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Maximal curves over finite fields
Notation and terminology
• X ⊆ Pr(Fq) projective, geometrically irreducible, non-singular algebraic curve
defined over Fq

• g genus of X
If r = 2 then g = (d−1)(d−2)

2 , where d = deg(X )

• Aut(X ) automorphism group of X over Fq (Massimo’s talk!)

• X (Fq) = X ∩ Pr(Fq)
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Maximal curves over finite fields
Maximal curves

X defined over Fq

Hasse-Weil bound
|X (Fq)| ≤ q + 1 + 2g√q.

Definition
X is Fq-maximal if |X (Fq)| = q + 1 + 2g√q.

Necessary: q square or g = 0 (we change notation: Fq → Fq2)

Example: Fq2-maximal curve
Hermitian curve

Hq : Y q+1 = Xq +X, q = ph

g = q(q − 1)/2, |Hq(Fq2)| = q3 + 1, Aut(Hq) ∼= PGU(3, q)→≥ 16g4

4 DTU Compute Algebraic curves over finite fields 12.2.2023



Maximal curves over finite fields
My research on algebraic curves with many rational points
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Classification and construction
Coverings and Galois-coverings
• X ⊆ Pr(Fq2) and Y ⊆ Ps(Fq2)
• Non-constant φ : X → Y =⇒ Y is covered by X (subcover)
• Fq2(X ) : φ∗(Fq2(Y)) is a finite field extension
• Fq2(X ) : φ∗(Fq2(Y)) Galois =⇒ Y is Galois-covered by X (Galois-subcover)

(Kleiman-Serre, 1987)
If X is Fq2 -maximal and Y is Fq2-covered by X then Y is Fq2-maximal

Conjecture
Every Fq2-maximal curve is (Galois-)covered by the Hermitian curve Hq
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Classification and construction
Natural Embedding Theorem
(Garcia-Stichtenoth, 2006)
The GS curve X9 −X = Y 7 is F36 -maximal and not Galois-covered by H33 .

• Hermitian Variety in Pr(Fq2):
Hr,q : Xq+1

2 +Xq+1
3 + . . .+Xq+1

r = Xq
1X0 +X1X

q
0

Natural Embedding Theorem (Korchmáros-Torres, 2001)
Un to isomorphisms, Fq2-maximal curves are
• contained in some Hr,q for some r ≥ 2
• irreducible of degree q + 1
• not contained in any hyperplane of Pr(Fq)

Definition
r ≥ 2 is the (geometrical) Frobenius dimension of X .

• If r = 2 then X is the Hermitian curve (up to isomorphism) → r ≥ 3?
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Classification and construction
The conjecture is false: GK curve

(Giulietti-Korchmáros, 2009)
Let q be a prime power of a prime p. The GK-curve

C :
{
Z

q3+1
q+1 = Y q

2 − Y,
Xq +X = Y q+1 → Hermitian curve!

if Fq6 -maximal. If q > 2, C is not Fq6-covered by Hq3

Question: Why are both the GK and the GS curve Fq6-maximal?
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Classification and construction
The case of Fp2-maximal curves

Conjecture, 2000
Every Fp2 -maximal curve is a subcover of the Hermitian curve Hp

Note: Known Fp2-maximal curves are Galois-covered by Hp and have many
automorphisms

Theorem (Bartoli-M.-Torres, 2020)
Let X be an Fp2-maximal curves of genus g ≥ 2, p ≥ 7. If |Aut(X )| > 84(g − 1)
then X is Galois covered by Hp

• Can Theorem be extended when |Aut(X )| ≤ 84(g − 1)? NO!
• Example: F712-maximal Fricke-MacBeath curve

Question (open)
Are there other examples? Is a similar result true for Fp2n -maximal curves?
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Classification and construction
A generalization of the GK-curve

(Garcia-Güneri-Stichtenoth, 2010)
Let q be a prime power, n ≥ 3 odd. The Fq2n-maximal GGS-curve is

Cn :
{
Z

qn+1
q+1 = Y q

2 − Y,
Y q+1 = Xq +X.

Theorem (Duursma-Mak, 2012)
For q ≥ 3 and n ≥ 5 odd, Cn is not Galois-covered by Hqn

Theorem (Giulietti-M.-Zini, 2016)
For q = 2 and n ≥ 5 odd, Cn is not Galois-covered by H2n

• Key steps: If Cn ∼= H2n/G : |G| = 2n+1
3 and G acts semiregularly on H2n

• (Hartley, 1925): Maximal subgroups of PGU(3, 2n) and their action on H2n
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Classification and construction
A new family of maximal curves

(Giulietti-Korchmáros, 2009)
Aut(C)/C(q3+1)/(q+1) ∼= PGU(3, q) entire Aut(Hq)

(Guralnick-Malmskog-Pries, Güneri-Ozdemir-Stichtenoth, 2012-2013)
n ≥ 5, Aut(Cn)/C(qn+1)/(q+1) ∼= PGU(3, q)P∞ maximal subgroup of Aut(Hq)

• (Mitchell 1911, Hartley 1925) Maximal subgroups of Aut(Hq)
• (M.-Zini, 2018) PGU(3, q)` second largest maximal subgroup of
Aut(Hq) ∼= PGU(3, q)

Idea
Find another family {Xn}n with X3 ∼= C such that
Aut(Xn)/C(qn+1)/(q+1) ∼= PGU(3, q)`

Xn :

Z
qn+1
q+1 = Y Xq2 −X

Xq+1−1 ,

Y q+1 = Xq+1 − 1.
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Classification and construction
Intuition: Aut(Cn)/C(qn+1)/(q+1) ∼= PGU(3, q)P∞

Cn :

Y
q+1 = Xq +X,

Z
qn+1
q+1 = Y q2 − Y .

Let α ∈ Aut(Hq)P∞

Observation 1

α(Y q2 − Y ) = a(Y q2 − Y ) for some constant a.

Observation 2
Any such α can be lifted in Aut(Cn) just by defining α(Z) = λZ,
λ(qn+1)/(q+1) = a

α

(
Z

qn+1
q+1

)
= λ

qn+1
q+1 Z

qn+1
q+1 = a(Y q2 − Y ) = α(Y q2 − Y )
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Classification and construction
The construction of {Xn}n, n odd

• ϕ̃(X,Y, Z) = (ϕ(X), ϕ(Y ),−Z/(1− ρ)X − ρ) defines a birational map

C :
{
Y q+1 = Xq +X,

Z
q3+1
q+1 = Y q

2 − Y .
7→ ϕ̃(C) := X3 :

{
Y q+1 = Xq+1 − 1,

Z
q3+1
q+1 = Y Xq2

−X
Xq+1−1 .

• Generalization (as for the GGS): Xn :
{
Y q+1 = Xq+1 − 1,
Z

qn+1
q+1 = Y Xq2

−X
Xq+1−1 .
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Classification and construction
The construction of {Xn}n, n odd

Theorem (Beelen-M., Journal of the London Math. Soc., 2018)

1 X3 is isomorphic to the GK curve C,

2 Xn is Fq2n -maximal for every q and n ≥ 3 odd,

3 For every n ≥ 5 and q ≥ 3 Xn is not Galois-covered by Hqn ,

4 For every n ≥ 5, Aut(Xn)/C(qn+1)/(q+1) ∼= PGU(3, q)`, ` line at infinity,

5 g(Xn) = g(Cn) but Xn and Cn are isomorphic if and only if n = 3

• (Beelen-M., 2020) New other maximal curves as Galois-subcovers of Xn
• (M.- Pallozzi Lavorante, 2020) Weierstrass semigroups and codes

Questions
• Can we use the Natural Embedding Theorem for r = 4?
• What about other properties? (New PhD: Jonathan Tilling Niemann)
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Classification and construction
From the generalized GK curves

(Tafazolian-Teherán-Herrera-Torres, 2016)

Galois-subcovers of the GGS curve, m = qn+1
q+1 , s divisor of m, q = pa, q̄ = pb

with b | a, cq−1 = −1

Yn,s :
{
Zm/s = Y q

2 − Y
Y q+1 = Xq +X

Xa,b,n,s :
{
Zm/s = Y q

2 − Y
cY q+1 = X +X q̄ + · · ·+Xq/q̄

• for some values of the parameters Xa,b,n,s and Yn,s are not covered by Hqn

• Reason: values of g(Yn,s) and g(X̃a,b,n,s)
• Observation: the groups inducing Xa,b,n,s and Yn,s exist also in Aut(Xn) and
g(Xn) = g(Cn)

Idea
Create the anologue curves X̃a,b,n,s and Ỹn,s as subcovers of Xn
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Classification and construction
The curves Ỹn,s and X̃a,b,n,s

n ≥ 3 odd, m = qn+1
q+1 , s | m, q = pa, q̄ = pb, b | a

Ỹn,s :

Zm/s = Y Xq2 −X
Xq+1−1

Y q+1 = Xq+1 − 1
X̃a,b,n,s := Ỹn,s/Eq̄

where Eq̄ ≤ Aut(Ỹn,s) is the lift to Ỹn,s of the stabilizer of P ∈ H̃q(Fq2),
H̃q : yq+1 = xq+1 − 1

(M.-Tizziotti-Zini, 2023)

g(Ỹn,s) = g(Yn,s) but Ỹn,s 6∼= Yn,s
g(X̃a,b,n,s) = g(Xa,b,n,s) , X̃a,b,n,s 6∼= Xa,b,n,s
=⇒ new Fq2n-maximal curves not covered by Hqn

More info: Giovanni’s Talk!
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Weierstrass semigroups and maximal curves
Weierstrass semigroups and maximal curves
Let X be a curve and P ∈ X
Definition: Weierstrass semigroup at P
H(P ) = {ρ ∈ Z≥0 | there exists a rat. func. f with (f)∞ = ρP}

Weierstrass gap Theorem
G(P ) = N0 \H(P ) contains exactly g(X ) elements called gaps

Theorem
If X is Fq2 -maximal and P ∈ X (Fq2) then r ≤ number of elements in H(P ) less
than q + 1

• The structure of H(P ) is almost always the same: Weierstrass points
• Main ingredient to construct AG codes!
• Hermitian curve: r = 2 → (Garcia-Viana, 1986)
• GK curve: r = 3 → ?
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Weierstrass semigroups and maximal curves
Weierstrass semigroups on the GK curve C

• (Giulietti-Korchmáros, 2009) H(P ) = 〈q3 − q2 + q, q3, q3 + 1〉, P ∈ C(Fq2)

• (Fanali-Giulietti, 2010) H(P ), P ∈ C(Fq6) \ C(Fq2) and q ≤ 3

• (Duursma, 2011) H(P ), P ∈ C(Fq6) \ C(Fq2) and q ≤ 9

Conjecture
Let P ∈ C(Fq6) \ C(Fq2). Then

H(P ) = 〈q3 − q + 1, q3 + 1, q3 + i(q4 − q3 − q2 + q − 1) | i = 0, . . . , q − 1〉

• Nothing known for P 6∈ C(Fq6)

(Beelen-M., 2018)

• H(P ) for all P ∈ C → conjecture proven!
• The set of Weierstrass points of the GK curve is C(Fq6)
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Weierstrass semigroups and maximal curves
Why was it a conjecture?

Let P = P(a,b,c) ∈ C(Fq6) \ C(Fq2) and

T := 〈q3 − q + 1, q3 + 1, q3 + i(q4 − q3 − q2 + q − 1) | i = 0, . . . , q − 1〉

• We need functions fρ ∈ Fq6(C) with (fρ)∞ = ρP , ρ generator of T
• An explicit description of fρ(x, y, z) can be really complicated

• Example q = 3: fq4−q2+q−1 = f74 is
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Weierstrass semigroups and maximal curves
Proving the conjecture: T ⊆ H(P )
• z̃P exists with (z̃P ) = (q3 + 1)P − (q3 + 1)P∞ (Fundamental Equality)
• x̃P = −aq − x+ bqy (tangent line at P |Q on the Hermitian curve)
• P 6∈ C(Fq2): k = 1, 2, k-Frobenius twist of x̃P : x̃(k)

P = −aq2k+1 − x+ bq
2k+1

y
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Weierstrass semigroups and maximal curves
Proving the conjecture: T ⊆ H(P )
(Lemma, Beelen-M., 2018)
Let

fi = x̃qiP · x̃
(2)
P

(x̃(1)
P )i · z̃q−i+1

P

, i = 1, . . . , q − 1.

Then 1/z̃P , (y − b)/z̃P , x̃P /z̃P and fi give T ⊆ H(P )

• (M.- Pallozzi Lavorante, 2020) H(P ) where P ∈ Xn(Fq2)

• (Bartoli-M.-Zini, 2020) H(P ) at every P : Suzuki curve

• (Beelen-Landi-M., 2021) H(P ) at every P : Skabelund curve

• (Beelen-M.-Vicino, 2023) H(P ) at every P : third largest genus (Lara’s talk!)

Question
Can this method also work for the Ree curve?
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Weierstrass semigroups and maximal curves
The Fundamental Equality: list decoding

• List decoding: the decoder gives a short list of messages that might have been
encoded
• Guruswami-Sudan list decoding: c = (f(P1), . . . , f(Pn)) find a polynomial Q
such that Q(f) = 0

• Main steps: Interpolation step+root finding (optimize?)
• Theoretically: find a set of conditions that ensure Q exists and has an nice form

(Beelen-M., 202?)
Efficient Guruswami-Sudan list decoding algorithm for AG codes from maximal
curves using the fundamental equation

Q(z) = Qq+1zq+1 +Qqz
q +Q1z +Q0

• We are still working on the algorithmic complexity/optimization!
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Curves with many rational points in coding theory
Algebraic curves in Coding Theory

(Bartoli-M.-Quoos, 2021)
LRC codes from automorphisms of curves of genus g ≥ 1 (maximal/p-rank zero
curves have special automorphism groups Massimo’s talk)

(Bartoli-M.-Zini, 2022)
Quantum codes from "Swiss curves"

(Bartoli-Csajbók-M., Marino-M.-Zullo, Bartoli-M., Zanella-M., 2021/2022)
Algebraic curves methods to construct/classify asymptotically MRD codes
(maximum/exceptional scattered polynomials)

• Dream: find a big picture for all these ad-hoc constructions
• With some extra help: develop the right algebraic curves theory/construct the
right curves
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Curves with many rational points in coding theory
Algebraic curves in Information Theory: a treasure yet to
discover 2023/2028
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