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Today is February 14th! Looking for the perfect gift for Valentine’s Day?

Offer a theorem instead:
THEOREMS ARE FOREVER1!

1. See the end of the talk for my endless gift!
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Curves, surfaces, rational points and all that jazz

We let Fq denote a finite field with q elements and Pn
Fq

the projective space.

An algebraic projective variety X defined over Fq is the set of zeros of homogenous polynomials
f1, . . . , fr ∈ Fq[x0, . . . , xn] irreducible over Fq:

X
def
= {P ∈ Pn | f1(P ) = · · · = fr(P ) = 0}.

The set of rational points of X is

X(Fq)
def
= {P = (a0 : · · · : an) ∈ X | ∀ i, ai ∈ Fq} = {P ∈ X |

Frobenius morphism

Φ(P ) = P}.

Today: algebraic varieties of dimension one (curves C) and two (surfaces S) in P3.
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Existing bounds

Theorem [Hasse–Weil, 1948]

If C is an absolutely irreducible smooth curve of genus g defined over the finite field Fq, then
#C(Fq) ≤ q + 1 + 2g

√
q.

Theorem [Homma, 2012]

If C is a non–degenerate curve defined over Fq of degree δ in Pn, with n ≥ 3, then
#C(Fq) ≤ (δ − 1)q + 1.

Theorem [Stöhr–Voloch, 1986]

Let C/Fq be an irreducible smooth curve of genus g and degree δ in Pn. Let ν1, . . . , νn−1 be its
Frobenius orders (generically νi = i). Then

#C(Fq) ≤ 1

n
((ν1 + · · ·+ νn−1)(2g − 2) + (q + n)δ) .
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Stöhr and Voloch’s strategy for plane curves

Take C a plane curve of deg. δ defined by f = 0 over Fq. Write Φ for the q–Frobenius morphism.

C(Fq) = {P ∈ C | Φ(P ) = P}⊆

{P ∈ C | Φ(P ) ∈ TPC}
def
= Z.

Set g(X,Y ) = XqfX + Y qfY + ZqfZ .
Then Z = C ∩ (g = 0).

Bézout’s theorem: if dimZ = 0, the number
of points in Z counted with multiplicity is equal
to (deg f) · (deg g) = δ(δ + q − 1).

Multiplicity: If P ∈ C(Fq), then mP (Z) ≥ 2.

P = Φ(P )

Q

Φ(Q)

R

Φ(R) 6= R′

Theorem [Stöhr–Voloch, 1986]

If C has at least a non–flex point (⇒ dimZ = 0), then #C(Fq) ≤ 1
2δ(δ + q − 1).

On the number of rational points of curves over a surface in P3 E. Berardini & J. Nardi 5 / 14
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Bézout’s theorem: if dimZ = 0, the number
of points in Z counted with multiplicity is equal
to (deg f) · (deg g) = δ(δ + q − 1).

Multiplicity: If P ∈ C(Fq), then mP (Z) ≥ 2.

P = Φ(P )

Q

Φ(Q)

R

Φ(R) 6= R′
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Ideas & Motivations

Let C ⊂ S ↪−→ Pn (via a very ample divisor).

Goal: bounding #C(Fq) in terms of the embedding.
(features of the surface S and the ambient Pn)

Main motivations:

• New bound for the number of rational points on projective curves.
(hopefully improving the previous ones)

• Application to geometric coding theory.

Bounding the minimum distance
of a code from a surface S

 
Bounding #C(Fq)

for the irreducible curves C on S

Better lower bound for the minimum distance ⇐⇒ Better upper bound for #C(Fq)
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Strategy (n = 3)

Let S : (f = 0) ⊂ P3 be a smooth irreducible algebraic surface of degree d defined Fq.

Set CS
Φ

def
= {P ∈ S | Φ(P ) ∈ TPS}. Then S(Fq) ⊂ CS

Φ.

CS
Φ : f = h = 0 for h := Xq

0f0 +Xq
1f1 +Xq

2f2 +Xq
3f3⇒ deg h = d+ q − 1.

Take a curve C ⊂ S of degree δ. Then C(Fq) ⊆ C ∩ CS
Φ.

If C ∩ CS
Φ is a finite set of points, then

#C(Fq) ≤ deg(C ∩ CS
Φ)

min
P∈C(Fq)

mP (C,CS
Φ)
≤ δ(d+ q − 1)

2
.

On the number of rational points of curves over a surface in P3 E. Berardini & J. Nardi 7 / 14
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Comparisons with pre–existing bounds
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(a) q = 9 and d = 5
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.

Figure: Bounds on the number of Fq–points on a non–plane curve C on a degree d surface S ⊂ P3.

→ It is worth working on this bound!
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Strategy (2/2)

Let S : (f = 0) ⊂ P3 be a smooth irreducible algebraic surface of degree d defined Fq.

Set CS
Φ

def
= {P ∈ S | Φ(P ) ∈ TPS}. Then S(Fq) ⊂ CS

Φ.

CS
Φ : f = h = 0 for h := Xq

0f0 +Xq
1f1 +Xq

2f2 +Xq
3f3⇒ deg h = d+ q − 1.

Take a curve C ⊂ S of degree δ. Then C(Fq) ⊆ C ∩ CS
Φ.

If C ∩ CS
Φ is a finite set of points, then

#C(Fq) ≤ deg(C ∩ CS
Φ)

min
P∈C(Fq)

mP (C,CS
Φ)
≤ δ(d+ q − 1)

2
.

Two necessary conditions for dim(C ∩ CS
Φ) = 0:

1 dimCS
Φ = 1: in this case, the surface is said to be Frobenius classical ;

Counterexample: the Hermitian surface X
√

q+1 + Y
√
q+1 + Z

√
q+1 + T

√
q+1 = 0 over Fq.

Ë p - d(d− 1)⇒ S is Frobenius classical.

2 C does not share any components with CS
Φ.

Counterexample: if S contains a Fq–line L, then L ⊂ CS
Φ . The bound does not hold.

Aim: understanding the components of the curve CS
Φ for a Frobenius classical surface.

On the number of rational points of curves over a surface in P3 E. Berardini & J. Nardi 9 / 14
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Strategy (2/2)
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2
.
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√
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√
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√
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√
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Counterexample: if S contains a Fq–line L, then L ⊂ CS
Φ . The bound does not hold.

Aim: understanding the components of the curve CS
Φ for a Frobenius classical surface.

On the number of rational points of curves over a surface in P3 E. Berardini & J. Nardi 9 / 14



Introduction Strategy Geometry of curves Curves over Frobenius classical surfaces Result and conclusion

Osculating spaces and P -orders (Stöhr–Voloch theory 1)

Let C ⊂ P3 be an absolutely irreducible projective curve defined over Fq. Fix P ∈ C.
An integer j is a P–order if there exists a plane intersecting the curve C with multiplicity j at P .
If C is non–plane and P is non–singular, there are exactly four distinct P–orders:

j0 = 0 < j1 < j2 < j3.

Remark: j1 = 1 ⇔ C is non–singular at the point P .

Osculating spaces: T
(i)
P C =

⋂
{planes H s.t. mP (C,H) ≥ ji+1}.

Equation of the osculating plane T
(2)
P C :

∣∣∣∣∣∣∣∣
X0 X1 X2 X3

x0 x1 x2 x3

D
(j1)
t x0 D

(j1)
t x1 D

(j1)
t x2 D

(j1)
t x3

D
(j2)
t x0 D

(j2)
t x1 D

(j2)
t x2 D

(j2)
t x3

∣∣∣∣∣∣∣∣ = 0

where D
(j)
t are the Hasse derivatives with respect to a a local parameter t at P defined by

D
(i)
t tk =

(
k

i

)
tk−i.
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Frobenius orders (Stöhr–Voloch theory 2)

Fix P ∈ C ⊂ P3 with P–orders (0, j1, j2, j3). Then Φ(P ) ∈ T (2)
P C if and only if

∆(j1, j2)
def
=

∣∣∣∣∣∣∣∣
xq0 xq1 xq2 xq3
x0 x1 x2 x3

D
(j1)
t x0 D

(j1)
t x1 D

(j1)
t x2 D

(j1)
t x3

D
(j2)
t x0 D

(j2)
t x1 D

(j2)
t x2 D

(j2)
t x3

∣∣∣∣∣∣∣∣ = 0

Theorem [Stöhr–Voloch, 1986]

There exist integers ν1 < ν2 s.t. ∆(ν1, ν2) is a nonzero function.

Definition

The integers ν0 = 0, ν1, ν2 chosen minimally with respect to the lexicographic order are called the
Frobenius orders of C.

The curve C is Frobenius classical if (ν1, ν2) = (1, 2), Frobenius non–classical otherwise.
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Frobenius non–classical curves on surfaces

Aim: Understand the components of CS
Φ= {P ∈ S | Φ(P ) ∈ TPS} on a Frob. classical surface.

Proposition [BN21]

Let C be a non–plane curve lying on a surface S. Assume that C is Frobenius non–classical with
ν1 = 1. Then C is not a component of CS

Φ.

What about ν1 > 1? ν1 > 1⇒ Φ(P ) ∈ TPC ⊂ TPS
(Sad) Fact: Frobenius non–classical curves with ν1 > 1 are components of CS

Φ. However...

Proposition [BN21]

Assume that C is Frobenius non–classical with ν1 > 1 and δ ≤ q. Then C is plane.

Remark: Hefez and Voloch (1990) gave the exact number of rational points on smooth curves with

ν1 > 1, while Borges and Homma (2018) studied singular plane curves with ν1 > 1.

Tool: Use the existence and the minimality of the Frobenius orders ν1, ν2 s.t. ∆(ν1, ν2) 6= 0.
Example: C is Frobenius non–classical ⇒ {ν1, ν2} 6= {1, 2} ⇒ ∆(1, 2) = 0. If Φ(P ) ∈ TPS

⇒ ∆(1, 2) = (u′′ − g′′uy) [(x− x̃)g′ − (y − ỹ)] = 0
Φ(P ) 6∈ TPS ν1 > 1
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Φ(P ) 6∈ TPS ν1 > 1

On the number of rational points of curves over a surface in P3 E. Berardini & J. Nardi 12 / 14



Introduction Strategy Geometry of curves Curves over Frobenius classical surfaces Result and conclusion

Frobenius classical components of CS
Φ

Recap: A component of CS
Φ falls in one of the following cases:

• ν1 > 1: in this case, if it has δ ≤ q, it is plane;

• it is Frobenius classical, i.e. {ν1, ν2} = {1, 2}.

Conjecture: Non–plane Frobenius classical curves with δ ≤ q are not components of CS
Φ.

Example of surface with highly reducible CS
Φ

Over F5, consider the surface S defined by

f = 2X0X
2
1 + 2X3

1 + 2X2
0X2 + 2X0X1X2 +X2

1X2 + 2X0X
2
2 + 3X1X

2
2

+3X3
2 + 4X2

0X3 +X0X1X3 +X2
1X3 + 2X1X2X3 + 2X2

2X3

+3X0X
2
3 + 4X1X

2
3 +X2X

2
3 .

The curve CS
Φ has degree 21 and is formed of 15 F5–lines and one non–plane sextic (δ = q + 1).
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Main result & Conclusion

Theorem [BN21]

Let S be an irreducible Frobenius classical surface of degree d > 1 in P3. Let C be a non–plane
irreducible curve of degree δ ≤ q lying on S. Suppose C is Frobenius non–classical. Then

#C(Fq) ≤ δ(d+ q − 1)

2
.

Under the conjecture, the bound also holds for Frobenius classical curves.

• A plane curve on a degree d surface has δ ≤ d⇒ our bound holds for plane curves which
have at least one point P such that Φ(P ) /∈ TPC by Stöhr–Voloch bound (δ(δ + q − 1)/2).

• Embedding entails arithmetic and geometric constraints on a variety:
For δ = 11 and d = 5 over F9, C has genus at most 17 and #C(Fq) ≤ 72.
In ManyPoints, maximal curves of genus 16 and 17 have 74 F9–points.
These record curves cannot lie on a Frobenius classical surface in P3, unless being a
component of CS

Φ.

Future questions

• Prove the conjecture!

• Our theorem essentially relies on the geometry of space curves
and the intersection theory in P3.

Can we generalize our approach when C ⊂ S ⊂ Pn, for n ≥ 4 ?

Thank you for your attention!
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• Embedding entails arithmetic and geometric constraints on a variety:
For δ = 11 and d = 5 over F9, C has genus at most 17 and #C(Fq) ≤ 72.
In ManyPoints, maximal curves of genus 16 and 17 have 74 F9–points.
These record curves cannot lie on a Frobenius classical surface in P3, unless being a
component of CS

Φ.

Future questions

• Prove the conjecture!

• Our theorem essentially relies on the geometry of space curves
and the intersection theory in P3.

Can we generalize our approach when C ⊂ S ⊂ Pn, for n ≥ 4 ?

Thank you for your attention!

On the number of rational points of curves over a surface in P3 E. Berardini & J. Nardi 14 / 14



Introduction Strategy Geometry of curves Curves over Frobenius classical surfaces Result and conclusion

Main result & Conclusion

Theorem [BN21]

Let S be an irreducible Frobenius classical surface of degree d > 1 in P3. Let C be a non–plane
irreducible curve of degree δ ≤ q lying on S. Suppose C is Frobenius non–classical. Then

#C(Fq) ≤ δ(d+ q − 1)

2
.

Under the conjecture, the bound also holds for Frobenius classical curves.

• A plane curve on a degree d surface has δ ≤ d⇒ our bound holds for plane curves which
have at least one point P such that Φ(P ) /∈ TPC by Stöhr–Voloch bound (δ(δ + q − 1)/2).

• Embedding entails arithmetic and geometric constraints on a variety:
For δ = 11 and d = 5 over F9, C has genus at most 17 and #C(Fq) ≤ 72.
In ManyPoints, maximal curves of genus 16 and 17 have 74 F9–points.
These record curves cannot lie on a Frobenius classical surface in P3, unless being a
component of CS

Φ.

Future questions

• Prove the conjecture!

• Our theorem essentially relies on the geometry of space curves
and the intersection theory in P3.

Can we generalize our approach when C ⊂ S ⊂ Pn, for n ≥ 4 ?

Thank you for your attention!
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What about C ⊂ S ⊂ Pn for n ≥ 4?

Can we generalize our approach when C ⊂ S ⊂ Pn, for n ≥ 4 ?

Consider the varieties in S × Pn

• ΓC = {(P,Φ(P )) ∈ C2 | P ∈ C} the graph of Φ restricted to the curve C,

(dim 1)

• TS = {(P,Q) ∈ S × Pn | P ∈ S, Q ∈ TPS}.

(dim 4)

Then C(Fq)
∆
↪−→ ΓC ∩ TS ' {P ∈ C | Φ(P ) ∈ TPS}.

Remark: CS
Φ was the image of ΓC ∩ TS ∈ S × P3 under the 1st projection.

ΓC and TS have complementary dimensions in S × Pn (of dim n+ 2) if and only if n = 3.
→ bound the number of rational points on C by a fraction of the intersection product [ΓC ] · [TS ].

When n ≥ 4, [ΓC ] · [TS ] = 0 while ΓC ∩ TS 6= ∅.

Idea: Fix this dimension incompatibility by blowing up TS or S × S.
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