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Today is February 14! Looking for the perfect gift for Valentine's Day?

Offer a theorem instead:
THEOREMS ARE FOREVER!!

1. See the end of the talk for my endless gift!
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Introduction ® 000

Curves, surfaces, rational points and all that jazz

We let F; denote a finite field with g elements and ]P)gq the projective space.

An algebraic projective variety X defined over F, is the set of zeros of homogenous polynomials
fi,-- -, fr € Fylzo, ..., xy] irreducible over F:

XE{PeP| fi(P) = = f(P)=0}.
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Curves, surfaces, rational points and all that jazz

We let F; denote a finite field with g elements and ]P)gq the projective space.

An algebraic projective variety X defined over F, is the set of zeros of homogenous polynomials

fi,-- -, fr € Fylzo, ..., xy] irreducible over F:
X pep | f(P)=-- = f.(P) =0}
The set of rational points of X is
X(F) E{P=(ap: - :an) € X|Vi,a; €F,}
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We let F; denote a finite field with g elements and ]P)gq the projective space.
An algebraic projective variety X defined over F, is the set of zeros of homogenous polynomials
fi,-- -, fr € Fylzo, ..., xy] irreducible over F:

XE{PeP| fi(P) = = f(P)=0}.

The set of rational points of X is

Frobenius morphism

X(Fy) ={P=(ap: --:a,) € X|Vi,a;€eF} ={PeX|PP)=P}.
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Introduction ® 000

Curves, surfaces, rational points and all that jazz

We let F; denote a finite field with g elements and ]P)gq the projective space.
An algebraic projective variety X defined over F, is the set of zeros of homogenous polynomials
fi,-- -, fr € Fylzo, ..., xy] irreducible over F:

XE{PeP| fi(P) = = f(P)=0}.

The set of rational points of X is

def Frobenius morphism

X(Fy) ={P=(ap: --:a,) € X|Vi,a;€eF} ={PeX|PP)=P}.

Today: algebraic varieties of dimension one (curves C') and two (surfaces S) in [P%.
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Introduction O®0O

Existing bounds

Theorem [Hasse-Weil, 1948]

If C'is an absolutely irreducible smooth curve of genus g defined over the finite field I, then
#C(Fy) < q+1+2g,/.
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Introduction O®0O

Existing bounds

Theorem [Hasse-Weil, 1948, Aubry—Perret, 1993]

If C is an absolutely irreducible smeeth curve of arithmetic genus 7 defined over the finite field
Fg, then #C(Fy) < g+ 1+ 27./4.

On the number of rational points of curves over a surface in P* E. Berardini & J. Nardi



Introduction O®0O
Existing bounds

Theorem [Hasse-Weil, 1948, Aubry—Perret, 1993]

If C' is an absolutely irreducible curve of arithmetic genus 7 defined over the finite field Fy, then
#C(F,) < q+1+2m/q.

Theorem [Homma, 2012]

If C'is a non—degenerate curve defined over F, of degree ¢ in P, with n > 3, then
HO(F,) < (5— 1)g+ 1.
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Introduction O®0O

Existing bounds

Theorem [Hasse-Weil, 1948, Aubry—Perret, 1993]

If C' is an absolutely irreducible curve of arithmetic genus 7 defined over the finite field Fy, then
#C(F,) < q+1+2m/q.

Theorem [Homma, 2012]

If C'is a non—degenerate curve defined over F, of degree ¢ in P, with n > 3, then
HO(F,) < (5— 1)g+ 1.

Theorem [Stohr—Voloch, 1986]

Let C/F, be an irreducible smooth curve of genus g and degree ¢ in P". Let v4,...,v,—1 beits
Frobenius orders (generically v; = ¢). Then

HOWES) < = (4 vo)(20 — 2) + (g + )o).

On the number of rational points of curves over a surface in p3 E. Berardini & J. Nardi



Introduction OO®O

Stohr and Voloch'’s strategy for plane curves

Take C' a plane curve of deg. ¢ defined by f = 0 over F,. Write ® for the g—Frobenius morphism.
C(F,) = {PeC|®(P)=P}
IN
(PeC|®P) eTrCt™ 2.

On the number of rational points of curves over a surface in p3 E. Berardini & J. Nardi 5/14
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Take C' a plane curve of deg. ¢ defined by f = 0 over F,. Write ® for the g—Frobenius morphism.
C(F,) = {PeC|®(P)=P}
IN
(PeC|®P) eTrCt™ 2.

Set g(X,Y) = Xfx +Yify + Z1fz.
Then Z=Cn(g=0).
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Introduction OO®O

Stohr and Voloch'’s strategy for plane curves
Take C' a plane curve of deg. ¢ defined by f = 0 over F,. Write ® for the g—Frobenius morphism.

C(F,) = {PeC|®(P)=P}
N
(PeC|dP)eTpCt ™ z.

Set g(X,Y) = Xfx +Yify + Z1f7.
Then Z=Cn(g=0).

Bézout’s theorem: if dim Z = 0, the number
of points in Z counted with multiplicity is equal
to (deg f) - (degg) = 6(6 +q—1).

E. Berardini & J. Nardi 5/14
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Introduction OO®O

Stohr and Voloch'’s strategy for plane curves
Take C' a plane curve of deg. ¢ defined by f = 0 over F,. Write ® for the g—Frobenius morphism.
C(F,) = {PeC|a(P)=P}

N
(PeC|®P) eTrCt™ 2.

Set g(X,Y) = Xfx +Yify + Z1fz.
Then Z=Cn(g=0).

Bézout’s theorem: if dim Z = 0, the number
of points in Z counted with multiplicity is equal
to (deg f) - (degg) = 6(6 +q—1).

Multiplicity: If P € C(F,), then mp(Z) > 2.
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Introduction OO®O

Stohr and Voloch'’s strategy for plane curves

Take C' a plane curve of deg. ¢ defined by f = 0 over F,. Write ® for the g—Frobenius morphism.
C(F,) = {PeC|®(P)=P}
IN
(PeC|®P) eTrCt™ 2.

Set g(X,Y) = Xfx +Yify + Z1f7.
Then Z=Cn(g=0).

Bézout’s theorem: if dim Z = 0, the number
of points in Z counted with multiplicity is equal

to (deg f) - (degg) =0(6 + ¢ —1).
Multiplicity: If P € C(F,), then mp(Z) > 2.

Theorem [Stohr—Voloch, 1986]
If C has at least a non—flex point (= dim Z = 0), then #C(F,) < 36(6 + ¢ —1).

On the number of rational points of curves over a surface in P3 E. Berardini & J. Nardi 5/14



Introduction OO0®
Ideas & Motivations

Let C C S < P™ (via a very ample divisor).

Goal: bounding #C(F,) in terms of the embedding.
(features of the surface S and the ambient P™)

Main motivations:

® New bound for the number of rational points on projective curves.
(hopefully improving the previous ones)

® Application to geometric coding theory.
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Introduction OO0®
Ideas & Motivations

Let C C S < P™ (via a very ample divisor).

Goal: bounding #C(F,) in terms of the embedding.
(features of the surface S and the ambient P™)

Main motivations:

® New bound for the number of rational points on projective curves.
(hopefully improving the previous ones)

® Application to geometric coding theory.

Bounding the minimum distance - Bounding #C(F,)
of a code from a surface S for the irreducible curves C on S
Better lower bound for the minimum distance = Better upper bound for #C(F,)

On the number of rational points of curves over a surface in P* E. Berardini & J. Nardi



Strategy @00
Strategy (n = 3)

Let S: (f = 0) C P be a smooth irreducible algebraic surface of degree d defined F,.
Set C5 (P e 5| ®(P)eTpS}. Then S(F,) C C5.
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Strategy (n = 3)

Let S: (f = 0) C P be a smooth irreducible algebraic surface of degree d defined F,.
Set C5 (P e 5| ®(P)eTpS}. Then S(F,) C C5.
CS:f=h=0forh:=Xfo+ XIfi +XIfo+ XIfs=degh=d+q—1.
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Strategy @00
Strategy (n = 3)

Let S: (f = 0) C P be a smooth irreducible algebraic surface of degree d defined F,.

Set C5 (P e 5| ®(P)eTpS}. Then S(F,) C C5.
CS:f=h=0forh:=Xfo+ XIfi +XIfo+ XIfs=degh=d+q—1.

Take a curve C' C S of degree 4. Then C(F,) C CNC3.

IfCnN Cg is a finite set of points, then

deg(C' N CY) < dd+q—-1)

i C,C3) 2
Lt "

#CO(Fy) <

On the number of rational points of curves over a surface in P3 E. Berardini & J. Nardi 7/14



Strategy O®O

Comparisons with pre—existing bounds

—— BN21
—— Homma 12
—— Stoéhr-Voloch 86

Upper bound

Degree 0 of the curve C Degree 0 of the curve C

(a)g=9andd=5 (b)g=13and d =4

Figure: Bounds on the number of F,~points on a non—plane curve C on a degree d surface S C P3.

— It is worth working on this bound!

On the number of rational points of curves over a surface in

E. Berardini & J. Nardi



Strategy 00®
Strategy (2/2)

Let S: (f = 0) C P be a smooth irreducible algebraic surface of degree d defined F,.

Set C5 (P e 5| ®(P)eTpS}. Then S(F,) C C5.
CS:f=h=0forh:=Xfo+ XIfi +XIfo+ XIfs=degh=d+q— 1.

Take a curve C' C S of degree 6. Then C(F,) C CNC3.

If C'NC3 is a finite set of points, then

deg(C N CE) cO0d+q-1)

i C,C3) 2
plef, ")

#C(F,) <

Two necessary conditions for dim(C'NC3) = 0:

On the number of rational points of curves over a surface in P* E. Berardini & J. Nardi
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Strategy (2/2)

Let S: (f = 0) C P be a smooth irreducible algebraic surface of degree d defined F,.

Set C5 (P e 5| ®(P)eTpS}. Then S(F,) C C5.
CS:f=h=0forh:=Xfo+ XIfi +XIfo+ XIfs=degh=d+q— 1.

Take a curve C' C S of degree 6. Then C(F,) C CNC3.

If C'NC3 is a finite set of points, then

deg(C N CE) cO0d+q-1)

i C,C3) 2
plef, ")

#C(F,) <

Two necessary conditions for dim(C'NC3) = 0:
® dim ng = 1: in this case, the surface is said to be Frobenius classical;
Counterexample: the Hermitian surface X V7Tt 4 yvatt 4 zvatl L pVatl — g over F,,.
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Let S: (f = 0) C P be a smooth irreducible algebraic surface of degree d defined F,.

Set C5 (P e 5| ®(P)eTpS}. Then S(F,) C C5.
CS:f=h=0forh:=Xfo+ XIfi +XIfo+ XIfs=degh=d+q— 1.

Take a curve C' C S of degree 6. Then C(F,) C CNC3.

If C'NC3 is a finite set of points, then

deg(C N CE) cO0d+q-1)

i C,C3) 2
plef, ")

#C(F,) <

Two necessary conditions for dim(C'NC3) = 0:

® dim ng = 1: in this case, the surface is said to be Frobenius classical;
Counterexample: the Hermitian surface X V7Tt 4 yvatt 4 zvatl L pVatl — g over F,,.
¥ ptd(d—1)= S is Frobenius classical.
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Strategy 00®
Strategy (2/2)

Let S: (f = 0) C P be a smooth irreducible algebraic surface of degree d defined F,.

Set C5 (P e 5| ®(P)eTpS}. Then S(F,) C C5.
CS:f=h=0forh:=Xfo+ XIfi +XIfo+ XIfs=degh=d+q— 1.

Take a curve C' C S of degree 6. Then C(F,) C CNC3.

If C'NC3 is a finite set of points, then

deg(C N CE) cO0d+q-1)

i C,C3) 2
plef, ")

#C(F,) <

Two necessary conditions for dim(C'NC3) = 0:

@ dim C$ = 1: in this case, the surface is said to be Frobenius classical:
Counterexample: the Hermitian surface X V7Tt 4 yvatt 4 zvatl L pVatl — g over F,,.
¥ ptd(d—1)= S is Frobenius classical.

@® C does not share any components with C3.

Counterexample: if S contains a F,—line L, then L C C'5. The bound does not hold.
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Strategy 00®
Strategy (2/2)

Let S: (f = 0) C P be a smooth irreducible algebraic surface of degree d defined F,.

Set C5 (P e 5| ®(P)eTpS}. Then S(F,) C C5.
CS:f=h=0forh:=Xfo+ XIfi +XIfo+ XIfs=degh=d+q— 1.

Take a curve C' C S of degree 6. Then C(F,) C CNC3.

If C'NC3 is a finite set of points, then

deg(C N CE) cO0d+q-1)

i C,C3) 2
plef, ")

#C(F,) <

Two necessary conditions for dim(C'NC3) = 0:

@ dim C$ = 1: in this case, the surface is said to be Frobenius classical:
Counterexample: the Hermitian surface X V7Tt 4 yvatt 4 zvatl L pVatl — g over F,,.
¥ ptd(d—1)= S is Frobenius classical.

@® C does not share any components with C3.

Counterexample: if S contains a F,—line L, then L C C'5. The bound does not hold.

Aim: understanding the components of the curve Cj for a Frobenius classical surface.

On the number of rational points of curves over a surface in P* E. Berardini & J. Nardi




Geometry of curves @0

Osculating spaces and P-orders (Stohr—Voloch theory 1)

Let C C P?3 be an absolutely irreducible projective curve defined over F,. Fix P € C.
An integer j is a P—order if there exists a plane intersecting the curve C' with multiplicity j at P.
If C'is non—plane and P is non—singular, there are exactly four distinct P—orders:

Jo=0<j1 <j2 <Js.
Remark: j; =1 < C'is non—singular at the point P.

On the number of rational points of curves over a surface in P3 E. Berardini & J. Nardi 10/14



Geometry of curves @0

Osculating spaces and P-orders (Stohr—Voloch theory 1)

Let C C P?3 be an absolutely irreducible projective curve defined over F,. Fix P € C.

An integer j is a P—order if there exists a plane intersecting the curve C' with multiplicity j at P.

If C'is non—plane and P is non—singular, there are exactly four distinct P—orders:

Jo=0<j1 <j2 <js3.

Remark: j; =1 < C'is non—singular at the point P.

Osculating spaces: TS)C = ({planes H s.t. mp(C, H) > ji i1}

Xo X Xo X3
- ; @ | o 1 T2 R
Equation of the osculating plane T5"C' : Dt('“)xo D,g'“)xl D,E'“)xg Dt('“)xg =

Dg./:)mo Dt(,lz)xl Dt(,/_’)xz D,g/“’)frg
where Dt(j) are the Hasse derivatives with respect to a a local parameter ¢t at P defined by

DItk = (’:) ki,

E. Berardini & J. Nardi

10/14
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Geometry of curves O®
Frobenius orders (Stohr—Voloch theory 2)

Fix P € C C P3 with P—orders (0, j1, j2, j3). Then ®(P) € T C if and only if
x4 zf 5 z§
or| @ @ @ @
) B D§]1)$0 Dgh).’tl ngl)ilfg D§]1)$3 B
DE‘D)JjO ngz)xl Dt(jz)l‘g D§]2)$3

A(j1, J2

" " c —=
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Geometry of curves O®
Frobenius orders (Stohr—Voloch theory 2)

Fix P € C C P3 with P—orders (0, j1, j2, j3). Then ®(P) € T C if and only if
x4 zf 5 z§
A | 7 73 T3 |
J1,J2) = ngl)xo ngl)xl D)E]l)l,2 Di(tjl)x3 -
D§]2)$0 ngz).rl Dt(jz)xg D§J2)$3

Theorem [Stohr—Voloch, 1986]

There exist integers 11 < v3 s.t. A(vy,12) is a nonzero function.

Definition
The integers vy = 0, 11, 2 chosen minimally with respect to the lexicographic order are called the
Frobenius orders of C.

The curve C'is Frobenius classical if (v1,12) = (1,2), Frobenius non—classical otherwise.

On the number of rational points of curves over a surface in P3 E. Berardini & J. Nardi 11/14



Curves over Frobenius classical surfaces @0

Frobenius non—classical curves on surfaces
Aim: Understand the components of C3= {P € S | ®(P) € TpS} on a Frob. classical surface.

On the number of rational points of curves over a surface in p3 E. Berardini & J. Nardi 1



Curves over Frobenius classical surfaces @0

Frobenius non—classical curves on surfaces
Aim: Understand the components of C3= {P € S | ®(P) € TpS} on a Frob. classical surface.

Proposition [BN21]

Let C be a non—plane curve lying on a surface S. Assume that C is Frobenius non—classical with
vy = 1. Then C is not a component of C3.

On the number of rational points of curves over a surface in ‘ E. Berardini & J. Nardi



Curves over Frobenius classical surfaces @0

Frobenius non—classical curves on surfaces
Aim: Understand the components of C3= {P € S | ®(P) € TpS} on a Frob. classical surface.

Proposition [BN21]
Let C be a non—plane curve lying on a surface S. Assume that C is Frobenius non—classical with
vy = 1. Then C is not a component of C3.

What about v > 17

E. Berardini & J. Nardi
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Curves over Frobenius classical surfaces @0

Frobenius non—classical curves on surfaces
Aim: Understand the components of C3= {P € S | ®(P) € TpS} on a Frob. classical surface.

Proposition [BN21]

Let C be a non—plane curve lying on a surface S. Assume that C is Frobenius non—classical with
vy = 1. Then C is not a component of C3.

What about v; > 17 1n > 1= ®(P) € TpC C TpS

(Sad) Fact: Frobenius non—classical curves with ; > 1 are components of C3.

E. Berardini & J. Nardi
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Curves over Frobenius classical surfaces @0
Frobenius non—classical curves on surfaces

Aim: Understand the components of C3= {P € S | ®(P) € TpS} on a Frob. classical surface.
Proposition [BN21]

Let C be a non—plane curve lying on a surface S. Assume that C is Frobenius non—classical with
vy = 1. Then C is not a component of C3.

What about v; > 17 1n > 1= ®(P) € TpC C TpS

(Sad) Fact: Frobenius non—classical curves with ; > 1 are components of C'J. However...

Proposition [BN21]

Assume that C' is Frobenius non—classical with v; > 1 and 6 < q. Then C is plane.

Remark: Hefez and Voloch (1990) gave the exact number of rational points on smooth curves with
v1 > 1, while Borges and Homma (2018) studied singular plane curves with v > 1.

On the number of rational points of curves over a surface in P* E. Berardini & J. Nardi



Curves over Frobenius classical surfaces @0
Frobenius non—classical curves on surfaces

Aim: Understand the components of C3= {P € S | ®(P) € TpS} on a Frob. classical surface.
Proposition [BN21]

Let C be a non—plane curve lying on a surface S. Assume that C is Frobenius non—classical with
vy = 1. Then C is not a component of C3.

What about v; > 17 1n > 1= ®(P) € TpC C TpS

(Sad) Fact: Frobenius non—classical curves with ; > 1 are components of C'J. However...

Proposition [BN21]

Assume that C' is Frobenius non—classical with v; > 1 and 6 < q. Then C is plane.

Remark: Hefez and Voloch (1990) gave the exact number of rational points on smooth curves with
v1 > 1, while Borges and Homma (2018) studied singular plane curves with v > 1.

Tool: Use the existence and the minimality of the Frobenius orders vy, 5 s.t. A(vy,v2) # 0.

On the number of rational points of curves over a surface in P* E. Berardini & J. Nardi



Curves over Frobenius classical surfaces @0
Frobenius non—classical curves on surfaces

Aim: Understand the components of C3= {P € S | ®(P) € TpS} on a Frob. classical surface.
Proposition [BN21]

Let C be a non—plane curve lying on a surface S. Assume that C is Frobenius non—classical with
vy = 1. Then C is not a component of C3.

What about v; > 17 1n > 1= ®(P) € TpC C TpS

(Sad) Fact: Frobenius non—classical curves with ; > 1 are components of C'J. However...
Proposition [BN21]

Assume that C' is Frobenius non—classical with v; > 1 and 6 < q. Then C is plane.

Remark: Hefez and Voloch (1990) gave the exact number of rational points on smooth curves with
v1 > 1, while Borges and Homma (2018) studied singular plane curves with v > 1.

Tool: Use the existence and the minimality of the Frobenius orders vy, 5 s.t. A(vy,v2) # 0.
Example: C is Frobenius non—classical = {vy,1n} # {1,2} = A(1,2) =0. If &(P) € TpS

=AML= W'-g'w) (=)~ (-] =0

On the number of rational points of curves over a surface in P* E. Berardini & J. Nardi



Curves over Frobenius classical surfaces @0
Frobenius non—classical curves on surfaces

Aim: Understand the components of C3= {P € S | ®(P) € TpS} on a Frob. classical surface.
Proposition [BN21]

Let C be a non—plane curve lying on a surface S. Assume that C is Frobenius non—classical with
vy = 1. Then C is not a component of C3.

What about v; > 17 1n > 1= ®(P) € TpC C TpS

(Sad) Fact: Frobenius non—classical curves with ; > 1 are components of C'J. However...
Proposition [BN21]

Assume that C' is Frobenius non—classical with v; > 1 and 6 < q. Then C is plane.

Remark: Hefez and Voloch (1990) gave the exact number of rational points on smooth curves with
v1 > 1, while Borges and Homma (2018) studied singular plane curves with v > 1.

Tool: Use the existence and the minimality of the Frobenius orders vy, 5 s.t. A(vy,v2) # 0.
Example: C is Frobenius non—classical = {vy,1n} # {1,2} = A(1,2) =0. If &(P) € TpS

ALY = W —g'w) [(-D)g (-7 =0
®(P) & TpS v > 1

On the number of rational points of curves over a surface in P* E. Berardini & J. Nardi



Curves over Frobenius classical surfaces O®

vS

Frobenius classical components of C3

Recap: A component of Cg falls in one of the following cases:
® 1 > 1: in this case, if it has § < ¢, it is plane;

® it is Frobenius classical, i.e. {vy,10} ={1,2}.

Conjecture: Non—plane Frobenius classical curves with § < ¢ are not components of C.

On the number of rational points of curves over a surface in p3 E. Berardini & J. Nardi 1



Curves over Frobenius classical surfaces O®

Frobenius classical components of Cs

Recap: A component of Cg falls in one of the following cases:
® 1 > 1: in this case, if it has § < ¢, it is plane;

® it is Frobenius classical, i.e. {vy,10} ={1,2}.

Conjecture: Non—plane Frobenius classical curves with § < ¢ are not components of C.

Example of surface with highly reducible C%

Over F5, consider the surface S defined by

f= 2XoX?+2X}+2X2X; +2XoX1 X + X2X; + 2Xo X2 + 3X1 X2
+3X3 + 4X3X3 + XoX1X3 + X2 X3 + 2X1 X2 X3 + 2X3X;3
+3XOX§ + 4X1X32 ar XQX??.

The curve C3 has degree 21 and is formed of 15 F5-lines and one non—plane sextic (6 = ¢ + 1).
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Introduction OOOO Strategy 00O Result and conclusion ®

Main result & Conclusion

Theorem [BN21]

Let S be an irreducible Frobenius classical surface of degree d > 1 in P2. Let C be a non—plane
irreducible curve of degree § < ¢ lying on S. Suppose C' is Frobenius non—classical. Then

0(d+qg—1)
#o(F,) < 1D

Under the conjecture, the bound also holds for Frobenius classical curves.
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Main result & Conclusion

Theorem [BN21]

Let S be an irreducible Frobenius classical surface of degree d > 1 in P2. Let C be a non—plane
irreducible curve of degree § < ¢ lying on S. Suppose C' is Frobenius non—classical. Then

o(d+qg—1
po@, < 0=
Under the conjecture, the bound also holds for Frobenius classical curves.

® A plane curve on a degree d surface has § < d = our bound holds for plane curves which
have at least one point P such that ®(P) ¢ TpC by Stohr—Voloch bound (6(6 + ¢ — 1)/2).
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Main result & Conclusion

Theorem [BN21]

Let S be an irreducible Frobenius classical surface of degree d > 1 in P2. Let C be a non—plane
irreducible curve of degree § < ¢ lying on S. Suppose C' is Frobenius non—classical. Then

o(d+qg—1
po@, < 0=
Under the conjecture, the bound also holds for Frobenius classical curves.

® A plane curve on a degree d surface has § < d = our bound holds for plane curves which
have at least one point P such that ®(P) ¢ TpC by Stohr—Voloch bound (6(6 + ¢ — 1)/2).
* Embedding entails arithmetic and geometric constraints on a variety:
For 6 =11 and d = 5 over Fg, C has genus at most 17 and #C(F,) < 72.
In ManyPoints, maximal curves of genus 16 and 17 have 74 Fg—points.
These record curves cannot lie on a Frobenius classical surface in P3, unless being a
component of C3.
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Main result & Conclusion

Theorem [BN21]

Let S be an irreducible Frobenius classical surface of degree d > 1 in P2. Let C be a non—plane
irreducible curve of degree § < ¢ lying on S. Suppose C' is Frobenius non—classical. Then

o(d+qg—1
po@, < 0=
Under the conjecture, the bound also holds for Frobenius classical curves.

Future questions
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Main result & Conclusion

Theorem [BN21]

Let S be an irreducible Frobenius classical surface of degree d > 1 in P2. Let C be a non—plane
irreducible curve of degree § < ¢ lying on S. Suppose C' is Frobenius non—classical. Then

o(d+qg—1
po@, < 0=
Under the conjecture, the bound also holds for Frobenius classical curves.
Future questions

® Prove the conjecture!
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Main result & Conclusion

Theorem [BN21]

Let S be an irreducible Frobenius classical surface of degree d > 1 in P2. Let C be a non—plane
irreducible curve of degree § < ¢ lying on S. Suppose C' is Frobenius non—classical. Then

0(d+qg—1)
#o(F,) < 1D

Under the conjecture, the bound also holds for Frobenius classical curves.

Future questions
® Prove the conjecture!

® QOur theorem essentially relies on the geometry of space curves
and the intersection theory in P3.

Can we generalize our approach when C' C S C P”, forn > 47
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Result and conclusion ®

Main result & Conclusion

Theorem [BN21]

Let S be an irreducible Frobenius classical surface of degree d > 1 in P2. Let C be a non—plane
irreducible curve of degree 0 < ¢ lying on S. Suppose C' is Frobenius non—classical. Then
0(d+qg—1)

—

Under the conjecture, the bound also holds for Frobenius classical curves.

#CO(F,) <

Future questions and job alert
® Prove the conjecture!

® QOur theorem essentially relies on the geometry of space curves
and the intersection theory in P3.

Can we generalize our approach when C'C S C P”, forn > 47

E. Berardini & J. Nardi 14 /14

" " —=
On the number of rational points of curves over a surface in



Result and conclusion ®

Main result & Conclusion

Theorem [BN21]

Let S be an irreducible Frobenius classical surface of degree d > 1 in P2. Let C be a non—plane
irreducible curve of degree 0 < ¢ lying on S. Suppose C' is Frobenius non—classical. Then
0(d+qg—1)

—

Under the conjecture, the bound also holds for Frobenius classical curves.

#CO(F,) <

Future questions and job alert
® Prove the conjecture!

® QOur theorem essentially relies on the geometry of space curves
and the intersection theory in P3.

Can we generalize our approach when C'C S C P”, forn > 47

Thank you for your attention!

E. Berardini & J. Nardi 14 /14
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What about C C S C P" for n > 47

Can we generalize our approach when C' C S C P", forn >4 7
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What about C C S C P" for n > 47

Can we generalize our approach when C' C S C P", forn >4 7

Consider the varieties in S x P
® I'c = {(P,®(P)) € C? | P € C} the graph of ® restricted to the curve C,
o Ts={(P,Q)eSxP"|PecS QecTpS}.

Then C(F,) <~ T'e NTs =~ {P € C | ®(P) € TpS}.
Remark: C3 was the image of T'c N Ts € S x P3 under the 1% projection.
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What about C C S C P" for n > 47

Can we generalize our approach when C' C S C P", forn >4 7

Consider the varieties in S x P
® I'c = {(P,®(P)) € C? | P € C} the graph of ® restricted to the curve C, (dim 1)
o Ts={(P,Q)eSxP"|PecS QecTpS}. (dim 4)

Then C(F,) <~ T'e NTs =~ {P € C | ®(P) € TpS}.
Remark: C3 was the image of T'c N Ts € S x P3 under the 1% projection.

I'c and Ts have complementary dimensions in S x P" (of dim n + 2) if and only if n = 3.
— bound the number of rational points on C' by a fraction of the intersection product [T'¢] - [Ts].
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What about C C S C P" for n > 47

Can we generalize our approach when C' C S C P", forn >4 7

Consider the varieties in S x P
® I'c = {(P,®(P)) € C? | P € C} the graph of ® restricted to the curve C, (dim 1)
o Ts={(P,Q)eSxP"|PecS QecTpS}. (dim 4)

Then C(F,) <~ T'e NTs =~ {P € C | ®(P) € TpS}.
Remark: C3 was the image of T'c N Ts € S x P3 under the 1% projection.

I'c and Ts have complementary dimensions in S x P" (of dim n + 2) if and only if n = 3.
— bound the number of rational points on C' by a fraction of the intersection product [T'¢] - [Ts].

When n >4, [T¢] - [Ts] = 0 while Te N Ts # @.
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What about C C S C P" for n > 47

Can we generalize our approach when C' C S C P", forn >4 7
Consider the varieties in S x P
® I'c = {(P,®(P)) € C? | P € C} the graph of ® restricted to the curve C, (dim 1)
o Ts={(P,Q)eSxP"|PecS QecTpS}. (dim 4)
Then C(F,) <~ T'e NTs =~ {P € C | ®(P) € TpS}.
Remark: C3 was the image of T'c N Ts € S x P3 under the 1% projection.

I'c and Ts have complementary dimensions in S x P" (of dim n + 2) if and only if n = 3.
— bound the number of rational points on C' by a fraction of the intersection product [T'¢] - [Ts].

When n >4, [T¢] - [Ts] = 0 while Te N Ts # @.

Idea: Fix this dimension incompatibility by blowing up 7g or S x S.
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