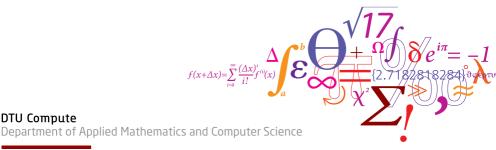
Algebraic curves with many rational points over finite fields

Maria Montanucci

DTU Compute

Technical University of Denmark (DTU)

Joint work with: Daniele Bartoli, Peter Beelen, Leonardo Landi, Vincenzo Pallozzi Lavorante, Luciane Quoos, Guilherme Tizziotti, Fernando Torres, Lara Vicino, Giovanni Zini

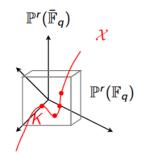


Outline

- Maximal curves over finite fields
 - Notation and terminology
 - Past, present and future research
- Classification and construction
 - The case of $\mathbb{F}_{p^2}\text{-maximal curves, }p$ prime
 - The second generalized GK curve and its consequences
- Weierstrass semigroups and maximal curves
 - Weierstrass semigroups and the GK curve
 - Decoding AG codes from maximal curves
- Curves with many rational points in coding theory
 - LRC and MRD codes
 - What's next? The project CREATE

Maximal curves over finite fields Notation and terminology

- $\mathcal{X} \subseteq \mathbb{P}^r(\overline{\mathbb{F}}_q)$ projective, geometrically irreducible, non-singular algebraic curve defined over \mathbb{F}_q
- g genus of \mathcal{X} If r = 2 then $g = \frac{(d-1)(d-2)}{2}$, where $d = \deg(\mathcal{X})$
- $Aut(\mathcal{X})$ automorphism group of \mathcal{X} over $\overline{\mathbb{F}}_q$ (Massimo's talk!)
- $\mathcal{X}(\mathbb{F}_q) = \mathcal{X} \cap \mathbb{P}^r(\mathbb{F}_q)$



Maximal curves over finite fields Maximal curves

 \mathcal{X} defined over \mathbb{F}_q

Hasse-Weil bound

 $|\mathcal{X}(\mathbb{F}_q)| \le q + 1 + 2g\sqrt{q}.$

Definition

$$\mathcal{X}$$
 is \mathbb{F}_q -maximal if $|\mathcal{X}(\mathbb{F}_q)| = q + 1 + 2g\sqrt{q}$.

Necessary: q square or g = 0 (we change notation: $\mathbb{F}_q \to \mathbb{F}_{q^2}$)

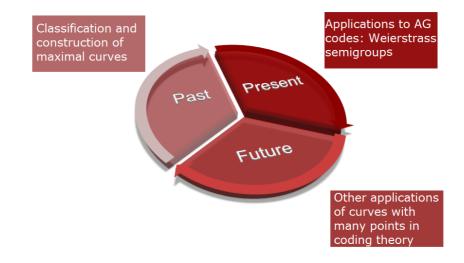
Example: \mathbb{F}_{q^2} -maximal curve

Hermitian curve

$$\mathcal{H}_q: Y^{q+1} = X^q + X, \quad q = p^h$$

 $g = q(q-1)/2, \qquad |\mathcal{H}_q(\mathbb{F}_{q^2})| = q^3 + 1, \qquad Aut(\mathcal{H}_q) \cong PGU(3,q) \rightarrow \geq 16g^4$

My research on algebraic curves with many rational points



Coverings and Galois-coverings

- $\mathcal{X} \subseteq \mathbb{P}^r(\mathbb{F}_{q^2})$ and $\mathcal{Y} \subseteq \mathbb{P}^s(\mathbb{F}_{q^2})$
- Non-constant $\phi: \mathcal{X} \to \mathcal{Y} \implies \mathcal{Y}$ is covered by \mathcal{X} (subcover)
- $\overline{\mathbb{F}}_{q^2}(\mathcal{X}): \phi^*(\overline{\mathbb{F}}_{q^2}(\mathcal{Y}))$ is a finite field extension
- $\overline{\mathbb{F}}_{q^2}(\mathcal{X}): \phi^*(\overline{\mathbb{F}}_{q^2}(\mathcal{Y}))$ Galois $\implies \mathcal{Y}$ is Galois-covered by \mathcal{X} (Galois-subcover)

(Kleiman-Serre, 1987)

If $\mathcal X$ is $\mathbb F_{q^2}$ -maximal and $\mathcal Y$ is $\mathbb F_{q^2}$ -covered by $\mathcal X$ then $\mathcal Y$ is $\mathbb F_{q^2}$ -maximal

Conjecture

Every \mathbb{F}_{q^2} -maximal curve is (Galois-)covered by the Hermitian curve \mathcal{H}_q

Classification and construction Natural Embedding Theorem

(Garcia-Stichtenoth, 2006)

The GS curve $X^9 - X = Y^7$ is \mathbb{F}_{3^6} -maximal and not Galois-covered by \mathcal{H}_{3^3} .

• Hermitian Variety in $\mathbb{P}^{r}(\overline{\mathbb{F}}_{q^{2}})$: $\mathcal{H}_{r,q}: X_{2}^{q+1} + X_{3}^{q+1} + \ldots + X_{r}^{q+1} = X_{1}^{q}X_{0} + X_{1}X_{0}^{q}$

Natural Embedding Theorem (Korchmáros-Torres, 2001)

Un to isomorphisms, \mathbb{F}_{q^2} -maximal curves are

- contained in some $\mathcal{H}_{r,q}$ for some $r \geq 2$
- irreducible of degree q+1

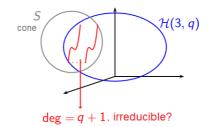
• not contained in any hyperplane of $\mathbb{P}^r(\overline{\mathbb{F}}_q)$

Definition

 $r \geq 2$ is the (geometrical) Frobenius dimension of \mathcal{X} .

• If r = 2 then \mathcal{X} is the Hermitian curve (up to isomorphism) $\rightarrow r \geq 3$?

Classification and construction The conjecture is false: GK curve



(Giulietti-Korchmáros, 2009)

Let q be a prime power of a prime $p. \ \mbox{The GK-curve}$

$$\mathcal{C}: \begin{cases} Z^{\frac{q^3+1}{q+1}} = Y^{q^2} - Y, \\ X^q + X = Y^{q+1} \to \text{Hermitian curve}! \end{cases}$$

if \mathbb{F}_{q^6} -maximal. If q>2, \mathcal{C} is **not** \mathbb{F}_{q^6} -covered by \mathcal{H}_{q^3}

Question: Why are both the GK and the GS curve \mathbb{F}_{q^6} -maximal?

8 DTU Compute

Classification and construction The case of \mathbb{F}_{p^2} -maximal curves

Conjecture, 2000

Every \mathbb{F}_{p^2} -maximal curve is a subcover of the Hermitian curve \mathcal{H}_p

Note: Known $\mathbb{F}_{p^2}\text{-maximal curves}$ are Galois-covered by \mathcal{H}_p and have many automorphisms

Theorem (Bartoli-M.-Torres, 2020)

Let \mathcal{X} be an \mathbb{F}_{p^2} -maximal curves of genus $g \geq 2$, $p \geq 7$. If $|Aut(\mathcal{X})| > 84(g-1)$ then \mathcal{X} is Galois covered by \mathcal{H}_p

- Can Theorem be extended when $|Aut(\mathcal{X})| \le 84(g-1)$? NO!
- Example: \mathbb{F}_{71^2} -maximal Fricke-MacBeath curve

Question (open)

Are there other examples? Is a similar result true for $\mathbb{F}_{p^{2^n}}$ -maximal curves?

Classification and construction A generalization of the GK-curve

(Garcia-Güneri-Stichtenoth, 2010)

Let q be a prime power, $n\geq 3$ odd. The $\mathbb{F}_{q^{2n}}\text{-maximal}$ GGS-curve is

$$\mathcal{C}_{n}: \begin{cases} Z^{\frac{q^{n}+1}{q+1}} = Y^{q^{2}} - Y, \\ Y^{q+1} = X^{q} + X. \end{cases}$$

Theorem (Duursma-Mak, 2012)

For $q\geq 3$ and $n\geq 5$ odd, \mathcal{C}_n is not Galois-covered by \mathcal{H}_{q^n}

Theorem (Giulietti-M.-Zini, 2016)

For q=2 and $n\geq 5$ odd, \mathcal{C}_n is not Galois-covered by \mathcal{H}_{2^n}

- Key steps: If $C_n \cong \mathcal{H}_{2^n}/G$: $|G| = \frac{2^n + 1}{3}$ and G acts semiregularly on \mathcal{H}_{2^n}
- (Hartley, 1925): Maximal subgroups of $PGU(3, 2^n)$ and their action on \mathcal{H}_{2^n}

Classification and construction A new family of maximal curves

(Giulietti-Korchmáros, 2009)

 $Aut(\mathcal{C})/C_{(q^3+1)/(q+1)} \cong PGU(3,q)$ entire $Aut(\mathcal{H}_q)$

(Guralnick-Malmskog-Pries, Güneri-Ozdemir-Stichtenoth, 2012-2013)

 $n \geq 5$, $Aut(\mathcal{C}_n)/C_{(q^n+1)/(q+1)} \cong PGU(3,q)_{P_{\infty}}$ maximal subgroup of $Aut(\mathcal{H}_q)$

- (Mitchell 1911, Hartley 1925) Maximal subgroups of $Aut(\mathcal{H}_q)$
- (M.-Zini, 2018) $PGU(3,q)_{\ell}$ second largest maximal subgroup of $Aut(\mathcal{H}_q) \cong PGU(3,q)$

Idea

Find another family $\{\mathcal{X}_n\}_n$ with $\mathcal{X}_3 \cong \mathcal{C}$ such that $Aut(\mathcal{X}_n)/C_{(q^n+1)/(q+1)} \cong PGU(3,q)_\ell$

$$\mathcal{X}_{n}: \begin{cases} Z^{\frac{q^{n}+1}{q+1}} = Y \frac{X^{q^{2}}-X}{X^{q+1}-1}, \\ Y^{q+1} = X^{q+1} - 1. \end{cases}$$

Classification and construction Intuition: $Aut(\mathcal{C}_n)/C_{(q^n+1)/(q+1)} \cong PGU(3,q)_{P_{\infty}}$

$$C_n: \begin{cases} Y^{q+1} = X^q + X, \\ Z^{\frac{q^n+1}{q+1}} = Y^{q^2} - Y. \end{cases}$$

Let $\alpha \in Aut(\mathcal{H}_q)_{P_{\infty}}$

DTU

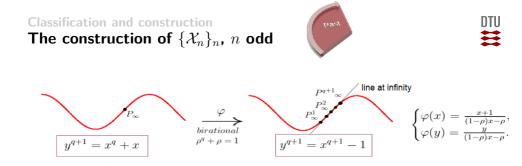
Observation 1

$$\alpha(Y^{q^2} - Y) = a(Y^{q^2} - Y)$$
 for some constant a .

Observation 2

Any such α can be lifted in $Aut(\mathcal{C}_n)$ just by defining $\alpha(Z) = \lambda Z$, $\lambda^{(q^n+1)/(q+1)} = a$

$$\alpha\left(Z^{\frac{q^{n}+1}{q+1}}\right) = \lambda^{\frac{q^{n}+1}{q+1}} Z^{\frac{q^{n}+1}{q+1}} = a(Y^{q^{2}} - Y) = \alpha(Y^{q^{2}} - Y)$$



•
$$\tilde{\varphi}(X,Y,Z) = (\varphi(X),\varphi(Y),-Z/(1-\rho)X-\rho)$$
 defines a birational map

$$\mathcal{C}: \begin{cases} Y^{q+1} = X^q + X, \\ Z^{\frac{q^3+1}{q+1}} = Y^{q^2} - Y. \end{cases} \mapsto \tilde{\varphi}(\mathcal{C}) := \mathcal{X}_3: \begin{cases} Y^{q+1} = X^{q+1} - 1, \\ Z^{\frac{q^3+1}{q+1}} = Y^{\frac{X^{q^2}-X}{X^{q+1}-1}}. \end{cases}$$

• Generalization (as for the GGS):
$$\mathcal{X}_n$$
:
$$\begin{cases} Y^{q+1} = X^{q+1} - 1, \\ Z^{\frac{q^n+1}{q+1}} = Y \frac{X^{q^2} - X}{X^{q+1} - 1}. \end{cases}$$

Classification and construction The construction of $\{\mathcal{X}_n\}_n$, n odd

Theorem (Beelen-M., Journal of the London Math. Soc., 2018)

- **1** \mathcal{X}_3 is isomorphic to the GK curve \mathcal{C} ,
- **2** \mathcal{X}_n is $\mathbb{F}_{q^{2n}}$ -maximal for every q and $n \geq 3$ odd,
- **(3** For every $n \ge 5$ and $q \ge 3 \mathcal{X}_n$ is not Galois-covered by \mathcal{H}_{q^n} ,

(4) For every $n \ge 5$, $Aut(\mathcal{X}_n)/C_{(q^n+1)/(q+1)} \cong PGU(3,q)_{\ell}$, ℓ line at infinity,

5 $g(\mathcal{X}_n) = g(\mathcal{C}_n)$ but \mathcal{X}_n and \mathcal{C}_n are isomorphic if and only if n = 3

- (Beelen-M., 2020) New other maximal curves as Galois-subcovers of \mathcal{X}_n
- (M.- Pallozzi Lavorante, 2020) Weierstrass semigroups and codes

Questions

- Can we use the Natural Embedding Theorem for r = 4?
- What about other properties? (New PhD: Jonathan Tilling Niemann)

Classification and construction From the generalized GK curves

(Tafazolian-Teherán-Herrera-Torres, 2016)

Galois-subcovers of the GGS curve, $m=\frac{q^n+1}{q+1},\ s$ divisor of $m,\ q=p^a,\ \bar{q}=p^b$ with $b\mid a,\ c^{q-1}=-1$

$$\mathcal{Y}_{n,s}: \begin{cases} Z^{m/s} = Y^{q^2} - Y \\ Y^{q+1} = X^q + X \end{cases} \qquad \mathcal{X}_{a,b,n,s}: \begin{cases} Z^{m/s} = Y^{q^2} - Y \\ cY^{q+1} = X + X^{\bar{q}} + \dots + X^{q/\bar{q}} \end{cases}$$

- for some values of the parameters $\mathcal{X}_{a,b,n,s}$ and $\mathcal{Y}_{n,s}$ are not covered by \mathcal{H}_{q^n}
- Reason: values of $g(\mathcal{Y}_{n,s})$ and $g(\tilde{\mathcal{X}}_{a,b,n,s})$
- Observation: the groups inducing $\mathcal{X}_{a,b,n,s}$ and $\mathcal{Y}_{n,s}$ exist also in $Aut(\mathcal{X}_n)$ and $g(\mathcal{X}_n) = g(\mathcal{C}_n)$

Idea

Create the anologue curves $\tilde{\mathcal{X}}_{a,b,n,s}$ and $\tilde{\mathcal{Y}}_{n,s}$ as subcovers of \mathcal{X}_n

Classification and construction The curves $\tilde{\mathcal{Y}}_{n,s}$ and $\tilde{\mathcal{X}}_{a,b,n,s}$

$$n\geq 3$$
 odd, $m=rac{q^n+1}{q+1}$, $s\mid m$, $q=p^a$, $ar{q}=p^b$, $b\mid a$

$$\tilde{\mathcal{Y}}_{n,s}: \begin{cases} Z^{m/s} = Y \frac{X^{q^2} - X}{X^{q+1} - 1} \\ Y^{q+1} = X^{q+1} - 1 \end{cases} \qquad \tilde{\mathcal{X}}_{a,b,n,s} := \tilde{\mathcal{Y}}_{n,s} / E_{\bar{q}} \end{cases}$$

where $E_{\bar{q}} \leq \operatorname{Aut}(\tilde{\mathcal{Y}}_{n,s})$ is the lift to $\tilde{\mathcal{Y}}_{n,s}$ of the stabilizer of $P \in \tilde{\mathcal{H}}_q(\mathbb{F}_{q^2})$, $\tilde{\mathcal{H}}_q: y^{q+1} = x^{q+1} - 1$

(M.-Tizziotti-Zini, 2023)

$$\begin{split} g(\tilde{\mathcal{Y}}_{n,s}) &= g(\mathcal{Y}_{n,s}) \text{ but } \tilde{\mathcal{Y}}_{n,s} \ncong \mathcal{Y}_{n,s} \\ g(\tilde{\mathcal{X}}_{a,b,n,s}) &= g(\mathcal{X}_{a,b,n,s}), \ \tilde{\mathcal{X}}_{a,b,n,s} \ncong \mathcal{X}_{a,b,n,s} \\ \implies \text{ new } \mathbb{F}_{q^{2n}}\text{-maximal curves not covered by } \mathcal{H}_{q^n} \end{split}$$

More info: Giovanni's Talk!

Weierstrass semigroups and maximal curves

Weierstrass semigroups and maximal curves

Let ${\mathcal X}$ be a curve and $P\in {\mathcal X}$

Definition: Weierstrass semigroup at P

 $H(P) = \{ \rho \in \mathbb{Z}_{\geq 0} \mid \text{ there exists a rat. func. } f \text{ with } (f)_{\infty} = \rho P \}$

Weierstrass gap Theorem

 $G(P) = \mathbb{N}_0 \setminus H(P)$ contains exactly $g(\mathcal{X})$ elements called gaps

Theorem

If $\mathcal X$ is $\mathbb F_{q^2}\text{-maximal}$ and $P\in\mathcal X(\mathbb F_{q^2})$ then $r\leq$ number of elements in H(P) less than q+1

- The structure of H(P) is almost always the same: Weierstrass points
- Main ingredient to construct AG codes!
- Hermitian curve: $r = 2 \rightarrow$ (Garcia-Viana, 1986)
- GK curve: $r = 3 \rightarrow ?$
- 17 DTU Compute

Present

Weierstrass semigroups and maximal curves Weierstrass semigroups on the GK curve ${\cal C}$

- (Giulietti-Korchmáros, 2009) $H(P) = \langle q^3 q^2 + q, q^3, q^3 + 1 \rangle$, $P \in \mathcal{C}(\mathbb{F}_{q^2})$
- (Fanali-Giulietti, 2010) H(P), $P \in \mathcal{C}(\mathbb{F}_{q^6}) \setminus \mathcal{C}(\mathbb{F}_{q^2})$ and $q \leq 3$
- (Duursma, 2011) H(P), $P \in \mathcal{C}(\mathbb{F}_{q^6}) \setminus \mathcal{C}(\mathbb{F}_{q^2})$ and $q \leq 9$

Conjecture

Let $P \in \mathcal{C}(\mathbb{F}_{q^6}) \setminus \mathcal{C}(\mathbb{F}_{q^2})$. Then

$$H(P) = \langle q^3 - q + 1, q^3 + 1, q^3 + i(q^4 - q^3 - q^2 + q - 1) \mid i = 0, \dots, q - 1 \rangle$$

• Nothing known for $P \notin \mathcal{C}(\mathbb{F}_{q^6})$

(Beelen-M., 2018)

- H(P) for all $P \in \mathcal{C} \rightarrow$ conjecture proven!
- The set of Weierstrass points of the GK curve is $\mathcal{C}(\mathbb{F}_{q^6})$

Weierstrass semigroups and maximal curves Why was it a conjecture?

Let
$$P = P_{(a,b,c)} \in C(\mathbb{F}_{q^6}) \setminus C(\mathbb{F}_{q^2})$$
 and
 $T := \langle q^3 - q + 1, q^3 + 1, q^3 + i(q^4 - q^3 - q^2 + q - 1) \mid i = 0, \dots, q - 1 \rangle$

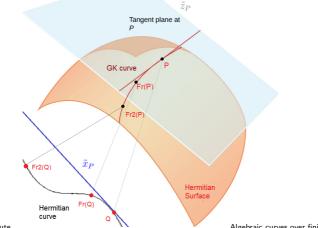
- We need functions $f_{\rho} \in \mathbb{F}_{q^6}(\mathcal{C})$ with $(f_{\rho})_{\infty} = \rho P$, ρ generator of T
- \bullet An explicit description of $f_{\rho}(x,y,z)$ can be really complicated

• Example
$$q = 3$$
: $f_{q^4-q^2+q-1} = f_{74}$ is
 $(2x^3b^{72}+2x^3b^{64}+2x^3b^{56}+2x^3b^{48}+2x^3b^{40}+2x^3b^{32}+2x^3b^{24}+2x^3b^{16}+2x^3b^8+2x^3+2x^2yb^{27}+x^2yb^3+x^2b^{36}+2x^2b^{12}+xy^2b^{54}+2xy^2b^6+xya^3b^{27}+2xya^3b^3+xyb^{63}+2xyb^{39}+2xa^3b^{36}+xa^3b^{12}+xb^{72}+xb^{48}+xb^{24}+y^3b^{73}+y^3b^{65}+y^3b^{49}+y^3b^{41}+2y^3b^{33}+y^3b^{25}+y^3b^{17}+2y^3b^9+y^2a^3b^{54}+2y^2a^3b^6+2y^2b^{66}+y^2b^{18}+2ya^6b^{27}+ya^6b^3+ya^3b^{63}+2a^9b^{72}+2a^9b^{64}+2a^9b^{56}+2a^9b^{48}+2a^9b^{40}+2a^9b^{24}+2a^9b^{16}+2a^9b^8+2a^9+a^6b^{36}+2a^6b^{12}+a^3b^{72}+a^3b^{48}+2ya^3b^{39}+2yb^{75}+2yb^{51}+2yb^{27}+a^3b^{24}+b^{84}+2b^{12})/(-a^{27}-x+b^{27}y+c^{27}z)^3$

Weierstrass semigroups and maximal curves Proving the conjecture: $T \subseteq H(P)$

DTU

- \tilde{z}_P exists with $(\tilde{z}_P) = (q^3 + 1)P (q^3 + 1)P_\infty$ (Fundamental Equality)
- $\tilde{x}_P = -a^q x + b^q y$ (tangent line at P|Q on the Hermitian curve)
- $P \notin \mathcal{C}(\mathbb{F}_{q^2})$: k = 1, 2, k-Frobenius twist of \tilde{x}_P : $\tilde{x}_P^{(k)} = -a^{q^{2k+1}} x + b^{q^{2k+1}}y$



Weierstrass semigroups and maximal curves Proving the conjecture: $T \subseteq H(P)$

(Lemma, Beelen-M., 2018)

Let

$$f_i = \frac{\tilde{x}_P^{q_i} \cdot \tilde{x}_P^{(2)}}{(\tilde{x}_P^{(1)})^i \cdot \tilde{z}_P^{q-i+1}}, \qquad i = 1, \dots, q-1.$$

Then $1/\tilde{z}_P$, $(y-b)/\tilde{z}_P$, \tilde{x}_P/\tilde{z}_P and f_i give $T \subseteq H(P)$

- (M.- Pallozzi Lavorante, 2020) H(P) where $P \in \mathcal{X}_n(\mathbb{F}_{q^2})$
- (Bartoli-M.-Zini, 2020) H(P) at every P: Suzuki curve
- (Beelen-Landi-M., 2021) H(P) at every P: Skabelund curve
- (Beelen-M.-Vicino, 2023) H(P) at every P: third largest genus (Lara's talk!)

Question

Can this method also work for the Ree curve?

Weierstrass semigroups and maximal curves The Fundamental Equality: list decoding

- Guruswami-Sudan list decoding: $c = (f(P_1), \ldots, f(P_n))$ find a polynomial Q such that Q(f) = 0
- Main steps: Interpolation step+root finding (optimize?)
- Theoretically: find a set of conditions that ensure Q exists and has an nice form

(Beelen-M., 202?)

Efficient Guruswami-Sudan list decoding algorithm for AG codes from maximal curves using the fundamental equation

$$Q(z) = Q_{q+1}z_{q+1} + Q_q z^q + Q_1 z + Q_0$$

• We are still working on the algorithmic complexity/optimization!

(Bartoli-M.-Quoos, 2021)

LRC codes from automorphisms of curves of genus $g \ge 1$ (maximal/p-rank zero curves have special automorphism groups Massimo's talk)

(Bartoli-M.-Zini, 2022)

Quantum codes from "Swiss curves"

(Bartoli-Csajbók-M., Marino-M.-Zullo, Bartoli-M., Zanella-M., 2021/2022)

Algebraic curves methods to construct/classify asymptotically **MRD codes** (maximum/exceptional scattered polynomials)

- Dream: find a big picture for all these ad-hoc constructions
- With some extra help: develop the right algebraic curves theory/construct the right curves

Curves with many rational points in coding theory Technical University of Denmark Algebraic curves in Information Theory: a treasure yet to discover 2023/2028

2023: Postdoc (MRD codes)

DTU

X

2024: PhD (Algebraic curves)

2026: Postdoc (LRC codes)

THE VELUX FOUNDATIONS.

VILLUM FONDEN 💥 VELUX FONDEN

Technical University of Denmark

Thank you

Maria Montanucci Department of Applied Mathematics and Computer Science Technical University of Denmark (DTU)

Building 303B, Room 150 2800 Kgs. Lyngby, Denmark marimo@dtu.dk. +45 50106435