_{a}(\mathcal{X})$.
$\left.h^{0}(\mathcal{X}, \mathcal{L}(G)) \quad p_{a}\right)$
$h^{2}(\mathcal{X}, \mathcal{L}(G))$

+ Serre's duality

Dimension of AG codes from surfaces

Denote by $K_{\mathcal{X}}$ a canonical divisor of \mathcal{X}.

Riemann-Roch theorem on surfaces

If $G \in \operatorname{Div} \mathcal{X}$, then superabundance

Arithmetic genus of \mathcal{X} :

Definition: ample divisor

(Nakai-Moishezon criterion)
A divisor $A \in \operatorname{Div} \mathcal{X}$ is said to be ample if $A^{2}>0$ and for every irreducible curve, $C \cdot A>0$.

Dimension of AG codes from surfaces

Denote by $K_{\mathcal{X}}$ a canonical divisor of \mathcal{X}.

Riemann-Roch theorem on surfaces

If $G \in \operatorname{Div} \mathcal{X}$, then superabundance

Arithmetic genus of \mathcal{X} :

\[

\]

Definition: ample divisor

(Nakai-Moishezon criterion)
A divisor $A \in \operatorname{Div} \mathcal{X}$ is said to be ample if $A^{2}>0$ and for every irreducible curve, $C \cdot A>0$.

Proposition

If there exists an ample divisor A such that $K_{\mathcal{X}} \cdot A<G \cdot A$, then $\ell\left(K_{\mathcal{X}}-G\right)=0$.
$\Rightarrow \ell(G) \geq \frac{1}{2} G \cdot\left(G-K_{\mathcal{X}}\right)+1+p_{a}(\mathcal{X})$.

How to get a lower bound for the minimum distance?
Assume that $\mathcal{P}=\mathcal{X}\left(\mathbb{F}_{q}\right)$.
For any $f \in L(G)$, we decompose its zero locus $\mathcal{Z}(f)=\sum_{i=1}^{s_{f}} n_{i} \mathcal{Y}_{i}$ with $n_{i}>0$.
Then the minimum distance satisfies

$$
d \geq n-\max _{f \in L(G) \backslash\{0\}} \sum \# \mathcal{Y}_{i}\left(\mathbb{F}_{q}\right) .
$$

To bound the minimum distance from below, you need an upper bound for

- the number of irreducible components s_{f}, e.g. Berardini, N. (2022) for $\mathcal{X} \subset \mathbb{P}^{3}$
- the number of \mathbb{F}_{q}-rational points of the curves \mathcal{Y}_{i}.

Adjunction formula

If \mathcal{C} is a curve of arithmetic genus π on the surface \mathcal{X}, then

$$
2 \pi-2=\mathcal{C} \cdot\left(\mathcal{C}+K_{\mathcal{X}}\right)
$$

A generic lower bound for the minimum distance: Seshadri constant

Let $\mathcal{P}=\left\{P_{1} \ldots, P_{n}\right\} \subset \mathcal{X}\left(\mathbb{F}_{q}\right)$ and $G \in \operatorname{Div} \mathcal{X}$ an ample divisor.

Definition: Seshadri constant

The Seshadri constant of G at \mathcal{P} is $\varepsilon(G, \mathcal{P})=\inf \left\{\left.\frac{G \cdot C}{\sum_{i} m_{P_{i}} C} \right\rvert\, C \subset \mathcal{X}\right.$ curves s.t. $\left.C \cap \mathcal{P} \neq \varnothing\right\}$. multiplicity of the curve C at P_{i}

Proposition

(1) If $\varepsilon(G, \mathcal{P}) \geq \varepsilon \in \mathbb{N}$, then the minimum distance of $C(\mathcal{X}, \mathcal{P}, G)$ satisfies $d \geq n-\frac{G^{2}}{\varepsilon}$.
(2) If there exists $\zeta \in \mathbb{N}$ s.t. $\mathcal{L}(G)^{\otimes \zeta} \otimes \mathcal{I}_{\mathcal{P}}$ is generated by global sections, then $d \geq n-\zeta G^{2}$.

Hard to compute in practice!

Lower bound for the minimum distance: \mathcal{P}-covering curves

Proposition

Fix some curves C_{1}, \ldots, C_{r} on \mathcal{X} s.t.

- $\mathcal{P} \subseteq \bigcup_{i} \mathcal{C}_{i}\left(\mathbb{F}_{q}\right)$,
- $\#\left(\mathcal{C}_{i}\left(\mathbb{F}_{q}\right) \cap \mathcal{P}\right) \leq N$,
- $G \cdot \mathcal{C}_{i} \geq 0$.

Set $\ell=\max _{f \in L(G)} \#\left\{i \mid \mathcal{C}_{i} \subseteq \mathcal{Z}(f)\right\}$.
Then the minimum distance of $C(\mathcal{X}, \mathcal{P}, G)$ satisfies $d \geq n-\ell N-\sum_{i=1}^{r} G \cdot \mathcal{C}_{i}$.

Lower bound for the minimum distance: \mathcal{P}-covering curves

Proposition

Fix some curves C_{1}, \ldots, C_{r} on \mathcal{X} s.t.

- $\mathcal{P} \subseteq \bigcup_{i} \mathcal{C}_{i}\left(\mathbb{F}_{q}\right)$,
- $\#\left(\mathcal{C}_{i}\left(\mathbb{F}_{q}\right) \cap \mathcal{P}\right) \leq N$,
- $G \cdot \mathcal{C}_{i} \geq 0$.

Set $\ell=\max _{f \in L(G)} \#\left\{i \mid \mathcal{C}_{i} \subseteq \mathcal{Z}(f)\right\}$.
Then the minimum distance of $C(\mathcal{X}, \mathcal{P}, G)$ satisfies $d \geq n-\ell N-\sum_{i=1}^{r} G \cdot \mathcal{C}_{i}$. If $G \cdot \mathcal{C}_{i} \leq \eta \leq N$, then $d \geq n-\ell N-(r-\ell) \eta$.

Lower bound for the minimum distance: \mathcal{P}-covering curves

Proposition

Fix some curves C_{1}, \ldots, C_{r} on \mathcal{X} s.t.

- $\mathcal{P} \subseteq \bigcup_{i} \mathcal{C}_{i}\left(\mathbb{F}_{q}\right)$,
- $\#\left(\mathcal{C}_{i}\left(\mathbb{F}_{q}\right) \cap \mathcal{P}\right) \leq N$,
- $G \cdot \mathcal{C}_{i} \geq 0$.

Set $\ell=\max _{f \in L(G)} \#\left\{i \mid \mathcal{C}_{i} \subseteq \mathcal{Z}(f)\right\}$.
Then the minimum distance of $C(\mathcal{X}, \mathcal{P}, G)$ satisfies $d \geq n-\ell N-\sum_{i=1}^{r} G \cdot \mathcal{C}_{i}$.
If $G \cdot \mathcal{C}_{i} \leq \eta<N$. If $G \cdot \mathcal{C}_{i} \leq \eta \leq N$, then $d \geq n-\ell N-(r-\ell) \eta$.
Moreover, if there exists a nef divisor H s.t. $H \cdot \mathcal{C}_{i}>0$ for every i, then $\ell \leq \frac{G \cdot H}{\min _{i}\left\{\mathcal{C}_{i} \cdot H\right\}}$.

$$
H \cdot \mathcal{C} \geq 0 \text { for every curve } \mathcal{C}
$$

Application of the \mathcal{P}-covering curves method to $\mathcal{X}=\mathbb{P}^{1} \times \mathbb{P}^{1}$

Proposition

Hansen (2001)

$\mathcal{P} \subseteq \bigcup_{i=1}^{r} \mathcal{C}_{i}\left(\mathbb{F}_{q}\right), \#\left(\mathcal{C}_{i}\left(\mathbb{F}_{q}\right) \cap \mathcal{P}\right) \leq N$ and $0 \leq G \cdot \mathcal{C}_{i} \leq \eta \leq N$.
$\ell=\max _{f \in L(G)} \#\left\{i \mid \mathcal{C}_{i} \subseteq(f=0)\right\} \leq \frac{G \cdot H}{\min _{i}\left\{\mathcal{C}_{i} \cdot H\right\}}$ if there exists a nef divisor H s.t. $H \cdot \mathcal{C}_{i}>0$.

$$
d \geq n-\ell N-(r-\ell) \eta
$$

Application of the \mathcal{P}-covering curves method to $\mathcal{X}=\mathbb{P}^{1} \times \mathbb{P}^{1}$

Proposition

Hansen (2001)

$\mathcal{P} \subseteq \bigcup_{i=1}^{r} \mathcal{C}_{i}\left(\mathbb{F}_{q}\right), \#\left(\mathcal{C}_{i}\left(\mathbb{F}_{q}\right) \cap \mathcal{P}\right) \leq N$ and $0 \leq G \cdot \mathcal{C}_{i} \leq \eta \leq N$.
$\ell=\max _{f \in L(G)} \#\left\{i \mid \mathcal{C}_{i} \subseteq(f=0)\right\} \leq \frac{G \cdot H}{\min _{i}\left\{\mathcal{C}_{i} \cdot H\right\}}$ if there exists a nef divisor H s.t. $H \cdot \mathcal{C}_{i}>0$.

$$
d \geq n-\ell N-(r-\ell) \eta
$$

On $\mathcal{X}=\mathbb{P}^{1} \times \mathbb{P}^{1}$

Pic $\mathcal{X}=\mathbb{Z}[H] \oplus \mathbb{Z}[V]$ with $H^{2}=V^{2}=0$ and $H \cdot V=1$. Take $G=d_{1} H+d_{2} V$. We have $L(G) \simeq\left\{\right.$ bihomogeneous $f \in \mathbb{F}_{q}\left[X_{0}, X_{1}, Y_{0}, Y_{1}\right] \mid \operatorname{deg}_{X}(f)=d_{1}$ and $\left.\operatorname{deg}_{Y}(f)=d_{2}\right\}$.

Application of the \mathcal{P}-covering curves method to $\mathcal{X}=\mathbb{P}^{1} \times \mathbb{P}^{1}$

Proposition

Hansen (2001)
$\mathcal{P} \subseteq \bigcup_{i=1}^{r} \mathcal{C}_{i}\left(\mathbb{F}_{q}\right), \#\left(\mathcal{C}_{i}\left(\mathbb{F}_{q}\right) \cap \mathcal{P}\right) \leq N$ and $0 \leq G \cdot \mathcal{C}_{i} \leq \eta \leq N$.
$\ell=\max _{f \in L(G)} \#\left\{i \mid \mathcal{C}_{i} \subseteq(f=0)\right\} \leq \frac{G \cdot H}{\min _{i}\left\{\mathcal{C}_{i} \cdot H\right\}}$ if there exists a nef divisor H s.t. $H \cdot \mathcal{C}_{i}>0$.

$$
d \geq n-\ell N-(r-\ell) \eta
$$

On $\mathcal{X}=\mathbb{P}^{1} \times \mathbb{P}^{1}$

Pic $\mathcal{X}=\mathbb{Z}[H] \oplus \mathbb{Z}[V]$ with $H^{2}=V^{2}=0$ and $H \cdot V=1$. Take $G=d_{1} H+d_{2} V$. We have

$$
L(G) \simeq\left\{\text { bihomogeneous } f \in \mathbb{F}_{q}\left[X_{0}, X_{1}, Y_{0}, Y_{1}\right] \mid \operatorname{deg}_{X}(f)=d_{1} \text { and } \operatorname{deg}_{Y}(f)=d_{2}\right\} .
$$

Choose $\mathcal{P}=\mathcal{X}\left(\mathbb{F}_{q}\right)$ and $r=q+1$ vertical lines $\mathcal{C}_{i} \sim V \Rightarrow N=q+1$.

Application of the \mathcal{P}-covering curves method to $\mathcal{X}=\mathbb{P}^{1} \times \mathbb{P}^{1}$

Proposition

Hansen (2001)
$\mathcal{P} \subseteq \bigcup_{i=1}^{r} \mathcal{C}_{i}\left(\mathbb{F}_{q}\right), \#\left(\mathcal{C}_{i}\left(\mathbb{F}_{q}\right) \cap \mathcal{P}\right) \leq N$ and $0 \leq G \cdot \mathcal{C}_{i} \leq \eta \leq N$.
$\ell=\max _{f \in L(G)} \#\left\{i \mid \mathcal{C}_{i} \subseteq(f=0)\right\} \leq \frac{G \cdot H}{\min _{i}\left\{\mathcal{C}_{i} \cdot H\right\}}$ if there exists a nef divisor H s.t. $H \cdot \mathcal{C}_{i}>0$.

$$
d \geq n-\ell N-(r-\ell) \eta
$$

On $\mathcal{X}=\mathbb{P}^{1} \times \mathbb{P}^{1}$
Pic $\mathcal{X}=\mathbb{Z}[H] \oplus \mathbb{Z}[V]$ with $H^{2}=V^{2}=0$ and $H \cdot V=1$. Take $G=d_{1} H+d_{2} V$. We have

$$
L(G) \simeq\left\{\text { bihomogeneous } f \in \mathbb{F}_{q}\left[X_{0}, X_{1}, Y_{0}, Y_{1}\right] \mid \operatorname{deg}_{X}(f)=d_{1} \text { and } \operatorname{deg}_{Y}(f)=d_{2}\right\} .
$$

Choose $\mathcal{P}=\mathcal{X}\left(\mathbb{F}_{q}\right)$ and $r=q+1$ vertical lines $\mathcal{C}_{i} \sim V \Rightarrow N=q+1$.
Since $H \cdot \mathcal{C}_{i}=H \cdot V=1$, we have $\ell \leq G \cdot H=d_{2}$.

$$
\begin{array}{rlrl}
n=(q+1)^{2}, & k & =\left(d_{1}+1\right)\left(d_{2}+1\right) \\
d \geq n-d_{2}(q+1)-\left(q+1-d_{2}\right) d_{1} & =\left(q+1-d_{1}\right)\left(q+1-d_{2}\right)
\end{array}
$$

Lower bound for the minimum distance: \mathcal{P}-interpolating linear system

Definition: Linear system

- A linear system is a family of linearly equivalent effective divisors.
- The base locus of a linear system Γ is defined as $\bigcap_{D \in \Gamma} \operatorname{Supp} D$.
- For any linear system $\Gamma \subset \operatorname{Div} \mathcal{X}$ and $\mathcal{Y} \subset \mathcal{X}$ a subvariety, we denote by $\Gamma-\mathcal{Y}$ the maximal linear subsystem of Γ of elements whose base locus contains \mathcal{Y}.

Lower bound for the minimum distance: \mathcal{P}-interpolating linear system

Definition: Linear system

- A linear system is a family of linearly equivalent effective divisors.
- The base locus of a linear system Γ is defined as $\bigcap_{D \in \Gamma} \operatorname{Supp} D$.
- For any linear system $\Gamma \subset \operatorname{Div} \mathcal{X}$ and $\mathcal{Y} \subset \mathcal{X}$ a subvariety, we denote by $\Gamma-\mathcal{Y}$ the maximal linear subsystem of Γ of elements whose base locus contains \mathcal{Y}.

Definition: \mathcal{P}-interpolating linear system
Couvreur, Perret, Lebacque (2020)
Given $\mathcal{P} \subseteq \mathcal{X}\left(\mathbb{F}_{q}\right)$, a linear system Γ of divisors on \mathcal{X} is said to be \mathcal{P}-interpolating if (1) $\Gamma-\mathcal{P}$ is non empty;
(2) the base locus of $\Gamma-\mathcal{P}$ has dimension 0 .

Lower bound for the minimum distance: \mathcal{P}-interpolating linear system

Definition: Linear system

- A linear system is a family of linearly equivalent effective divisors.
- The base locus of a linear system Γ is defined as $\bigcap_{D \in \Gamma} \operatorname{Supp} D$.
- For any linear system $\Gamma \subset \operatorname{Div} \mathcal{X}$ and $\mathcal{Y} \subset \mathcal{X}$ a subvariety, we denote by $\Gamma-\mathcal{Y}$ the maximal linear subsystem of Γ of elements whose base locus contains \mathcal{Y}.

Definition: \mathcal{P}-interpolating linear system
Couvreur, Perret, Lebacque (2020)
Given $\mathcal{P} \subseteq \mathcal{X}\left(\mathbb{F}_{q}\right)$, a linear system Γ of divisors on \mathcal{X} is said to be \mathcal{P}-interpolating if
(1) $\Gamma-\mathcal{P}$ is non empty; (2) the base locus of $\Gamma-\mathcal{P}$ has dimension 0 .

Proposition

Couvreur, Perret, Lebacque (2020)

- The minimum distance d of $C(\mathcal{X}, \mathcal{P}, G)$ satisfies $d \geq n-\Gamma \cdot G$.
- If H is very ample, then the complete linear system $|(q+1) H|$ is \mathcal{P}-interpolating.

Comparison between \mathcal{P}-covering curves and \mathcal{P}-interpolating linear system

Definition	Curves C_{1}, \ldots, C_{r} on \mathcal{X} s.t. (1) $\mathcal{P} \subseteq \bigcup_{i} \mathcal{C}_{i}\left(\mathbb{F}_{q}\right)$; (2) $G \cdot \mathcal{C}_{i} \geq 0$. Set $\ell=\max _{f \in L(G)} \#\left\{i \mid \mathcal{C}_{i} \subseteq \mathcal{Z}(f)\right\}$.	Linear system Γ s.t. (1) $\Gamma-\mathcal{P}$ is non empty; (2) the base locus of $\Gamma-\mathcal{P}$ has dim. 0 .
Lower bound for d	$d \geq n-\sum_{i=1}^{r} G \cdot \mathcal{C}_{i}-\ell \max \# \mathcal{C}_{i}\left(\mathbb{F}_{q}\right)$	$d \geq n-G \cdot \Gamma$

Comparison between \mathcal{P}-covering curves and \mathcal{P}-interpolating linear system

Definition	Curves C_{1}, \ldots, C_{r} on \mathcal{X} s.t. (1) $\mathcal{P} \subseteq \bigcup_{i} \mathcal{C}_{i}\left(\mathbb{F}_{q}\right)$; (2) $G \cdot \mathcal{C}_{i} \geq 0$. Set $\ell=\max _{f \in L(G)} \#\left\{i \mid \mathcal{C}_{i} \subseteq \mathcal{Z}(f)\right\}$.	Linear system Γ s.t. (1) $\Gamma-\mathcal{P}$ is non empty; (2) the base locus of $\Gamma-\mathcal{P}$ has dim. 0 .
Lower bound for d	$d \geq n-\sum_{i=1}^{r} G \cdot \mathcal{C}_{i}-\ell \max \# \mathcal{C}_{i}\left(\mathbb{F}_{q}\right)$	$d \geq n-G \cdot \Gamma$
Relation	$\Gamma=\Gamma-\mathcal{P}=\left\{\sum_{i=1}^{r} \mathcal{C}_{i}\right\}$	$A=\sum n_{i} \mathcal{C}_{i} \in \Gamma$ with $n_{i} \geq 0$.
Similarities	(1) \Rightarrow (1)	$A \in \Gamma-\mathcal{P}$ (exists by (1) satisfies $\mathbb{1}$.
Differences	(2) $\Rightarrow \#(\Gamma-\mathcal{P}) \geq 2$.	

Comparison between \mathcal{P}-covering curves and \mathcal{P}-interpolating linear system

Definition	Curves C_{1}, \ldots, C_{r} on \mathcal{X} s.t. (1) $\mathcal{P} \subseteq \bigcup_{i} \mathcal{C}_{i}\left(\mathbb{F}_{q}\right)$; (2) $G \cdot \mathcal{C}_{i} \geq 0$. Set $\ell=\max _{f \in L(G)} \#\left\{i \mid \mathcal{C}_{i} \subseteq \mathcal{Z}(f)\right\}$.	Linear system Γ s.t. (1) $\Gamma-\mathcal{P}$ is non empty; (2) the base locus of $\Gamma-\mathcal{P}$ has dim. 0 .
Lower bound for d	$d \geq n-\sum_{i=1}^{r} G \cdot \mathcal{C}_{i}-\ell \max \# \mathcal{C}_{i}\left(\mathbb{F}_{q}\right)$	$d \geq n-G \cdot \Gamma$
Relation	$\Gamma=\Gamma-\mathcal{P}=\left\{\sum_{i=1}^{r} \mathcal{C}_{i}\right\}$	$A=\sum n_{i} \mathcal{C}_{i} \in \Gamma$ with $n_{i} \geq 0$.
Similarities	(1) \Rightarrow (1)	$A \in \Gamma-\mathcal{P}$ (exists by $\mathbf{0}$) satisfies $\mathbf{0}$.
Differences	(2) \Rightarrow (Γ - $\mathcal{P}) \geq 2$.	
Behaviour under morphisms	$\pi^{*}\left(\mathcal{C}_{i}\right)$ are \mathcal{P}^{\prime}-covering, Few control over the analogue of ℓ.	nd $\mathcal{P}^{\prime} \subseteq \pi^{-1}(\mathcal{P})$ $\pi^{*}(\Gamma)$ is \mathcal{P}^{\prime}-interpolating.

Paving the ground towards codes from towers of surfaces Couvreur, Lebacque, Perret (2020)

AG codes from curves are well-known for having better parameters than random codes asymptotically for q square and $q \geq 49$.

Ihara (1981), Tsfasman, Vlăduț, Zink (1982)

Paving the ground towards codes from towers of surfaces Couvreur, Lebacque, Perret (2020)

AG codes from curves are well-known for having better parameters than random codes asymptotically for q square and $q \geq 49$.

Ihara (1981), Tsfasman, Vlăduț, Zink (1982)
Constructions of asymptotically good codes are based on tower of curves:
(1) modular curves Ihara (1981), Tsfasman, Vlăduț, Zink (1982),
(2) recursive towers Garcia, Stichtenoth (1995)...,
(3) class field theory.

AG codes from curves are well-known for having better parameters than random codes asymptotically for q square and $q \geq 49$.

Constructions of asymptotically good codes are based on tower of curves:
(1) modular curves Ihara (1981), Tsfasman, Vlăduț, Zink (1982),
(2) recursive towers Garcia, Stichtenoth (1995)...,
(3) class field theory.

In the context of curves, the key is to control $\# \mathcal{X}\left(\mathbb{F}_{q}\right) / g(\mathcal{X})$.
Working with towers of surfaces, we may get longer codes.
But several invariants come into play (e.g. $K_{\mathcal{X}}^{2}$ and $\operatorname{deg} c_{2}(\mathcal{X})$ or $\chi\left(\mathcal{O}_{\mathcal{X}}\right)$).
\rightarrow Criterion for a surface to admit an infinite tower of étale covers where a finite set of points of the surface splits completely.

Table of Contents

(1) Algebraic geometry codes
(2) Parameters of AG codes from surfaces
(3) Effectiveness?
(4) Local properties of AG codes from surfaces

Actually using algebraic geometry codes

To use an AG code $C(\mathcal{X}, \mathcal{P}, G)$ for practical applications, we need to
(1) encode: basis of $L(G)+$ (fast) evaluation at points of \mathcal{P};
(2) decode

Actually using algebraic geometry codes

To use an AG code $C(\mathcal{X}, \mathcal{P}, G)$ for practical applications, we need to
(1) encode: basis of $L(G)+$ (fast) evaluation at points of \mathcal{P};

On curves, several algorithms to compute Riemann-Roch spaces :

- Arithmetic method (ideals in function fields) Hensel-Landberg (1902), Coated (1970), Davenport (1981), Hess (2001)..
- Geometric method (Brill-Noether's theory)

Goppa, Le Brigand-Risler (80's), Huang-lerardi (90's), Khuri-Makdisi (2007), Le
Gluher-Spaenlehauer (2018), Abelard-Couvreur-Lecerf (2020),...
Fast encoding on families of curves with structured \mathcal{P} e.g. Beelen, Rosenkilde, Solomatov (2020)
(2) decode

Actually using algebraic geometry codes

To use an AG code $C(\mathcal{X}, \mathcal{P}, G)$ for practical applications, we need to
(1) encode: basis of $L(G)+$ (fast) evaluation at points of \mathcal{P};

On curves, several algorithms to compute Riemann-Roch spaces :

- Arithmetic method (ideals in function fields) Hensel-Landberg (1902), Coated (1970), Davenport (1981), Hess (2001)...
- Geometric method (Brill-Noether's theory)

Goppa, Le Brigand-Risler (80's), Huang-lerardi (90's), Khuri-Makdisi (2007), Le
Gluher-Spaenlehauer (2018), Abelard-Couvreur-Lecerf (2020),...
Fast encoding on families of curves with structured \mathcal{P} e.g. Beelen, Rosenkilde, Solomatov (2020)
On surfaces: no generic method to compute Riemann-Roch spaces,
B families of varieties with explicit bases of Riemann-Roch spaces.
(2) decode

Actually using algebraic geometry codes

To use an AG code $C(\mathcal{X}, \mathcal{P}, G)$ for practical applications, we need to
(1) encode: basis of $L(G)+$ (fast) evaluation at points of \mathcal{P};

On curves, several algorithms to compute Riemann-Roch spaces :

- Arithmetic method (ideals in function fields) Hensel-Landberg (1902), Coated (1970), Davenport (1981), Hess (2001)...
- Geometric method (Brill-Noether's theory)

Goppa, Le Brigand-Risler (80's), Huang-lerardi (90's), Khuri-Makdisi (2007), Le Gluher-Spaenlehauer (2018), Abelard-Couvreur-Lecerf (2020),...
Fast encoding on families of curves with structured \mathcal{P} e.g. Beelen, Rosenkilde, Solomatov (2020)
On surfaces: no generic method to compute Riemann-Roch spaces,
\leftrightarrow families of varieties with explicit bases of Riemann-Roch spaces.
(2) decode

On curves:

- Unique decoding via Error Correcting Pairs Pelikaan (1992), Kötter (1992)
- List decoding Couvreur, Panaccione (2020)

Actually using algebraic geometry codes

To use an AG code $C(\mathcal{X}, \mathcal{P}, G)$ for practical applications, we need to
(1) encode: basis of $L(G)+$ (fast) evaluation at points of \mathcal{P};

On curves, several algorithms to compute Riemann-Roch spaces :

- Arithmetic method (ideals in function fields) Hensel-Landberg (1902), Coated (1970), Davenport (1981), Hess (2001)...
- Geometric method (Brill-Noether's theory)

Goppa, Le Brigand-Risler (80's), Huang-lerardi (90's), Khuri-Makdisi (2007), Le Gluher-Spaenlehauer (2018), Abelard-Couvreur-Lecerf (2020),...
Fast encoding on families of curves with structured \mathcal{P} e.g. Beelen, Rosenkilde, Solomatov (2020)
On surfaces: no generic method to compute Riemann-Roch spaces,
\leftrightarrow families of varieties with explicit bases of Riemann-Roch spaces.
(2) decode

On curves:

- Unique decoding via Error Correcting Pairs Pelikaan (1992), Kötter (1992)
- List decoding Couvreur, Panaccione (2020)

On surfaces: no generic global decoding algorithm,
\leftrightarrow natural local decoding.

Some varieties with explicit bases of Riemann-Roch spaces: toric varieties

Toric varieties come with a handy combinatorial description.
An integral polytope $P \subset \mathbb{R}^{N}$ (vertices in \mathbb{Z}^{N}) defines a N-dimensional polarized toric variety \mathcal{X}_{P}, i.e. with a divisor G and a monomial basis of $L(G)$ (set of polynomials of a certain degree).

Some varieties with explicit bases of Riemann-Roch spaces: toric varieties

Toric varieties come with a handy combinatorial description.
An integral polytope $P \subset \mathbb{R}^{N}$ (vertices in \mathbb{Z}^{N}) defines a N-dimensional polarized toric variety \mathcal{X}_{P}, i.e. with a divisor G and a monomial basis of $L(G)$ (set of polynomials of a certain degree).

$$
L(G) \simeq \operatorname{Span}\left\{\boldsymbol{x}^{m}, m \in P \cap \mathbb{Z}^{N}\right\}
$$

Size of $P \leftrightarrow$ Degree in $L(G)$

\mathbb{P}^{2}
Degree 2

$$
\mathbb{P}^{1} \times \mathbb{P}^{1}
$$

Degree $(1,2)$

$\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$
Degree ($4,3,3$)

Some varieties with explicit bases of Riemann-Roch spaces: toric varieties

Toric varieties come with a handy combinatorial description.
An integral polytope $P \subset \mathbb{R}^{N}$ (vertices in \mathbb{Z}^{N}) defines a N-dimensional polarized toric variety \mathcal{X}_{P}, i.e. with a divisor G and a monomial basis of $L(G)$ (set of polynomials of a certain degree).

$$
L(G) \simeq \operatorname{Span}\left\{\boldsymbol{x}^{m}, m \in P \cap \mathbb{Z}^{N}\right\} .
$$

$$
\text { Size of } P \leftrightarrow \text { Degree in } L(G)
$$

\mathbb{P}^{2}

$$
\text { Degree } 2
$$

$$
\mathbb{P}^{1} \times \mathbb{P}^{1}
$$

$$
\text { Degree }(1,2)
$$

$$
\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}
$$

Why toric?

\mathcal{X}_{P} contains a dense torus $\mathbb{T}_{P} \simeq\left({\overline{\mathbb{F}_{q}}}^{*}\right)^{N}$ whose rational points are $\mathbb{T}_{P}\left(\mathbb{F}_{q}\right) \simeq\left(\mathbb{F}_{q}^{*}\right)^{N}$.
Toric code: $C\left(\mathcal{X}_{P}, \mathbb{T}_{P}\left(\mathbb{F}_{q}\right), G\right)$ (generalization of Reed-Muller codes)
Hansen (2002), Little-Schwarz (2005), Ruano (2007), Soprunov-Soprunova (2009),...
Projective toric code: $C\left(\mathcal{X}_{P}, \mathcal{X}_{P}\left(\mathbb{F}_{q}\right), G\right)$. (generalization of projective Reed-Muller codes) Carvalho, Neumann (2014), N. (2020)..

Globally decoding via local decoding

Voloch, Zarzar (2011)
Consider an AG code $C=C(\mathcal{X}, \mathcal{P}, G)$ on \mathcal{X}.
Assume we have a family of \mathcal{P}-covering curves $\mathcal{C}_{i} \subset \mathcal{X}$ s.t.

- $\mathcal{P} \subseteq \bigcup \mathcal{C}_{i}\left(\mathbb{F}_{q}\right)$ (\mathcal{P}-covering),
- $\boldsymbol{c} \in C \Leftrightarrow \forall i, \boldsymbol{c}_{\mid \mathcal{C}_{i}} \in C_{\mid \mathcal{C}_{i}} \cdot \longleftarrow \quad C\left(\mathcal{C}_{i}, \mathcal{P} \cap \mathcal{C}_{i}, G \cap \mathcal{C}_{i}\right)$

The restrictions to the curves \mathcal{C}_{i} completely characterizes C.

Globally decoding via local decoding

Consider an AG code $C=C(\mathcal{X}, \mathcal{P}, G)$ on \mathcal{X}. Assume we have a family of \mathcal{P}-covering curves $\mathcal{C}_{i} \subset \mathcal{X}$ s.t.

- $\mathcal{P} \subseteq \bigcup \mathcal{C}_{i}\left(\mathbb{F}_{q}\right)$ (\mathcal{P}-covering),
- $\boldsymbol{c} \in C \Leftrightarrow \forall i, \boldsymbol{c}_{\mid \mathcal{C}_{i}} \in C_{\mid \mathcal{C}_{i}} \leftarrow \ll\left(\mathcal{C}_{i}, \mathcal{P} \cap \mathcal{C}_{i}, G \cap \mathcal{C}_{i}\right)$

The restrictions to the curves \mathcal{C}_{i} completely characterizes C.

Then we have a procedure to decode a word \boldsymbol{w} with respect to C.
(1) Pick a curve \mathcal{C}_{i} at random;
(2) Use a decoding algorithm to decode $\boldsymbol{w}_{\mid \mathcal{C}_{i}}$ w.r.t. $C_{\mid \mathcal{C}_{i}}$ and replace the coordinates in \boldsymbol{w};
(3) Repeat (1) and (2) as many times as necessary so that for each $i, \boldsymbol{w}_{\mid \mathcal{C}_{i}} \in C_{\mid \mathcal{C}_{i}}(\Rightarrow \boldsymbol{w} \in C)$.

1 Successfully applied to AG codes from cubic surfaces of \mathbb{P}^{3};
M May fail if too many errors gather on one curve;
T Characterizing codes from restrictions may not be possible.

Table of Contents

(1) Algebraic geometry codes
(2) Parameters of AG codes from surfaces
(3) Effectiveness?
(4) Local properties of AG codes from surfaces

Locality

Definition: Locally recoverable code

A code C is said to be locally recoverable (LR) with locality ℓ if, for each $i \in\{1, \ldots, n\}$, there is a subset $J_{i} \subseteq\{1, \ldots, n\} \backslash\{i\}, \# J_{i}=\ell$ (called the recovery set), such that for any $c \in C$, we can recover the coordinate c_{i} knowing the values c_{j} for $j \in J_{i}$.

Locality

Definition: Locally recoverable code

A code C is said to be locally recoverable (LR) with locality ℓ if, for each $i \in\{1, \ldots, n\}$, there is a subset $J_{i} \subseteq\{1, \ldots, n\} \backslash\{i\}, \# J_{i}=\ell$ (called the recovery set), such that for any $c \in C$, we can recover the coordinate c_{i} knowing the values c_{j} for $j \in J_{i}$.

Singleton bound for LRCs

A LRC C with parameters $[n, k, d]$ and locality ℓ satisfies $d \leq n-k-\left\lceil\frac{k}{\ell}\right\rceil+2$.

Locality

Definition: Locally recoverable code

A code C is said to be locally recoverable (LR) with locality ℓ if, for each $i \in\{1, \ldots, n\}$, there is a subset $J_{i} \subseteq\{1, \ldots, n\} \backslash\{i\}, \# J_{i}=\ell$ (called the recovery set), such that for any $c \in C$, we can recover the coordinate c_{i} knowing the values c_{j} for $j \in J_{i}$.

Singleton bound for LRCs

A LRC C with parameters $[n, k, d]$ and locality ℓ satisfies $d \leq n-k-\left\lceil\frac{k}{\ell}\right\rceil+2$.
Reed-Muller codes are locally recoverable of locality $\ell=q-1$.

$$
\operatorname{RM}(2, r)=\left\{\left(f\left(P_{1}\right), f\left(P_{2}\right), \ldots, f\left(P_{q^{2}}\right)\right) \mid f \in \mathbb{F}_{q}[X, Y]_{\leq r}\right\} .
$$

To recover the coordinate associated to a point P_{0} in a word c :

Locality

Definition: Locally recoverable code

A code C is said to be locally recoverable (LR) with locality ℓ if, for each $i \in\{1, \ldots, n\}$, there is a subset $J_{i} \subseteq\{1, \ldots, n\} \backslash\{i\}, \# J_{i}=\ell$ (called the recovery set), such that for any $c \in C$, we can recover the coordinate c_{i} knowing the values c_{j} for $j \in J_{i}$.

Singleton bound for LRCs

A LRC C with parameters $[n, k, d]$ and locality ℓ satisfies $d \leq n-k-\left\lceil\frac{k}{\ell}\right\rceil+2$.
Reed-Muller codes are locally recoverable of locality $\ell=q-1$.

$$
\operatorname{RM}(2, r)=\left\{\left(f\left(P_{1}\right), f\left(P_{2}\right), \ldots, f\left(P_{q^{2}}\right)\right) \mid f \in \mathbb{F}_{q}[X, Y]_{\leq r}\right\}
$$

To recover the coordinate associated to a point P_{0} in a word \boldsymbol{c} :

- Pick a \mathbb{F}_{q}-line L containing $P_{0}(x=\alpha t+\beta, y=\gamma t+\delta)$,

Locality

Definition: Locally recoverable code

A code C is said to be locally recoverable (LR) with locality ℓ if, for each $i \in\{1, \ldots, n\}$, there is a subset $J_{i} \subseteq\{1, \ldots, n\} \backslash\{i\}, \# J_{i}=\ell$ (called the recovery set), such that for any $c \in C$, we can recover the coordinate c_{i} knowing the values c_{j} for $j \in J_{i}$.

Singleton bound for LRCs

A LRC C with parameters $[n, k, d]$ and locality ℓ satisfies $d \leq n-k-\left\lceil\frac{k}{\ell}\right\rceil+2$.
Reed-Muller codes are locally recoverable of locality $\ell=q-1$.

$$
\operatorname{RM}(2, r)=\left\{\left(f\left(P_{1}\right), f\left(P_{2}\right), \ldots, f\left(P_{q^{2}}\right)\right) \mid f \in \mathbb{F}_{q}[X, Y]_{\leq r}\right\} .
$$

To recover the coordinate associated to a point P_{0} in a word \boldsymbol{c} :

- Pick a \mathbb{F}_{q}-line L containing $P_{0}(x=\alpha t+\beta, y=\gamma t+\delta)$,
$\Rightarrow \operatorname{RM}(2, r)_{\mid L}=\left\{(f(t))_{t \in \mathbb{F}_{q}} \mid f \in \mathbb{F}_{q}[T]_{\leq r}\right\}=\mathrm{RS}_{r+1}\left(\mathbb{F}_{q}\right)$.

Locality

Definition: Locally recoverable code

A code C is said to be locally recoverable (LR) with locality ℓ if, for each $i \in\{1, \ldots, n\}$, there is a subset $J_{i} \subseteq\{1, \ldots, n\} \backslash\{i\}, \# J_{i}=\ell$ (called the recovery set), such that for any $c \in C$, we can recover the coordinate c_{i} knowing the values c_{j} for $j \in J_{i}$.

Singleton bound for LRCs

A LRC C with parameters $[n, k, d]$ and locality ℓ satisfies $d \leq n-k-\left\lceil\frac{k}{\ell}\right\rceil+2$.

Reed-Muller codes are locally recoverable of locality $\ell=q-1$.

$$
\operatorname{RM}(2, r)=\left\{\left(f\left(P_{1}\right), f\left(P_{2}\right), \ldots, f\left(P_{q^{2}}\right)\right) \mid f \in \mathbb{F}_{q}[X, Y]_{\leq r}\right\} .
$$

To recover the coordinate associated to a point P_{0} in a word \boldsymbol{c} :

- Pick a \mathbb{F}_{q}-line L containing $P_{0}(x=\alpha t+\beta, y=\gamma t+\delta)$,
$\Rightarrow \operatorname{RM}(2, r)_{\mid L}=\left\{(f(t))_{t \in \mathbb{F}_{q}} \mid f \in \mathbb{F}_{q}[T]_{\leq r}\right\}=\mathrm{RS}_{r+1}\left(\mathbb{F}_{q}\right)$.
- Recover using the correction algorithm of Reed-Solomon codes.

How to achieve local recoverability for codes from surfaces?
From a family of \mathcal{P}-covering curves $\mathcal{C}_{i} \subset \mathcal{X}$ s.t.

- $\mathcal{P} \subseteq \bigcup \mathcal{C}_{i}\left(\mathbb{F}_{q}\right)$ (\mathcal{P}-covering),
- $\#\left(\mathcal{P} \cap \mathcal{C}_{i}\right)=\ell+1$;
any AG code $C=C(\mathcal{X}, \mathcal{P}, G)$ is LR with locality ℓ, provided that we know how to correct in the codes $C_{\mid \mathcal{C}_{i}}$.

In most constructions, $\mathcal{C}_{i} \simeq \mathcal{C}_{j}$ and the restricted codes are equivalent (e.g. $G \cap \mathcal{C}_{i} \simeq G \cap \mathcal{C}_{j}$).

How to achieve local recoverability for codes from surfaces?
From a family of \mathcal{P}-covering curves $\mathcal{C}_{i} \subset \mathcal{X}$ s.t.

- $\mathcal{P} \subseteq \bigcup \mathcal{C}_{i}\left(\mathbb{F}_{q}\right)$ (\mathcal{P}-covering),
- $\#\left(\mathcal{P} \cap \mathcal{C}_{i}\right)=\ell+1$;
any AG code $C=C(\mathcal{X}, \mathcal{P}, G)$ is LR with locality ℓ, provided that we know how to correct in the codes $C_{\mid \mathcal{C}_{i}}$.

In most constructions, $\mathcal{C}_{i} \simeq \mathcal{C}_{j}$ and the restricted codes are equivalent (e.g. $G \cap \mathcal{C}_{i} \simeq G \cap \mathcal{C}_{j}$). Alternative: fix an AG code $C^{\prime}=C\left(\mathcal{C}, \mathcal{P}^{\prime}, G^{\prime}\right)$ on the curves $\mathcal{C} \simeq \mathcal{C}_{i}$ and consider

$$
\left\{\boldsymbol{c} \in C(\mathcal{X}, \mathcal{P}, G) \mid \forall i, \boldsymbol{c}_{\mid \mathcal{C}_{i}} \in \phi_{i}\left(C^{\prime}\right)\right\} .
$$

How to achieve local recoverability for codes from surfaces?
From a family of \mathcal{P}-covering curves $\mathcal{C}_{i} \subset \mathcal{X}$ s.t.

- $\mathcal{P} \subseteq \cup \mathcal{C}_{i}\left(\mathbb{F}_{q}\right)$ (\mathcal{P}-covering),
- $\#\left(\mathcal{P} \cap \mathcal{C}_{i}\right)=\ell+1$;
any AG code $C=C(\mathcal{X}, \mathcal{P}, G)$ is LR with locality ℓ, provided that we know how to correct in the codes $C_{\mid \mathcal{C}_{i}}$.

In most constructions, $\mathcal{C}_{i} \simeq \mathcal{C}_{j}$ and the restricted codes are equivalent (e.g. $G \cap \mathcal{C}_{i} \simeq G \cap \mathcal{C}_{j}$).
Alternative: fix an AG code $C^{\prime}=C\left(\mathcal{C}, \mathcal{P}^{\prime}, G^{\prime}\right)$ on the curves $\mathcal{C} \simeq \mathcal{C}_{i}$ and consider

$$
\left\{\boldsymbol{c} \in C(\mathcal{X}, \mathcal{P}, G) \mid \forall i, \boldsymbol{c}_{\mid \mathcal{C}_{i}} \in \phi_{i}\left(C^{\prime}\right)\right\} .
$$

LRC on ruled surfaces

Salgado, Varilly-Alvarado, Voloch (2021)

Fibers $\pi^{-1}(\{P\}) \simeq \mathbb{P}^{1}$ for every $P \in \mathcal{B}$.
Take $\mathcal{C}_{i}=\left\{\right.$ fibers of $\mathbb{F}_{q}-$ points of \mathcal{B} covering $\left.\mathcal{P}\right\}$.
\rightarrow Design codes from \mathcal{X} whose restrictions to the \mathcal{C}_{i} are ReedSolomon codes of given degree.

Take-away

We should study AG codes from surfaces because

- we can constructed longer codes from small alphabets,
- their richer geometry compared to curves grants them with natural local properties which can be useful in applications (e.g. distributed storage),
- we have many ingredients to design new families of asymptotically good codes.

Take-away
We should study AG codes from surfaces because

- we can constructed longer codes from small alphabets,
- their richer geometry compared to curves grants them with natural local properties which can be useful in applications (e.g. distributed storage),
- we have many ingredients to design new families of asymptotically good codes.

But for the moment

- we lack generic algorithms to encode and decode,
- we have to explore families of surfaces with the right features to get the expected properties on codes,
- we need a better understanding of the classification of surfaces over finite fields.

Take-away
We should study AG codes from surfaces because

- we can constructed longer codes from small alphabets,
- their richer geometry compared to curves grants them with natural local properties which can be useful in applications (e.g. distributed storage),
- we have many ingredients to design new families of asymptotically good codes.

But for the moment

- we lack generic algorithms to encode and decode,
- we have to explore families of surfaces with the right features to get the expected properties on codes,
- we need a better understanding of the classification of surfaces over finite fields.

Thank you for your attention!

