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Algebraic geometry...

Let X be a smooth projective variety defined over the finite field Fq.

Definition: Divisors and their properties.

A (Weil) divisor on X is a formal finite sum of irreducible subvarieties of X of codimension 1.
The set of divisors of the variety X is denoted by DivX .

A divisor G =
∑

niYi is said to be effective if ni ≥ 0 for every i. In this case, we write G ≥ 0.

The support of a divisor G =
∑

niYi, is SuppG =
⋃

i≥1{Yi | ni ̸= 0}.
Its Riemann–Roch space is the Fq–vector space

L(G) = {f ∈ Fq(X)∗ | (f) +G ≥ 0} ∪ {0}
where (f) =

∑
ordY(f)Y is the principal divisor associated to a non–zero function f .

global section

Definition: Linear equivalence and Picard Group.

Two divisors are linearly equivalent if there is a function h such that G′ = G+(h), noted G′ ∼ G.
The Picard group PicX is the set of equivalent classes of DivX modulo the linear equivalence ∼.
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...Codes

Definition: [n, k, d] linear code

A linear code C over Fq of length n is a vector subspace Fn
q . We note k its dimension.

The weight of a word x ∈ Fn
q is given by ω(x) = #{i ∈ {1, . . . , n}, xi ̸= 0}.

The minimum distance of C is defined by d = min{ω(c) | c ∈ C, c ̸= 0}.

Algebraic geometry codes Tsfasman and Vladut’s L-construction

Take P = {P1, . . . , Pn, } ⊂ X (Fq) and G ∈ DivX s.t. SuppG ∩ P = ∅. Consider the map

evP :

{
L(G) → Fn

q

f 7→ (f(P1), . . . , f(Pn))

The AG code associated to G with evaluation support P is C(X ,P, G) = evP(L(G)).

Remark: If G′ ∼ G, then C(X ,P, G) and C(X ,P, G′) are equivalent.

It has length n = #P and dimension k ≤ ℓ(G).
For f ∈ L(G), ω(evP(f)) = n−#(Z(f) ∩ P) where Z(f) is the zero locus of f .

Then the minimum distance satisfies d = n− max
f∈L(G)\{0}

#(Z(f) ∩ P).

well–defined

= dimL(G)

2 / 21
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Algebraic geometry codes: parameters

Take P = {P1, . . . , Pn, } ⊂ X (Fq) and G ∈ DivX s.t. SuppG ∩ P = ∅.

C(X ,P, G) = {(f(P1), . . . , f(Pn)) ∈ Fn
q | f ∈ L(G)}.

If max
f∈L(G)\{0}

#(Z(f) ∩ P)≤ b < n, then C(X ,P, G) has parameters [n, ℓ(G),≥ n− b].

If X is a (smooth projective) curve of genus g, then G =
∑

niPi with degG =
∑

ni degPi.

Hasse–Weil theorem

n ≤

X (Fq) ≤ q + 1 + 2g
√
q.

Riemann–Roch theorem on curves

ℓ(G)− ℓ(KX −G) = degG− g + 1.

For every f ∈ L(G), #Z(f) ≤ degG.

•P1

•
P2

•
P3

•
Pn. . .•

•

•
•

•
••

•

•

•

•
•

•
•
•

•

•

•

•

•

•

If X is a surface, Z(f) is a (possibly reducible) curve on X .

Computing #Z(f) ∩ P is harder...

= 0 if degG > 2g − 2.

Canonical divisor of X
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Very first example of AG codes from higher–dimensional varieties: Reed–Muller codes

Definition: Reed–Muller code

Let N ≥ 1 and r ≥ 0. We define the Reed–Muller code of order r by

RM(N, r) = {(f(x))x∈FN
q
| f ∈ Fq[X1, . . . , XN ]≤r}.

For r ≤ q, dimRM(N, r) = dimFq[X1, . . . , XN ]≤r and the minimum distance d = qN − rqN−1

is reached by product of linear factors (highly reducible sections).

Why is it an AG code?
Consider X = PN and P = {(1, x1, . . . , xN ) ∈ PN (Fq) | xi ∈ Fq} = AN (Fq) ≃ (Fq)

N .
Let H be the hyperplane of PN defined by X0 = 0. Then, for any integer r ≥ 0

L(rH) =
1

Xr
0

· Fq[X0, . . . , XN ]hom=r .

Then RM(N, r) = C(PN ,P, rH).

4 / 21
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Then RM(N, r) = C(PN ,P, rH).
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(Non–exhaustive) Bibliography about AG codes from surfaces

• 1954: Reed–Muller codes

• 1986: Projective Reed–Muller (Lachaud) Parameters studied by Sorensen (1991)

• 1991: Restriction of RM Codes to projective algebraic varieties (Aubry)

• 1992: Quadric surfaces (Aubry)

• 2001: General study by Hansen

• 2001: Restrictions of RM codes when P is a complete intersection (Duursma, Renteŕıa, Tapia-Recillas)
Parameters when P is in linearly general position by Ballico and Fontanari (2006)

• 2002: Toric varieties (Hansen)

• 2005: Hermitian surface (Edoukou)

• 2007: Exploring surfaces with small Picard rank (Zarzar)

• 2018: rkPicX = 1 or sectional genus = 0 (Little, Schenck)

• 2020: Del Pezzo surfaces with Picard rank one (Blache, Couvreur, Hallouin, Madore, N., Rambaud,
Randriam)

• 2021: Abelian surfaces (Aubry, Berardini, Herbaut, Perret)

Surfaces

Higher–dimensional varieties
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Embedded case

Definition: Restriction of a code

Let C ⊆ Fn
q . Take I ⊂ {1, . . . , n}. The restriction of C to I is pI(C) where pI : Fn

q → F#I
q is

defined by pI(c1, . . . , cn) = (ci)i∈I . (Puncturing outside of I.)

• If C = C(X ,P, G) and P ′ ⊂ P, then C ′ = C(X ,P ′, G) is a restriction of C.
• If Y ⊂ X , we can restrict C to Y: C|Y = C(Y,P ∩ Y, G ∩ Y).

Assume that X ⊂ PN for some N ≥ 2. Let H be an hyperplane of PN (say X0 = 0 again).
Take P ⊆ (AN ∩ X )(Fq). For r ≥ 0, consider the restriction of RM(N, r) to P

C(PN ,P, rH) = {(f(P ))P∈P | f ∈ L(rH)} ≃ C(X ,P, rh).

To handle the parameters, we can use properties of the 0-dimensional algebraic set P.

0 → IP → OPN → OP → 0

0 → H0(IP(r)) → H0(OPN (r)) → H0(OP(r)) → H1(IP(r)) → 0

 Explicit generating family.  Cannot explore all the AG codes on X .

divisor on Y

hyperplane section H ∩ X

measures how the points in P fail to
give independent relations in degree rker evP
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An important tool on surfaces

Theorem: Intersection product on a surface

There is a unique pairing DivX ×DivX → Z , denoted by C ·D for any two divisors C, D, s.t.

1 if C and D are nonsingular curves meeting transversally, then C ·D = #(C ∩D);

2 it is symmetric: C ·D = D · C;

3 it is additive: (C1 + C2) ·D = C1 ·D + C2 ·D;

4 it depends only on the linear equivalence classes: if C1 ∼ C2, then C1 ·D = C2 ·D.

We denote by C2 = C · C the self–intersection of C ∈ DivX .

Intersection product on X = P2

Let L, L′ be 2 lines. Then L ∼ L′′ and L2 = L′2 = L · L′ = 1.

Let C be a conic. Then L · C = L′ · C = 2. Moreover, C ∼ 2L.
Let C ′ another conic. Then C ′ ∼ C. And C2 = C · C ′ = 4.
For any curve D of degree d, D ∼ dL.
Two curves are linearly equivalent iff they have the same degree.
Then D ·D′ = dL · d′L = dd′. (Bézout’s theorem)
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Dimension of AG codes from surfaces

Denote by KX a canonical divisor of X .

Riemann–Roch theorem on surfaces

If G ∈ DivX , then

χ(L(G)) = ℓ(G)− s(G) + ℓ(KX −G) =
1

2
G · (G−KX ) + 1 + pa(X ).

Definition: ample divisor (Nakai–Moishezon criterion)

A divisor A ∈ DivX is said to be ample if A2 > 0 and for every irreducible curve, C ·A > 0.

Proposition

If there exists an ample divisor A such that KX ·A < G ·A, then ℓ(KX −G) = 0.

⇒ ℓ(G) ≥ 1

2
G · (G−KX ) + 1 + pa(X ).

h0(X ,L(G))

superabundance

h1(X ,L(G))

h2(X ,L(G))
+ Serre’s duality

Arithmetic genus of X :
pa(X ) = χ(OX ) + 1.

8 / 21



AG codes Parameters of AG codes from surfaces Effectiveness? Local properties Conclusion

Dimension of AG codes from surfaces

Denote by KX a canonical divisor of X .

Riemann–Roch theorem on surfaces

If G ∈ DivX , then

χ(L(G)) = ℓ(G)− s(G) + ℓ(KX −G) =
1

2
G · (G−KX ) + 1 + pa(X ).

Definition: ample divisor (Nakai–Moishezon criterion)

A divisor A ∈ DivX is said to be ample if A2 > 0 and for every irreducible curve, C ·A > 0.

Proposition

If there exists an ample divisor A such that KX ·A < G ·A, then ℓ(KX −G) = 0.

⇒ ℓ(G) ≥ 1

2
G · (G−KX ) + 1 + pa(X ).

h0(X ,L(G))

superabundance

h1(X ,L(G))

h2(X ,L(G))
+ Serre’s duality

Arithmetic genus of X :
pa(X ) = χ(OX ) + 1.

8 / 21



AG codes Parameters of AG codes from surfaces Effectiveness? Local properties Conclusion

Dimension of AG codes from surfaces

Denote by KX a canonical divisor of X .

Riemann–Roch theorem on surfaces

If G ∈ DivX , then

χ(L(G)) = ℓ(G)− s(G) + ℓ(KX −G) =
1

2
G · (G−KX ) + 1 + pa(X ).

Definition: ample divisor (Nakai–Moishezon criterion)

A divisor A ∈ DivX is said to be ample if A2 > 0 and for every irreducible curve, C ·A > 0.

Proposition

If there exists an ample divisor A such that KX ·A < G ·A, then ℓ(KX −G) = 0.

⇒ ℓ(G) ≥ 1

2
G · (G−KX ) + 1 + pa(X ).

h0(X ,L(G))

superabundance

h1(X ,L(G))

h2(X ,L(G))
+ Serre’s duality

Arithmetic genus of X :
pa(X ) = χ(OX ) + 1.

8 / 21



AG codes Parameters of AG codes from surfaces Effectiveness? Local properties Conclusion

How to get a lower bound for the minimum distance?

Assume that P = X (Fq).

For any f ∈ L(G), we decompose its zero locus Z(f) =

sf∑
i=1

niYi with ni > 0.

Then the minimum distance satisfies

d ≥ n− max
f∈L(G)\{0}

∑
#Yi(Fq).

To bound the minimum distance from below, you need an upper bound for

• the number of irreducible components sf ,
• the number of Fq–rational points of the curves Yi.

Adjunction formula

If C is a curve of arithmetic genus π on the surface X , then

2π − 2 = C · (C +KX ).

e.g. Berardini, N. (2022) for X ⊂ P3

See Elena Berardini’s talk this afternoon
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A generic lower bound for the minimum distance: Seshadri constant

Let P = {P1 . . . , Pn} ⊂ X (Fq) and G ∈ DivX an ample divisor.

Definition: Seshadri constant

The Seshadri constant of G at P is ε(G,P) = inf

{
G · C∑
i mPiC

| C ⊂ X curves s.t. C ∩ P ̸= ∅
}
.

Proposition Hansen (2001)

1 If ε(G,P) ≥ ε ∈ N, then the minimum distance of C(X ,P, G) satisfies d ≥ n− G2

ε
.

2 If there exists ζ ∈ N s.t. L(G)⊗ζ ⊗ IP is generated by global sections, then d ≥ n− ζG2.

 Hard to compute in practice!

multiplicity of the curve C at Pi
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Lower bound for the minimum distance: P–covering curves

Proposition Hansen (2001)

Fix some curves C1, . . . , Cr on X s.t.

• P ⊆
⋃

i Ci(Fq),

• #(Ci(Fq) ∩ P) ≤ N ,

• G · Ci ≥ 0.

Set ℓ = max
f∈L(G)

#{i | Ci ⊆ Z(f)}.

Then the minimum distance of C(X ,P, G) satisfies d ≥ n− ℓN −
r∑

i=1

G · Ci.

If G · Ci ≤ η ≤ N , then d ≥ n− ℓN − (r − ℓ)η.

Moreover, if there exists a nef divisor H s.t. H · Ci > 0 for every i, then ℓ ≤ G ·H
mini{Ci ·H}

.

H · C ≥ 0 for every curve C.
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Application of the P–covering curves method to X = P1 × P1

Proposition Hansen (2001)

P ⊆
⋃r

i=1 Ci(Fq), #(Ci(Fq) ∩ P) ≤ N and 0 ≤ G · Ci ≤ η ≤ N .

ℓ = max
f∈L(G)

#{i | Ci ⊆ (f = 0)} ≤ G ·H
mini{Ci ·H}

if there exists a nef divisor H s.t. H · Ci > 0.

d ≥ n− ℓN − (r − ℓ)η.

On X = P1 × P1

PicX = Z[H]⊕ Z[V ] with H2 = V 2 = 0 and H · V = 1. Take G = d1H + d2V . We have

L(G) ≃ {bihomogeneous f ∈ Fq[X0, X1, Y0, Y1] | degX(f) = d1 and degY (f) = d2}.

Choose P = X (Fq) and r = q + 1 vertical lines Ci ∼ V ⇒ N = q + 1.

Since H · Ci = H · V = 1, we have ℓ ≤ G ·H = d2.

n = (q + 1)2, k = (d1 + 1)(d2 + 1)

d ≥ n− d2(q + 1)− (q + 1− d2)d1 = (q + 1− d1)(q + 1− d2)

 Attained!

•
•
•
•
•
•

•
•
•
•
•
•

•
•
•
•
•
•

•
•
•
•
•
•

•
•
•
•
•
•

•
•
•
•
•
•
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L(G) ≃ {bihomogeneous f ∈ Fq[X0, X1, Y0, Y1] | degX(f) = d1 and degY (f) = d2}.

Choose P = X (Fq) and r = q + 1 vertical lines Ci ∼ V ⇒ N = q + 1.

Since H · Ci = H · V = 1, we have ℓ ≤ G ·H = d2.

n = (q + 1)2, k = (d1 + 1)(d2 + 1)

d ≥ n− d2(q + 1)− (q + 1− d2)d1 = (q + 1− d1)(q + 1− d2)

 Attained! •
•
•
•
•
•

•
•
•
•
•
•

•
•
•
•
•
•

•
•
•
•
•
•

•
•
•
•
•
•

•
•
•
•
•
•

12 / 21



AG codes Parameters of AG codes from surfaces Effectiveness? Local properties Conclusion

Lower bound for the minimum distance: P–interpolating linear system

Definition: Linear system

• A linear system is a family of linearly equivalent effective divisors.

• The base locus of a linear system Γ is defined as
⋂

D∈Γ SuppD.

• For any linear system Γ ⊂ DivX and Y ⊂ X a subvariety, we denote by Γ− Y the maximal
linear subsystem of Γ of elements whose base locus contains Y.

Definition: P–interpolating linear system Couvreur, Perret, Lebacque (2020)

Given P ⊆ X (Fq), a linear system Γ of divisors on X is said to be P–interpolating if
➊ Γ− P is non empty; ➋ the base locus of Γ− P has dimension 0.

Proposition Couvreur, Perret, Lebacque (2020)

• The minimum distance d of C(X ,P, G) satisfies d ≥ n− Γ ·G.

• If H is very ample, then the complete linear system |(q + 1)H| is P–interpolating.

The map ϕH : X 99K Pℓ(H)−1 is an embedding.
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Comparison between P–covering curves and P–interpolating linear system

Definition

Curves C1, . . . , Cr on X s.t.

1 P ⊆
⋃

i Ci(Fq);

2 G · Ci ≥ 0.

Set ℓ = max
f∈L(G)

#{i | Ci ⊆ Z(f)}.

Linear system Γ s.t.

➊ Γ− P is non empty;

➋ the base locus of Γ− P has dim. 0.

Lower bound
for d

d ≥ n−
r∑

i=1

G · Ci − ℓmax#Ci(Fq)
d ≥ n−G · Γ

 Better bound

Relation Γ = Γ− P =

{
r∑

i=1

Ci

}
A =

∑
niCi ∈ Γ with ni ≥ 0.

Similarities ➊ ⇒ ➊ A ∈ Γ− P (exists by ➊) satisfies ➊.

Differences ➋ ⇒ #(Γ− P) ≥ 2.
Behaviour
under
morphisms

If π : X ′ → X and P ′ ⊆ π−1(P)
 π∗(Ci) are P ′–covering,

 Few control over the analogue of
ℓ.

 π∗(Γ) is P ′–interpolating.
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Paving the ground towards codes from towers of surfaces Couvreur, Lebacque, Perret (2020)

AG codes from curves are well–known for having better parameters than random codes
asymptotically for q square and q ≥ 49. Ihara (1981), Tsfasman, Vlăduţ, Zink (1982)

Constructions of asymptotically good codes are based on tower of curves:

1 modular curves Ihara (1981), Tsfasman, Vlăduţ, Zink (1982),

2 recursive towers Garcia, Stichtenoth (1995)...,

3 class field theory.

In the context of curves, the key is to control #X (Fq)/g(X ).

Working with towers of surfaces, we may get longer codes.
But several invariants come into play (e.g. K2

X and deg c2(X ) or χ(OX )).

→ Criterion for a surface to admit an infinite tower of étale covers where a finite set of points of
the surface splits completely.
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Actually using algebraic geometry codes

To use an AG code C(X ,P, G) for practical applications, we need to
1 encode: basis of L(G) + (fast) evaluation at points of P;

On curves, several algorithms to compute Riemann–Roch spaces :
• Arithmetic method (ideals in function fields)

Hensel–Landberg (1902), Coated (1970), Davenport (1981), Hess (2001)...
• Geometric method (Brill–Noether’s theory)

Goppa, Le Brigand–Risler (80’s), Huang–Ierardi (90’s), Khuri–Makdisi (2007), Le
Gluher–Spaenlehauer (2018), Abelard–Couvreur–Lecerf (2020),...

Fast encoding on families of curves with structured P e.g. Beelen, Rosenkilde, Solomatov (2020)

On surfaces:  no generic method to compute Riemann–Roch spaces,
 families of varieties with explicit bases of Riemann–Roch spaces.

2 decode

On curves:
• Unique decoding via Error Correcting Pairs Pelikaan (1992), Kötter (1992)

• List decoding Couvreur, Panaccione (2020)

On surfaces:  no generic global decoding algorithm,
 natural local decoding.

16 / 21



AG codes Parameters of AG codes from surfaces Effectiveness? Local properties Conclusion

Actually using algebraic geometry codes

To use an AG code C(X ,P, G) for practical applications, we need to
1 encode: basis of L(G) + (fast) evaluation at points of P;

On curves, several algorithms to compute Riemann–Roch spaces :
• Arithmetic method (ideals in function fields)

Hensel–Landberg (1902), Coated (1970), Davenport (1981), Hess (2001)...
• Geometric method (Brill–Noether’s theory)

Goppa, Le Brigand–Risler (80’s), Huang–Ierardi (90’s), Khuri–Makdisi (2007), Le
Gluher–Spaenlehauer (2018), Abelard–Couvreur–Lecerf (2020),...

Fast encoding on families of curves with structured P e.g. Beelen, Rosenkilde, Solomatov (2020)

On surfaces:  no generic method to compute Riemann–Roch spaces,
 families of varieties with explicit bases of Riemann–Roch spaces.

2 decode

On curves:
• Unique decoding via Error Correcting Pairs Pelikaan (1992), Kötter (1992)

• List decoding Couvreur, Panaccione (2020)

On surfaces:  no generic global decoding algorithm,
 natural local decoding.

16 / 21



AG codes Parameters of AG codes from surfaces Effectiveness? Local properties Conclusion

Actually using algebraic geometry codes

To use an AG code C(X ,P, G) for practical applications, we need to
1 encode: basis of L(G) + (fast) evaluation at points of P;

On curves, several algorithms to compute Riemann–Roch spaces :
• Arithmetic method (ideals in function fields)

Hensel–Landberg (1902), Coated (1970), Davenport (1981), Hess (2001)...
• Geometric method (Brill–Noether’s theory)

Goppa, Le Brigand–Risler (80’s), Huang–Ierardi (90’s), Khuri–Makdisi (2007), Le
Gluher–Spaenlehauer (2018), Abelard–Couvreur–Lecerf (2020),...

Fast encoding on families of curves with structured P e.g. Beelen, Rosenkilde, Solomatov (2020)

On surfaces:  no generic method to compute Riemann–Roch spaces,
 families of varieties with explicit bases of Riemann–Roch spaces.

2 decode

On curves:
• Unique decoding via Error Correcting Pairs Pelikaan (1992), Kötter (1992)

• List decoding Couvreur, Panaccione (2020)

On surfaces:  no generic global decoding algorithm,
 natural local decoding.

16 / 21



AG codes Parameters of AG codes from surfaces Effectiveness? Local properties Conclusion

Actually using algebraic geometry codes

To use an AG code C(X ,P, G) for practical applications, we need to
1 encode: basis of L(G) + (fast) evaluation at points of P;

On curves, several algorithms to compute Riemann–Roch spaces :
• Arithmetic method (ideals in function fields)

Hensel–Landberg (1902), Coated (1970), Davenport (1981), Hess (2001)...
• Geometric method (Brill–Noether’s theory)

Goppa, Le Brigand–Risler (80’s), Huang–Ierardi (90’s), Khuri–Makdisi (2007), Le
Gluher–Spaenlehauer (2018), Abelard–Couvreur–Lecerf (2020),...

Fast encoding on families of curves with structured P e.g. Beelen, Rosenkilde, Solomatov (2020)

On surfaces:  no generic method to compute Riemann–Roch spaces,
 families of varieties with explicit bases of Riemann–Roch spaces.

2 decode

On curves:
• Unique decoding via Error Correcting Pairs Pelikaan (1992), Kötter (1992)

• List decoding Couvreur, Panaccione (2020)

On surfaces:  no generic global decoding algorithm,
 natural local decoding.

16 / 21



AG codes Parameters of AG codes from surfaces Effectiveness? Local properties Conclusion

Actually using algebraic geometry codes

To use an AG code C(X ,P, G) for practical applications, we need to
1 encode: basis of L(G) + (fast) evaluation at points of P;

On curves, several algorithms to compute Riemann–Roch spaces :
• Arithmetic method (ideals in function fields)

Hensel–Landberg (1902), Coated (1970), Davenport (1981), Hess (2001)...
• Geometric method (Brill–Noether’s theory)

Goppa, Le Brigand–Risler (80’s), Huang–Ierardi (90’s), Khuri–Makdisi (2007), Le
Gluher–Spaenlehauer (2018), Abelard–Couvreur–Lecerf (2020),...

Fast encoding on families of curves with structured P e.g. Beelen, Rosenkilde, Solomatov (2020)

On surfaces:  no generic method to compute Riemann–Roch spaces,
 families of varieties with explicit bases of Riemann–Roch spaces.

2 decode

On curves:
• Unique decoding via Error Correcting Pairs Pelikaan (1992), Kötter (1992)

• List decoding Couvreur, Panaccione (2020)

On surfaces:  no generic global decoding algorithm,
 natural local decoding.

16 / 21



AG codes Parameters of AG codes from surfaces Effectiveness? Local properties Conclusion

Some varieties with explicit bases of Riemann–Roch spaces: toric varieties

Toric varieties come with a handy combinatorial description.

An integral polytope P ⊂ RN (vertices in ZN ) defines a N -dimensional polarized toric variety XP ,
i.e. with a divisor G and a monomial basis of L(G) (set of polynomials of a certain degree).

L(G) ≃ Span{xm,m ∈ P ∩ ZN}.

Size of P ↔ Degree in L(G) P2

Degree 2

P1 × P1

Degree (1, 2)
P1 × P1 × P1

Degree (4, 3, 3)
Why toric?

XP contains a dense torus TP ≃
(
Fq

∗)N

whose rational points are TP (Fq) ≃ (F∗
q)

N .

Toric code: C(XP ,TP (Fq), G) (generalization of Reed–Muller codes)

Hansen (2002), Little-Schwarz (2005), Ruano (2007), Soprunov-Soprunova (2009),...

Projective toric code: C(XP ,XP (Fq), G). (generalization of projective Reed–Muller codes)

Carvalho, Neumann (2014), N. (2020)...
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Globally decoding via local decoding Voloch, Zarzar (2011)

Consider an AG code C = C(X ,P, G) on X .
Assume we have a family of P–covering curves Ci ⊂ X s.t.

• P ⊆
⋃
Ci(Fq) (P–covering),

• c ∈ C ⇔ ∀i, c|Ci
∈ C|Ci

.
The restrictions to the curves Ci completely characterizes C.

•
•

•

•

•
•

•
•
•

•

•

•

•

•

•

•

C1
C2C3

Then we have a procedure to decode a word w with respect to C.

1 Pick a curve Ci at random;

2 Use a decoding algorithm to decode w|Ci
w.r.t. C|Ci

and replace the coordinates in w;

3 Repeat ➊ and ➋ as many times as necessary so that for each i, w|Ci
∈ C|Ci

(⇒ w ∈ C).

 Successfully applied to AG codes from cubic surfaces of P3;

 May fail if too many errors gather on one curve;

 Characterizing codes from restrictions may not be possible.

C(Ci,P ∩ Ci, G ∩ Ci)
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Locality

Definition: Locally recoverable code

A code C is said to be locally recoverable (LR) with locality ℓ if, for each i ∈ {1, . . . , n}, there is
a subset Ji ⊆ {1, . . . , n} \ {i}, #Ji = ℓ (called the recovery set), such that for any c ∈ C, we can
recover the coordinate ci knowing the values cj for j ∈ Ji.

Singleton bound for LRCs

A LRC C with parameters [n, k, d] and locality ℓ satisfies d ≤ n− k −
⌈
k

ℓ

⌉
+ 2.

Reed–Muller codes are locally recoverable of locality ℓ = q − 1.

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•
P0

RM(2, r) =
{
(f(P1), f(P2), . . . , f(Pq2)) | f ∈ Fq[X,Y ]≤r

}
.

To recover the coordinate associated to a point P0 in a word c:

• Pick a Fq–line L containing P0 (x = αt+ β, y = γt+ δ),

⇒ RM(2, r)|L = {(f(t))t∈Fq
| f ∈ Fq[T ]≤r} = RSr+1(Fq).

• Recover using the correction algorithm of Reed–Solomon codes.
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How to achieve local recoverability for codes from surfaces?

From a family of P–covering curves Ci ⊂ X s.t.

• P ⊆
⋃
Ci(Fq) (P–covering),

• #(P ∩ Ci) = ℓ+ 1;

any AG code C = C(X ,P, G) is LR with locality ℓ, provided
that we know how to correct in the codes C|Ci

.

•
•

•

•

•
•

•
•
•

•

•

•

•

•

•

C1
C2

C3

In most constructions, Ci ≃ Cj and the restricted codes are equivalent (e.g. G ∩ Ci ≃ G ∩ Cj).

Alternative: fix an AG code C ′ = C(C,P ′, G′) on the curves C ≃ Ci and consider

{c ∈ C(X ,P, G) | ∀i, c|Ci
∈ ϕi(C

′)}.

LRC on ruled surfaces Salgado, Varilly-Alvarado, Voloch (2021)

X

B

π

•
•

• • •
•

•
• • ••

•
• • •

•
•

• • • Fibers π−1({P}) ≃ P1 for every P ∈ B.
Take Ci = {fibers of Fq–points of B covering P}.

→ Design codes from X whose restrictions to the Ci are Reed–
Solomon codes of given degree.
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Take–away

We should study AG codes from surfaces because

• we can constructed longer codes from small alphabets,

• their richer geometry compared to curves grants them with natural local properties which
can be useful in applications (e.g. distributed storage),

• we have many ingredients to design new families of asymptotically good codes.

But for the moment

• we lack generic algorithms to encode and decode,

• we have to explore families of surfaces with the right features to get the expected properties
on codes,

• we need a better understanding of the classification of surfaces over finite fields.

Thank you for your attention!
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