Grassmann geometries of codes

I. Cardinali, LG

Grassmann

Codes on Grassmannians

C-----

Grassmann geometries of codes

Luca Giuzzi

(Joint work with Ilaria Cardinali)

University of Brescia

CoGnaC

Conference On alGebraic varieties over fiNite fields and Algebraic geometry Codes Conférence sur les variétés algébriques sur les corps finis et les codes géométriques algébriques

Marseille — 13–17 February 2023

Grassmann geometries

Grassmann geometries of codes

I. Cardinali, LG

Grassmann

geometries

Codes on Grassmannian

Grassmannians Codes

Projective k-grassmannian

- ▶ Point-line geometry $\mathfrak{G}_{n,k} := (\mathcal{G}_{n,k}, \mathcal{L}_k)$:
 - Points $\mathscr{G}_{n,k}$: k-dimensional subspaces of V_n
 - Two elements C_1 , C_2 are collinear if and only if $C_1 \cap C_2 \in \mathcal{G}_{n,k-1}$.
- ▶ $\Gamma_{n,k} := (\mathscr{G}_{n,k}, \mathscr{E}_k)$: collinearity graph of $\mathfrak{G}_{n,k}^{\delta}$.

Observation

Lines \mathcal{L}_k :

- if k < n-1: sets $\ell_{X,Y} := \{Z : X < Z < Y\}$ with $X \in \mathcal{G}_{n,k-1}$, $Y \in \mathcal{G}_{n,k+1}$;
- if k = n-1: sets $\ell_Z := \{Z : X < Z\}$ with $Z \in \mathcal{G}_{n,n-2}$.

Transparency

Grassmann geometries of codes

I. Cardinali, LG

Grassmann geometries

Codes on Grassmannians

Grassmannians

Grassmannians Codes

Question

The image $G_{n,k}$ of the Plücker embedding ε of a Grassmann geometry $\mathfrak{G}_{n,k}$ is an algebraic variety.

How much information about the geometry can be read from just the variety?

In other words: can we recover the point-line geometry from just the image of the embedding?

Transparency

A full projective embedding $\varepsilon: \mathfrak{G} \to \mathrm{PG}(\bigwedge^k V)$ is *transparent* if the image of any line of \mathfrak{G} is a line of $\mathrm{PG}(\bigwedge^k V)$ and, conversely the preimage of any line contained in $\varepsilon(\mathfrak{G})$ is a line of \mathfrak{G} .

Transparency

Grassmann geometries of codes

I. Cardinali, LG

Grassmann geometries

Codes on Grassmannians

Grassmannians o

Remark

For projective Grassmannians: Chow's theorem.

Theorem (I. Cardinali, LG, A. Pasini)

- ► The Plücker embedding of
 - **1** a <u>projective</u> grassmannian $\mathfrak{G}_{n,k}$ is transparent.
 - **②** ..
- **...**

Codes on grassmannians

Grassmann geometries of codes

I. Cardinali, LG

Grassmann geometries

Grassmanni

Grassmannians (

General problem

- A q-ary linear [n, k, d]-code is a k-dimensional subspace of \mathbb{F}_q^n .
- ▶ The linear [n, k]-codes are represented as points on the Grassmann geometry $\mathfrak{G}_{n,k}$.
- ► We study the *graph* of the codes.

Remark

Related also to code density problems. (e.g. given $X \in \Gamma_{n,k}$ what is the spectrum of the distances from X in $\Gamma_{n,k}$ of the codes with given minimum distance.)

Codes on grassmannians

Grassmann geometries of codes

I. Cardinali, LG

Grassmann geometries

Codes on Grassmannia

Grassmannians o

- M. Kwiatkowski, M. Pankov, "On the distance between linear codes", Finite Fields Appl. **39** (2016), 251–263
- M. Kwiatkowski, M. Pankov, A. Pasini, "The graphs of projective codes", Finite Fields Appl. **54** (2018), 15–29.
- I. Cardinali, LG, M. Kwiatowski, "On the Grassmann graph of linear codes", Finite Fields Appl. **75** (2021), 101895.
- M. Pankov, "The graphs of non-degenerate linear codes", J. Combin Th. A **195** (2023) 105720.
- I. Cardinali, LG, "Grassmannians of codes", in preparation.

Dual minimum distance

Grassmann geometries of codes

I. Cardinali, LG

Grassmann geometries Codes on

Grassmannians

Grassmannians o

Construction

- ightharpoonup C: [n,k]-linear code
- ▶ $d^{\perp}(C) := \min\{w_H(c'): c' \in C^{\perp} \setminus \{0\}\}$ (dual minimum distance)
- ▶ $\mathscr{C}_{n,k}^{\delta} := \{C \in \mathscr{G}_{n,k} : d^{\perp}(C) \geq \delta + 1\}$ [n,k]-codes with prescribed dual minimum distance $\delta + 1$.

Any $\delta + 1$ columns of the generator matrix of C are linearly independent.

- $\Gamma_{n,k} := (\mathcal{G}_{n,k}, \mathcal{E}_k) \text{ collinearity graph of } \mathfrak{G}_{n,k}$ $(X,Y) \in \mathcal{E}_k \Leftrightarrow \dim(X \cap Y) = k-1.$
- $ightharpoonup \Lambda_{n,k}^{\delta}$: subgraph of $\Gamma_{n,k}$ whose vertices are elements of $\mathscr{C}_{n,k}^{\delta}$.

Dual minimum distance

Grassmann aeometries of codes

I. Cardinali, LG

Codes on

Remarks

- $\triangleright \mathscr{C}^1_{n,k}$: non-degenerate linear codes: no zero column in the generator matrix
- $\triangleright \mathscr{C}^2_{n,k}$: projective codes: no proportional columns in the generator matrix
- $\triangleright \mathscr{C}_{n,k}^3$: caps: no three columns on a line in the generator matrix

Codes on grassmannians

Grassmann geometries of codes

I. Cardinali, LG

Grassmann geometries Codes on

Grassmannians

Basic questions

- ▶ Is the subgraph $\Lambda_{n,k}^{\delta}$ of [n,k]-codes with dual minimum distance at least $\delta+1$ connected?
- Are there nice axiomatic descriptions for $\Lambda_{n,k}^{\delta}$?
- What is the relationship between the automorphisms of $\Lambda_{n,k}^{\delta}$ and those of $\Gamma_{n,k}$?
- Are there manageable equations describing the embedding $\varepsilon(\Lambda_{n,k}^{\delta})$?
- ▶ What is the (average) valency of vertices of $\Lambda_{n,k}^{\delta}$?
- **.**..

Codes on grassmannians: some results

Grassmann aeometries of codes

I. Cardinali, LG

Codes on

Theorem (I. Cardinali, LG, M. Kwiatkowski, 2021)

Suppose $1 \le \delta \le k \le n$ and that \mathbb{F} is a field with $|\mathbb{F}| \ge \binom{n}{\delta}$. Then

- $ightharpoonup \Lambda_{n,k}^{\delta}$ is connected;
- $ightharpoonup \Lambda_{n,k}^{\delta}$ is isometrically embedded into $\Gamma_{n,k}$;
- $ightharpoonup \Lambda_{n,k}^{\delta}$ and $\Gamma_{n,k}$ have the same diameter.

Remark (I. Cardinali, LG)

The graph $\Lambda_{q+1,3}^2$ over \mathbb{F}_q with q odd is connected. Its diameter is larger than 3.

Equivalent codes

Grassmann aeometries of codes

I. Cardinali, LG

Codes on

Theorem (I. Cardinali, LG)

The equivalence class of a [n,k]-code is connected in $\Lambda_{n,k}^{\delta}$.

aup to monomial transformations

Proof.

- lacktriangle The monomial group \mathscr{M} acts as $\mathbb{F}_a^* \wr S_n$ on the columns of a generator matrix for a code $C \in \mathscr{C}_{n,k}^{\delta}$;
- \blacktriangleright \mathcal{M} acts on $\mathscr{C}_{n,k}^{\delta}$ (it preserves the dual distance);
- ► There is a set of generators for *M* each of which sends elements of $\Lambda_{n,k}^{\delta}$ to adjacent elements of $\Lambda_{n,k}^{\delta}$.

Codes on grassmannians: Chow-style theorems

Grassmann geometries of codes

I. Cardinali, LG

Grassmanr geometries

Grassmannians

Grassmannians (

Theorem (M. Pankov, 2023)

Suppose 1 < k < n-1, $q < \infty$. Then

- ▶ If $q \ge 3$ or $k \ge 3$, then every isomorphism of $\Lambda_{n,k}^1$ to a subgraph of $\Gamma_{n,k}$ can be uniquely extended to an automorphism of $\Gamma_{n,k}$.
- If q = k = 2, then there are subgraphs of $\Gamma_{n,2}$ isomorphic to $\Lambda_{n,2}^1$ and such that isomorphisms between these subgraphs cannot be extended to automorphisms of $\Gamma_{n,2}$.

Codes on grassmannians

Grassmann aeometries of codes

I. Cardinali, LG

Codes on

Remark

- Let $C, C' \in \mathscr{C}_{n,k}^{\delta}$ with (C, C') adjacent in $\Lambda_{n,k}^{\delta}$ (equivalent to being adjacent in $\Gamma_{n,k}$);
- ▶ Take ℓ : unique line of $\mathfrak{G}_{n,k}$ containing C, C';
- ▶ There might be $X \in \ell$ with $X \notin \mathcal{C}_{n,k}^{\delta}$.

The collinearity of $\Lambda_{n,k}^{\delta}$ does not determine lines of codes.

Grassmannians of codes

Grassmann geometries of codes

•

Grassmann geometries

Grassmannians

Grassmannians of Codes

Non-degenerate codes

codes Proiective codes

Projective codes
General case
Future development

Definition

- $\qquad \qquad \textbf{Point-line geometry } \mathfrak{C}_{n,k}^{\delta} = (\mathscr{C}_{n,k}^{\delta},\mathscr{L}_{n,k}^{\delta}) \text{:}$
 - Points $\mathscr{C}_{n,k}^{\delta}$: [n,k]-codes of dual minimum distance $> \delta$.
 - Two elements C_1 , C_2 are collinear if and only if $C_1 \cap C_2 \in \mathscr{C}_{n,k-1}^{\delta}$.
- $ightharpoonup \Theta_{n,k}^{\delta}$: collinearity graph of $\mathfrak{C}_{n,k}^{\delta}$.

Observation

Lines $\mathcal{L}_{n,k}^{\delta}$:

- if k < n-1: sets $\ell_{X,Y} := \{Z : X < Z < Y\}$ with $X \in \mathscr{C}_{n,k-1}^{\delta}$, $Y \in \mathscr{C}_{n,k+1}^{\delta}$.
- ▶ if k = n 1: sets $\ell_Z := \{Z : X < Z\}$ with $X \in \mathscr{C}_{n,n-2}^{\delta}$.

Grassmannians of codes: collinearity graph

Grassmann geometries of codes

I. Cardinali, LG

Grassmann geometries

Codes on Grassmannian

Grassmannians of

Codes
Non-degenerate codes

codes
Projective codes
General case
Future developments

Remarks

- $\mathfrak{C}_{n,k}^{\delta}$ is constructed in analogy to $\mathfrak{G}_{n,k}$ by replacing $\mathscr{G}_{n,k-1}$ and $\mathscr{G}_{n,k+1}$ with $\mathscr{C}_{n,k-1}^{\delta}$ and $\mathscr{C}_{n,k+1}^{\delta}$.
- $ightharpoonup \Theta_{n,k}^{\delta}$ is analogous to $\Gamma_{n,k}$.
- The graph $\Lambda_{n,k}^{\delta}$ is a subgraph of $\Gamma_{n,k}^{\delta}$.
- $lackbox{ }\Theta_{n,k}^\delta$ and $\Lambda_{n,k}^\delta$ have the <u>same</u> vertices.
- Adjacency in $\Theta_{n,k}^{\delta}$ implies adjacency in $\Lambda_{n,k}^{\delta}$ but the converse is false.
- We study the geometry of the codes.
- In general $\Theta_{n,k}^{\delta}$ is not connected.

Definition

$$v_{\delta}(k;q) := \min\{n : \Theta_{n,k}^{\delta} \text{ not connected}\}.$$

Index of a code

Grassmann geometries of codes

I. Cardinali, LG

Grassmanr aeometries

Codes on

Grassmannians of

Codes

Non-degenero

codes
Projective cod

General case
Future developments

Remark

The codes $C \in \mathscr{C}_{n,k}^{\delta}$ which do not contain as a subspace any code in $\mathscr{C}_{n,k-1}^{\delta}$ are isolated points of $\Theta_{n,k}^{\delta}$.

- $\qquad \qquad \nu_{\delta}^{+}(k;q) := \min\{n : \mathscr{I}_{n,k}^{\delta} \neq \emptyset\};$
- ightharpoons $\Theta_{n,k}^{\delta}$: subgraph of $\Theta_{n,k}^{\delta}$ induced by $\mathscr{C}_{n,k}^{\delta} \setminus \mathscr{I}_{n,k}^{\delta}$.

Remark

▶ If there is $n' := \nu_{\delta}(k;q)$ such that $\Theta_{n',k}^{\delta}$ is not connected, then $\Theta_{n,k}^{\delta}$ is not connected for any n > n'.

Questions

Grassmann geometries of codes

I. Cardinali, LG

geometries

Grassmannians of

Codes

Non-degenerate codes Projective codes General case

 $v_{\delta}(k;q) \le v_{\delta}^{+}(k;q).$

Questions

- When is $\Theta_{n,k}^{\delta}$ connected? Determine $v_{\delta}(k;q) := \min\{n : \Theta_{n,k}^{\delta} \text{ not connected}\}$
- For $n \ge v_\delta(k;q)$, when is $\overline{\Theta_{n,k}^\delta}$ the only connected component of $\Theta_{n,k}^\delta$ with more than one element? In other words: when does $\Theta_{n,k}^\delta$ have a connected component as large as possible?
- ▶ When do we have $v_{\delta}(k;q) = v_{\delta}^{+}(k;q)$?
- ▶ Chracterize the elements of $\mathscr{I}_{n,k}^{\delta}$.

$\delta = 1$: non-degenerate codes

Grassmann geometries of codes

I. Cardinali, LG

Grassmann geometries

Grassmannians

Non-degenerate codes

Projective codes General case Future developments

Theorem (I. Cardinali, LG)

- Either the graph $\Theta^1_{n,k}$ is connected or it consists of a large connected component coinciding with $\overline{\Theta^1_{n,k}}$ and the isolated vertices of $\mathscr{I}^1_{n,k}$.
- 2 The elements of $\mathscr{I}^1_{n,k}$ are exactly the codes whose generator matrix contains as columns representatives for all the points of PG(k-1,q).
- 0

$$v_1(k;q) = v_1^+(k;q) = \frac{q^k - 1}{q - 1}.$$

$\delta = 1$: transparency

Grassmann geometries of codes

I. Cardinali, LG

geometries

Grassmanniar

Grassmannians Codes

Non-degenerate codes

Projective codes

General case

Future developments

Theorem (I. Cardinali, LG)

The Plücker embedding of $\mathfrak{C}_{n,k}^1$ is transparent.

Remark

- ▶ If two codes $C_1, C_2 \in \mathcal{C}_{n,k}^1$ are collinear in $\mathfrak{C}_{n,k}^1$, then for all elements C of the line of $\mathfrak{G}_{n,k}$ through C_1 and C_2 we have $C \in \mathcal{C}_{n,k}^1$.
- Conversely, if $C_1, C_2 \in \mathcal{C}^1_{n,k}$ are not collinear, then there is X in the line of $\mathfrak{G}_{n,k}$ through C_1 and C_2 with $X \notin \mathcal{C}^1_{n,k}$.

$\delta = 2$: projective codes

Grassmann aeometries of codes

I. Cardinali, LG

Projective codes

Theorem (I. Cardinali, LG)

- ▶ The codes in $\mathscr{I}_{n,k}^2$ correspond to the 1-saturating sets of PG(k-1,q), i.e. the secants to the projective system of the columns of the generator matrices of codes in $\mathscr{I}_{n,k}^2$ cover all points of PG(k-1,q).
- \triangleright $\Theta_{n,k}^2$ consist of the union of $\Theta_{n,k}^2$ and the isolated vertices in $\mathscr{I}_{n,k}^2$.
- $\nu_2(k;q) = \nu_2^+(k;q).$

Theorem (I. Cardinali, LG)

The Plücker embedding of $\mathfrak{C}_{n,k}^2$ is transparent.

On $\mathscr{I}_{k,n}^2$ and $v_2(k;q)$

Grassmann aeometries of codes

I. Cardinali, LG

Projective codes

Bounds

- $\nu_2^+(k;q) = \min\{|\Omega|: \Omega \text{ saturating set of } PG(k-1,q)\}.$
- Trivial bound:

$$\binom{n}{2}(q-1)+n \ge \frac{q^k-1}{q-1}.$$

Many "highly nontrivial" bounds from the theory of saturating sets.

Saturating sets

Grassmann aeometries of codes

I. Cardinali, LG

Definition

 $\Omega \subseteq PG(k-1,q)$ is δ -saturating if

 $\forall x \in PG(k-1,q): \exists p_0, p_1, \dots, p_{\delta} \in \Omega: x \in \langle p_0, \dots, p_t \rangle.$

Remarks

- There is an extensive literature on saturating sets: Bartocci, Bartoli, Brualdi, Pless, Wilson, Davydov, Denaux, Faina, Gács, Giulietti, Janwa, Kovács, Marcugini, Östergård, Pambianco, Szőnyi, Ughi, etc.
- Dual code with covering radius δ + 1.
- Bounds on the minimal size of δ-saturating sets are upper bounds for $v_{\delta}(k;a)$.

$\delta \geq 2$: the set $\mathscr{I}_{n,k}^{\delta}$

Grassmann aeometries of codes

I. Cardinali, LG

Remark

In $\mathscr{C}_{n,k}^{\delta}$ any set of δ points is independent.

Theorem (I. Cardinali, LG)

▶ If $\delta \ge 2$ then $C \in \mathscr{I}_{n,k}^{\delta}$ if and only if the set of all columns of C, regarded as points of PG(k-1,q), are a $(\delta-1)$ -saturating set.

Remark

▶ Links with ℓ-secant varieties.

$\delta \geq 2$: main lemma

Grassmann geometries of codes

I. Cardinali, LG

Grassmann geometries

Codes on Grassmannian:

Grassmannians of

Codes

codes
Projective co

Projective co

General case
Future development

Lemma (I. Cardinali, LG)

If the graph $\Lambda_{n,k-1}^{\delta}$ is connected, then $\Theta_{n,k}^{\delta}$ is the union of $\overline{\Theta_{n,k}^{\delta}}$ and the isolated vertices in $\mathscr{I}_{n,k}^{\delta}$. So $v_{\delta}(k;q) = v_{\delta}^{+}(k;q)$.

Strategy

We can prove that $\Theta_{n,k}^{\delta}$ is connected by showing that

- $ightharpoonup \Lambda_{n k-1}^{\delta}$ is connected;
- $\triangleright \mathscr{I}_{n,k}^{\delta} = \emptyset.$

$\delta > 2$: connectedness

Grassmann aeometries of codes

I. Cardinali, LG

Theorem (I. Cardinali, LG)

- ▶ If $\delta = k-1$, then $\mathcal{C}_{n,k}^{k-1} = \mathcal{I}_{n,k}^{k-1}$. MDS codes
- If $\delta < k-1$ and $q > \binom{n}{\delta}$ then $\mathscr{I}_{n,k}^{\delta} = \emptyset$ and $\Theta_{n,k-1}^{\delta}$ is connected.

Remark

▶ The theorem does not help for computing $v_{\delta}(k;q)$ as the value of q depends on n.

Open problem

▶ Lower the bound $q > \binom{n}{\delta}$.

$\delta \ge 2$: equivalent codes

Grassmann geometries of codes

I. Cardinali, LG

Grassmann aeometries

Codes on Grassmannians

Grassmannians o

Codes

Non-degener codes Projective cod

Projective cod

General case

Theorem (I.Cardinali, LG)

Take $C_1, C_2 \in \mathscr{C}_{n,k}^{\delta} \setminus \mathscr{I}_{n,k}^{\delta}$ to be two equivalent codes. Then C_1 and C_2 belong to the same connected component of $\Theta_{n,k}^{\delta}$.

Proof.

- \bullet $\theta \in \mathcal{M}$: monomial morphism from C_1 to $C_2 = \theta(C_1)$.
- ▶ $D_1 < C_1$: code with $D_1 \in \mathscr{C}_{n k-1}^{\delta}$.
- $ightharpoonup D_1$ is in the same connected component as $\theta(D_1)$ in $\Lambda_{n,k-1}^{\delta}$.
- Lift the path from D_1 to $\theta(D_1)$ to a path in $\Theta_{n,k}^{\delta}$ from C_1 to a code C_1' containing $\theta(D_1)$.
- ▶ There is a path from C'_1 to C_2 in $\Theta^{\delta}_{n,k}$.

In general the chosen generators of ${\mathscr M}$ do not send codes to adjacent codes in $\Theta_{n,k'}^\delta.$

General observations

Grassmann geometries of codes

I. Cardinali, LG

Grassmann geometries

Grassmannians

Grassmannians o

Non-degeneral codes

Projective codes
General case

The interesting families to describe are those $C \in \mathscr{I}_{n,k'}^{\delta}$ for they are minimal with respect to the dimension of their embedding.

- ▶ In order to have the geometry of codes of prescribed minimum distance, we consider the action of a duality $\mathfrak{G}_{n,k} \to \mathfrak{G}_{n,n-k}$.
- ▶ In the case of codes with prescribed minimum distance the isolated vertices are codes which are dimension-maximal.

Future work and open questions

Grassmann geometries of codes

I. Cardinali, LG

Grassmanr aeometrie:

Codes on Grassmannian

Grassmannians o

Non-degenerat

Projective code

Future development

- ▶ Lower the bound $q > \binom{n}{\delta}$ for $\Theta_{n,k}^{\delta}$ to be connected.
- ▶ Do there exist cases where $v_{\delta}(k;q) < v_{\delta}^{+}(k;q)$?
- ▶ What can we say of $\liminf_{q\to\infty} \frac{\nu_{\delta}^{+}(k;q)}{\nu_{\delta}(k;q)}$?
- For any given q, k and $\delta \ge 2$ determine effective bounds on $\nu_{\delta}(k;q)$.
- Consider Grassmann geometries of selected families of codes.
- Experiment with different notions of collinearity inherited from the incidence structure of $\mathfrak{G}_{n,k}$.