On Darmon's program for the generalized Fermat equation of signature (r, r, p)with Imin Chen, Luis Dieulefait, Nuno Freitas and Filip Najman

Nicolas Billerey

Laboratoire de Mathématiques Blaise Pascal Université Clermont Auvergne

Symposium on Arithmetic Geometry and its Applications CIRM February, 9th 2023

Table of contents

Quick review on the modular method

Extension of Darmon's program

Diophantine results

Table of contents

Quick review on the modular method

Extension of Darmon's program

Diophantine results

Let $p \ge 5$ be a prime. Assume for a contradiction that there exist non-zero coprime integers a, b, c such that $a^p + b^p = c^p$.

Let $p \ge 5$ be a prime. Assume for a contradiction that there exist non-zero coprime integers a, b, c such that $a^p + b^p = c^p$.

[CONSTRUCTION] (Hellegouarch, Frey)

▶ Consider

$$E: y^2 = x(x - a^p)(x + b^p).$$

The discriminant $\Delta = 2^4 (abc)^{2p}$ of this model is non-zero, and hence it defines an elliptic curve over **Q** (with full 2-torsion).

 \triangleright There is a 2-dimensional mod p representation attached to E

$$\overline{\rho}_{E,p}: G_{\mathbf{Q}} = \operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q}) \to \operatorname{GL}_2(\mathbf{F}_p)$$

given by the action of $G_{\mathbf{Q}}$ on the group of p-torsion points on E.

▶ The representation $\overline{\rho}_{E,p}$ is unramified away from $\{2,p\}$.

Let $p \ge 5$ be a prime. Assume for a contradiction that there exist non-zero coprime integers a, b, c such that $a^p + b^p = c^p$.

[Modularity] (Wiles)

▶ Without loss of generality, assume from now on that

$$a^p \equiv -1 \pmod{4}$$
 and $b^p \equiv 0 \pmod{16}$.

Hence the curve E is semistable (at 2).

- \triangleright Since E/\mathbf{Q} is semistable, the elliptic curve E/\mathbf{Q} is **modular**.
- ▶ Moreover, $\overline{\rho}_{E,p}$ has weight 2 in the sense of Edixhoven (or Serre) and Serre's conductor $N(\overline{\rho}_{E,p}) = 2$.

Let $p \ge 5$ be a prime. Assume for a contradiction that there exist non-zero coprime integers a, b, c such that $a^p + b^p = c^p$.

[IRREDUCIBILITY] (Mazur)

ightharpoonup Since E has full 2-torsion over ${f Q}$ and is semistable, the representation

$$\overline{\rho}_{E,p}:G_{\mathbf{Q}}\to \mathrm{GL}_2(\mathbf{F}_p)$$

is absolutely irreducible.

Let $p \ge 5$ be a prime. Assume for a contradiction that there exist non-zero coprime integers a, b, c such that $a^p + b^p = c^p$.

[LEVEL LOWERING] (Ribet)

▶ Since E/\mathbf{Q} is modular and the representation $\overline{\rho}_{E,p}$ is absolutely irreducible, it **arises from** a newform of weight 2 and level $N(\overline{\rho}_{E,p}) = 2$ (with trivial character).

Let $p \ge 5$ be a prime. Assume for a contradiction that there exist non-zero coprime integers a, b, c such that $a^p + b^p = c^p$.

[CONTRADICTION]

▶ For every newform g of weight 2 and level 2, the representation $\overline{\rho}_{E,p}$ does **not** arise from g.

The modular method

- 1. Construction
- 2. Modularity
- 3. Irreducibility
- 4. Level lowering
- 5. Contradiction

The modular method

- 1. Construction
- 2. Modularity
- 3. Irreducibility
- 4. Level lowering
- 5. Contradiction

The modular method

- 1. Construction
- 2. Modularity
- 3. Irreducibility
- 4. Level lowering
- 5. Contradiction

Table of contents

Quick review on the modular method

Extension of Darmon's program

Diophantine results

Our diophantine problem

We wish to extend the modular method to deal with generalized Fermat equations

$$Ax^r + By^q = Cz^p$$

where A, B, C are fixed non-zero coprime integers and p, q, r are non-negative integers.

In this work, we restrict ourselves to the case of

$$x^r + y^r = Cz^p$$

where $r \geq 3$ is a fixed prime, C is a fixed positive integer and p is a prime which is allowed to vary.

Our diophantine problem

We wish to extend the modular method to deal with generalized Fermat equations

$$Ax^r + By^q = Cz^p$$

where A, B, C are fixed non-zero coprime integers and p, q, r are non-negative integers.

In this work, we restrict ourselves to the case of

$$x^r + y^r = Cz^p$$

where $r \geq 3$ is a **fixed prime**, C is a fixed positive integer and p is a prime which is allowed to vary.

Notation

 $r \geq 3$ prime number ζ_r primitive r-th root of unity $\omega_i = \zeta_r^i + \zeta_r^{-i}$, for every $i \geq 0$ $h(X) = \prod_{i=1}^{(r-1)/2} (X - \omega_i) \in \mathbf{Z}[X]$ $K = \mathbf{Q}(\zeta_r)^+ = \mathbf{Q}(\omega_1)$ maximal totally real subfield of $\mathbf{Q}(\zeta_r)$ \mathcal{O}_K integer ring of K \mathfrak{p}_r unique prime ideal above r in \mathcal{O}_K (totally ramified)

Step 1 – Kraus' Frey hyperelliptic curve

Let a, b be non-zero coprime integers such that $a^r + b^r \neq 0$.

$$C_r(a,b): y^2 = (ab)^{\frac{r-1}{2}} xh\left(\frac{x^2}{2} + ab\right) + b^r - a^r.$$

The discriminant of this model is

$$\Delta_r(a,b) = (-1)^{\frac{r-1}{2}} 2^{2(r-1)} r^r (a^r + b^r)^{r-1}.$$

In particular, it defines a hyperelliptic curve of genus $\frac{r-1}{2}$.

Examples

$$r = 3: \quad y^2 = x^3 + 3abx + b^3 - a^3$$

$$r = 5: \quad y^2 = x^5 + 5abx^3 + 5a^2b^2x + b^5 - a^5$$

Step 1 – Kraus' Frey hyperelliptic curve

Let a, b be non-zero coprime integers such that $a^r + b^r \neq 0$.

$$C_r(a,b): y^2 = (ab)^{\frac{r-1}{2}} xh\left(\frac{x^2}{2} + ab\right) + b^r - a^r.$$

The discriminant of this model is

$$\Delta_r(a,b) = (-1)^{\frac{r-1}{2}} 2^{2(r-1)} r^r (a^r + b^r)^{r-1}.$$

In particular, it defines a hyperelliptic curve of genus $\frac{r-1}{2}$.

Examples

$$r = 3: \quad y^2 = x^3 + 3abx + b^3 - a^3$$

$$r = 5: \quad y^2 = x^5 + 5abx^3 + 5a^2b^2x + b^5 - a^5$$

$$r = 7: \quad x^2 = x^7 + 7abx^5 + 14a^2b^2x^3 + 7a^3b^3x + b^7 = a^7$$

Step 1 – Kraus' Frey hyperelliptic curve

Let a, b be non-zero coprime integers such that $a^r + b^r \neq 0$.

$$C_r(a,b): y^2 = (ab)^{\frac{r-1}{2}} xh\left(\frac{x^2}{2} + ab\right) + b^r - a^r.$$

The discriminant of this model is

$$\Delta_r(a,b) = (-1)^{\frac{r-1}{2}} 2^{2(r-1)} r^r (a^r + b^r)^{r-1}.$$

In particular, it defines a hyperelliptic curve of genus $\frac{r-1}{2}$.

Examples

$$r = 3$$
: $y^2 = x^3 + 3abx + b^3 - a^3$
 $r = 5$: $y^2 = x^5 + 5abx^3 + 5a^2b^2x + b^5 - a^5$

$$r = 7$$
: $y^2 = x^7 + 7abx^5 + 14a^2b^2x^3 + 7a^3b^3x + b^7 - a^7$.

Frey representations

For a field M of characteristic 0, write $G_M = \operatorname{Gal}(\overline{M}/M)$ for its absolute Galois group.

Definition (Darmon)

A Frey representation of signature $(r, q, p) \in (\mathbf{Z}_{>0})^3$ over a number field L in characteristic $\ell > 0$ is a Galois representation

$$\overline{\rho} = \overline{\rho}(t) : G_{L(t)} \to \mathrm{GL}_2(\mathbf{F})$$

where **F** finite field of characteristic ℓ such that the following conditions hold.

- 1. The restriction of $\overline{\rho}$ to $G_{\overline{L}(t)}$ has trivial determinant and is irreducible.
- 2. The projectivization $\overline{\rho}^{\text{geom}}: G_{\overline{L}(t)} \to \mathrm{PSL}_2(\mathbf{F})$ of this representation is unramified outside $\{0, 1, \infty\}$.
- 3. It maps the inertia groups at 0, 1, and ∞ to subgroups of $PSL_2(\mathbf{F})$ of order r, q, and p respectively.

Frey representations

For a field M of characteristic 0, write $G_M = \operatorname{Gal}(\overline{M}/M)$ for its absolute Galois group.

Definition (Darmon)

A Frey representation of signature $(r, q, p) \in (\mathbf{Z}_{>0})^3$ over a number field L in characteristic $\ell > 0$ is a Galois representation

$$\overline{\rho} = \overline{\rho}(t) : G_{L(t)} \to \mathrm{GL}_2(\mathbf{F})$$

where **F** finite field of characteristic ℓ such that the following conditions hold.

- 1. The restriction of $\overline{\rho}$ to $G_{\overline{L}(t)}$ has trivial determinant and is irreducible.
- 2. The projectivization $\overline{\rho}^{\text{geom}}: G_{\overline{L}(t)} \to \mathrm{PSL}_2(\mathbf{F})$ of this representation is unramified outside $\{0, 1, \infty\}$.
- 3. It maps the inertia groups at 0, 1, and ∞ to subgroups of $PSL_2(\mathbf{F})$ of order r, q, and p respectively.

Hecke–Darmon's classification theorem

Let p be a prime number.

Theorem (Hecke-Darmon)

Up to equivalence, there is only one Frey representation of signature (p,p,p). It occurs over $\mathbf Q$ in characteristic p and is associated with the Legendre family

$$L(t): y^2 = x(x-1)(x-t).$$

The classical Frey-Hellegouarch curve

$$y^2 = x(x - a^p)(x + b^p)$$

is obtained from L(t) after specialization at $t_0 = \frac{a^p}{a^p + b^p}$ and quadratic twist by $-(a^p + b^p)$.

Hecke–Darmon's classification theorem

Let p be a prime number.

Theorem (Hecke-Darmon)

Up to equivalence, there is only one Frey representation of signature (p, p, p). It occurs over \mathbf{Q} in characteristic p and is associated with the Legendre family

$$L(t): y^2 = x(x-1)(x-t).$$

The classical Frey-Hellegouarch curve

$$y^2 = x(x - a^p)(x + b^p)$$

is obtained from L(t) after **specialization** at $t_0 = \frac{a^p}{a^p + b^p}$ and **quadratic twist** by $-(a^p + b^p)$.

Abelian varieties of GL_2 -type

Definition

Let A be an abelian variety over a field L of characteristic 0. We say that A/L is of GL_2 -type (or $\operatorname{GL}_2(F)$ -type) if there is an embedding $F \hookrightarrow \operatorname{End}_L(A) \otimes_{\mathbf{Z}} \mathbf{Q}$ where F is a number field with $[F: \mathbf{Q}] = \dim A$.

Let A/L be an abelian variety of $GL_2(F)$ -type.

▶ For each prime ideal $\lambda \mid \ell$ in F, we have a λ -adic representation

$$\rho_{A,\lambda}: G_L \longrightarrow \operatorname{Aut}_{F_{\lambda}}(V_{\lambda}(A)) \simeq \operatorname{GL}_2(F_{\lambda}),$$

coming from the linear action of G_L on $V_{\lambda}(A) = V_{\ell}(A) \otimes_{F \otimes \mathbf{Q}_{\ell}} F_{\lambda}$

- ▶ The representations $\{\rho_{A,\lambda}\}_{\lambda}$ form a strictly compatible system of F-integral representations.
- ▶ For each prime ideal $\lambda \mid \ell$ in F, we have a residual representation

$$\overline{\rho}_{A,\lambda}:G_L\longrightarrow \mathrm{GL}_2(\mathbf{F}_{\lambda}),$$

Abelian varieties of GL₂-type

Definition

Let A be an abelian variety over a field L of characteristic 0. We say that A/L is of GL_2 -type (or $\mathrm{GL}_2(F)$ -type) if there is an embedding $F \hookrightarrow \mathrm{End}_L(A) \otimes_{\mathbf{Z}} \mathbf{Q}$ where F is a number field with $[F: \mathbf{Q}] = \dim A$.

Let A/L be an abelian variety of $GL_2(F)$ -type.

▶ For each prime ideal $\lambda \mid \ell$ in F, we have a λ -adic representation

$$\rho_{A,\lambda}: G_L \longrightarrow \operatorname{Aut}_{F_{\lambda}}(V_{\lambda}(A)) \simeq \operatorname{GL}_2(F_{\lambda}),$$

coming from the linear action of G_L on $V_{\lambda}(A) = V_{\ell}(A) \otimes_{F \otimes \mathbf{Q}_{\ell}} F_{\lambda}$.

- ▶ The representations $\{\rho_{A,\lambda}\}_{\lambda}$ form a strictly compatible system of F-integral representations.
- ▶ For each prime ideal $\lambda \mid \ell$ in F, we have a residual representation

$$\overline{\rho}_{A,\lambda}:G_L\longrightarrow \mathrm{GL}_2(\mathbf{F}_{\lambda}),$$

Abelian varieties of GL_2 -type

Definition

Let A be an abelian variety over a field L of characteristic 0. We say that A/L is of GL_2 -type (or $GL_2(F)$ -type) if there is an embedding $F \hookrightarrow End_L(A) \otimes_{\mathbf{Z}} \mathbf{Q}$ where F is a number field with $[F: \mathbf{Q}] = \dim A$.

Let A/L be an abelian variety of $GL_2(F)$ -type.

▶ For each prime ideal $\lambda \mid \ell$ in F, we have a λ -adic representation

$$\rho_{A,\lambda}: G_L \longrightarrow \operatorname{Aut}_{F_{\lambda}}(V_{\lambda}(A)) \simeq \operatorname{GL}_2(F_{\lambda}),$$

coming from the linear action of G_L on $V_{\lambda}(A) = V_{\ell}(A) \otimes_{F \otimes \mathbf{Q}_{\ell}} F_{\lambda}$.

- ▶ The representations $\{\rho_{A,\lambda}\}_{\lambda}$ form a strictly compatible system of F-integral representations.
- ▶ For each prime ideal $\lambda \mid \ell$ in F, we have a residual representation

$$\overline{\rho}_{A,\lambda}:G_L\longrightarrow \mathrm{GL}_2(\mathbf{F}_{\lambda}),$$

Abelian varieties of GL_2 -type

Definition

Let A be an abelian variety over a field L of characteristic 0. We say that A/L is of GL_2 -type (or $\mathrm{GL}_2(F)$ -type) if there is an embedding $F \hookrightarrow \mathrm{End}_L(A) \otimes_{\mathbf{Z}} \mathbf{Q}$ where F is a number field with $[F:\mathbf{Q}] = \dim A$.

Let A/L be an abelian variety of $GL_2(F)$ -type.

▶ For each prime ideal $\lambda \mid \ell$ in F, we have a λ -adic representation

$$\rho_{A,\lambda}: G_L \longrightarrow \operatorname{Aut}_{F_{\lambda}}(V_{\lambda}(A)) \simeq \operatorname{GL}_2(F_{\lambda}),$$

coming from the linear action of G_L on $V_{\lambda}(A) = V_{\ell}(A) \otimes_{F \otimes \mathbf{Q}_{\ell}} F_{\lambda}$.

- ▶ The representations $\{\rho_{A,\lambda}\}_{\lambda}$ form a strictly compatible system of F-integral representations.
- ▶ For each prime ideal $\lambda \mid \ell$ in F, we have a residual representation

$$\overline{\rho}_{A,\lambda}:G_L\longrightarrow \mathrm{GL}_2(\mathbf{F}_{\lambda}),$$

with values in the residue field \mathbf{F}_{λ} of F_{λ} .

Frey representations in signature (r, r, p)

Theorem (B.-Chen-Dieulefait-Freitas, 2022)

There exists a hyperelliptic curve $C'_r(t)$ over K(t) of genus $\frac{r-1}{2}$ such that $J'_r(t)=\mathrm{Jac}(C'_r(t))$ satisfies :

- 1. It is of $GL_2(K)$ -type, i.e. $K \hookrightarrow End_{K(t)}(J'_r(t)) \otimes \mathbf{Q}$
- 2. For every $t_0 \in K$, the embedding $K \hookrightarrow \operatorname{End}_K(J'_r(t_0)) \otimes \mathbf{Q}$ is well-defined;
- 3. For every prime ideal \mathfrak{p} in \mathcal{O}_K above a rational prime p,

$$\overline{\rho}_{J'_r(t),\mathfrak{p}}:G_{K(t)}\to \mathrm{GL}_2(\mathcal{O}_K/\mathfrak{p})$$

is a Frey representation of signature (r, r, p).

Moreover, $C_r(a,b)/K$ is obtained from $C'_r(t)$ after specialization at $t_0 = \frac{a^r}{a^r + b^r}$ and quadratic twist by $-\frac{(ab)^{\frac{r-1}{2}}}{a^r + b^r}$.

The proof uses Darmon's construction of Frey representations of signature (p, p, r).

Frey representations in signature (r, r, p)

Theorem (B.-Chen-Dieulefait-Freitas, 2022)

There exists a hyperelliptic curve $C'_r(t)$ over K(t) of genus $\frac{r-1}{2}$ such that $J'_r(t) = \text{Jac}(C'_r(t))$ satisfies :

- 1. It is of $GL_2(K)$ -type, i.e. $K \hookrightarrow End_{K(t)}(J'_r(t)) \otimes \mathbf{Q}$
- 2. For every $t_0 \in K$, the embedding $K \hookrightarrow \operatorname{End}_K(J'_r(t_0)) \otimes \mathbf{Q}$ is well-defined;
- 3. For every prime ideal \mathfrak{p} in \mathcal{O}_K above a rational prime p,

$$\overline{\rho}_{J'_r(t),\mathfrak{p}}:G_{K(t)}\to \mathrm{GL}_2(\mathcal{O}_K/\mathfrak{p})$$

is a Frey representation of signature (r, r, p).

Moreover, $C_r(a,b)/K$ is obtained from $C'_r(t)$ after specialization at $t_0 = \frac{a^r}{a^r + b^r}$ and quadratic twist by $-\frac{(ab)^{\frac{r-1}{2}}}{a^r + b^r}$.

The proof uses Darmon's construction of Frey representations of signature (p, p, r).

Frey representations in signature (r, r, p)

Theorem (B.-Chen-Dieulefait-Freitas, 2022)

There exists a hyperelliptic curve $C'_r(t)$ over K(t) of genus $\frac{r-1}{2}$ such that $J'_r(t) = \text{Jac}(C'_r(t))$ satisfies :

- 1. It is of $GL_2(K)$ -type, i.e. $K \hookrightarrow End_{K(t)}(J'_r(t)) \otimes \mathbf{Q}$
- 2. For every $t_0 \in K$, the embedding $K \hookrightarrow \operatorname{End}_K(J'_r(t_0)) \otimes \mathbf{Q}$ is well-defined;
- 3. For every prime ideal \mathfrak{p} in \mathcal{O}_K above a rational prime p,

$$\overline{\rho}_{J'_r(t),\mathfrak{p}}:G_{K(t)}\to \mathrm{GL}_2(\mathcal{O}_K/\mathfrak{p})$$

is a Frey representation of signature (r, r, p).

Moreover, $C_r(a,b)/K$ is obtained from $C'_r(t)$ after specialization at $t_0 = \frac{a^r}{a^r + b^r}$ and quadratic twist by $-\frac{(ab)^{\frac{r-1}{2}}}{a^r + b^r}$.

ightharpoonup The proof uses Darmon's construction of Frey representations of signature (p, p, r).

Two-dimensional \mathfrak{p} -adic and mod \mathfrak{p} representations

Write $J_r = \text{Jac}(C_r(a, b))/K$ for the Jacobian of $C_r(a, b)$ base changed to K.

 \triangleright There is a compatible system of K-rational Galois representations

$$\rho_{J_r,\mathfrak{p}}:G_K\to\mathrm{GL}_2(K_{\mathfrak{p}})$$

indexed by the prime ideals \mathfrak{p} in \mathcal{O}_K associated with J_r .

▶ For $\mathfrak{p} = \mathfrak{p}_r$, the residual representation $\overline{\rho}_{J_r,\mathfrak{p}_r}$ arises after specialization and twisting from a Frey representation of signature (r, r, r).

Two-dimensional \mathfrak{p} -adic and mod \mathfrak{p} representations

Write $J_r = \text{Jac}(C_r(a, b))/K$ for the Jacobian of $C_r(a, b)$ base changed to K.

 \triangleright There is a compatible system of K-rational Galois representations

$$\rho_{J_r,\mathfrak{p}}:G_K\to \mathrm{GL}_2(K_{\mathfrak{p}})$$

indexed by the prime ideals \mathfrak{p} in \mathcal{O}_K associated with J_r .

▶ For $\mathfrak{p} = \mathfrak{p}_r$, the residual representation $\overline{\rho}_{J_r,\mathfrak{p}_r}$ arises after specialization and twisting from a Frey representation of signature (r, r, r).

Two-dimensional \mathfrak{p} -adic and mod \mathfrak{p} representations

Write $J_r = \text{Jac}(C_r(a, b))/K$ for the Jacobian of $C_r(a, b)$ base changed to K.

 \triangleright There is a compatible system of K-rational Galois representations

$$\rho_{J_r,\mathfrak{p}}:G_K\to \mathrm{GL}_2(K_{\mathfrak{p}})$$

indexed by the prime ideals \mathfrak{p} in \mathcal{O}_K associated with J_r .

▶ For $\mathfrak{p} = \mathfrak{p}_r$, the residual representation $\overline{\rho}_{J_r,\mathfrak{p}_r}$ arises after specialization and twisting from a Frey representation of signature (r, r, r).

Step 2 – The representation $\overline{\rho}_{J_r,\mathfrak{p}_r}$ and modularity

Theorem (B.-Chen-Dieulefait-Freitas-Najman, 2022)

Assume $r \geq 5$. The representation $\overline{\rho}_{J_r,\mathfrak{p}_r}: G_K \to \mathrm{GL}_2(\mathbf{F}_r)$ is absolutely irreducible when restricted to $G_{\mathbf{Q}(\zeta_r)}$.

Corollary

The abelian variety J_r/K is modular (for any prime $r \geq 3$).

- ⇒ Classification theorem of Frey representations with constant signature (Hecke–Darmon).
- New irreducibility results for Galois representations attached to elliptic curves over $\mathbf{Q}(\zeta_r)$ (Najman).
- Serre's modularity conjecture (Khare–Wintenberger).
- → A modularity lifting theorem (Khare–Thorne).

Step 2 – The representation $\overline{\rho}_{J_r,\mathfrak{p}_r}$ and modularity

Theorem (B.-Chen-Dieulefait-Freitas-Najman, 2022)

Assume $r \geq 5$. The representation $\overline{\rho}_{J_r,\mathfrak{p}_r}: G_K \to \mathrm{GL}_2(\mathbf{F}_r)$ is absolutely irreducible when restricted to $G_{\mathbf{Q}(\zeta_r)}$.

Corollary

The abelian variety J_r/K is modular (for any prime $r \geq 3$).

- ⇒ Classification theorem of Frey representations with constant signature (Hecke–Darmon).
- New irreducibility results for Galois representations attached to elliptic curves over $\mathbf{Q}(\zeta_r)$ (Najman).
- Serre's modularity conjecture (Khare–Wintenberger).
- → A modularity lifting theorem (Khare–Thorne).

Step 2 – The representation $\overline{\rho}_{J_r,\mathfrak{p}_r}$ and modularity

Theorem (B.-Chen-Dieulefait-Freitas-Najman, 2022)

Assume $r \geq 5$. The representation $\overline{\rho}_{J_r,\mathfrak{p}_r}: G_K \to \mathrm{GL}_2(\mathbf{F}_r)$ is absolutely irreducible when restricted to $G_{\mathbf{Q}(\zeta_r)}$.

Corollary

The abelian variety J_r/K is modular (for any prime $r \geq 3$).

- ► Classification theorem of Frey representations with constant signature (Hecke–Darmon).
- New irreducibility results for Galois representations attached to elliptic curves over $\mathbf{Q}(\zeta_r)$ (Najman).
- Serre's modularity conjecture (Khare–Wintenberger).
- ➤ A modularity lifting theorem (Khare–Thorne).

Assume that there exists a non-zero integer c such that $a^r + b^r = Cc^p$ for some fixed positive integer C.

Let \mathfrak{p} be a prime ideal in \mathcal{O}_K above the rational prime p.

Theorem (B.-Chen-Dieulefait-Freitas, 2022)

Assume that $a \equiv 0 \pmod{2}$ and $b \equiv 1 \pmod{4}$. Suppose further that $\overline{\rho}_{J_r,\mathfrak{p}}$ is absolutely irreducible. Then, there is a Hilbert newform g over K of parallel weight 2, trivial character and level $2^2\mathfrak{p}_r^2\mathfrak{n}'$ such that

$$\overline{\rho}_{J_r,\mathfrak{p}} \simeq \overline{\rho}_{g,\mathfrak{P}}$$

- Uses a refined level lowering theorem of Breuil–Diamond.
- ▶ Various situations where the irreducibility assumption is satisfied.

Assume that there exists a non-zero integer c such that $a^r + b^r = Cc^p$ for some fixed positive integer C.

Let \mathfrak{p} be a prime ideal in \mathcal{O}_K above the rational prime p.

Theorem (B.-Chen-Dieulefait-Freitas, 2022)

Assume that $a \equiv 0 \pmod{2}$ and $b \equiv 1 \pmod{4}$. Suppose further that $\overline{\rho}_{J_r,\mathfrak{p}}$ is absolutely irreducible. Then, there is a Hilbert newform g over K of parallel weight 2, trivial character and level $2^2\mathfrak{p}_r^2\mathfrak{n}'$ such that

$$\overline{\rho}_{J_r,\mathfrak{p}} \simeq \overline{\rho}_{g,\mathfrak{P}}$$

- Uses a refined level lowering theorem of Breuil–Diamond.
- ▶ Various situations where the irreducibility assumption is satisfied.

Assume that there exists a non-zero integer c such that $a^r + b^r = Cc^p$ for some fixed positive integer C.

Let \mathfrak{p} be a prime ideal in \mathcal{O}_K above the rational prime p.

Theorem (B.-Chen-Dieulefait-Freitas, 2022)

Assume that $a \equiv 0 \pmod 2$ and $b \equiv 1 \pmod 4$. Suppose further that $\overline{\rho}_{J_r,\mathfrak{p}}$ is absolutely irreducible. Then, there is a Hilbert newform g over K of parallel weight 2, trivial character and level $2^2\mathfrak{p}_r^2\mathfrak{n}'$ such that

$$\overline{\rho}_{J_r,\mathfrak{p}} \simeq \overline{\rho}_{g,\mathfrak{P}}$$

for some $\mathfrak{P} \mid p$ in the coefficient field K_g of g. Here, \mathfrak{n}' denotes the product of ideals coprime to 2r dividing C.

- Uses a refined level lowering theorem of Breuil–Diamond.
- → Various situations where the irreducibility assumption is satisfied.

Assume that there exists a non-zero integer c such that $a^r + b^r = Cc^p$ for some fixed positive integer C.

Let \mathfrak{p} be a prime ideal in \mathcal{O}_K above the rational prime p.

Theorem (B.-Chen-Dieulefait-Freitas, 2022)

Assume that $a \equiv 0 \pmod 2$ and $b \equiv 1 \pmod 4$. Suppose further that $\overline{\rho}_{J_r,\mathfrak{p}}$ is absolutely irreducible. Then, there is a Hilbert newform g over K of parallel weight 2, trivial character and level $2^2\mathfrak{p}_r^2\mathfrak{n}'$ such that

$$\overline{\rho}_{J_r,\mathfrak{p}} \simeq \overline{\rho}_{g,\mathfrak{P}}$$

- Uses a refined level lowering theorem of Breuil–Diamond.
- ▶ Various situations where the irreducibility assumption is satisfied.

Assume that there exists a non-zero integer c such that $a^r + b^r = Cc^p$ for some fixed positive integer C.

Let \mathfrak{p} be a prime ideal in \mathcal{O}_K above the rational prime p.

Theorem (B.-Chen-Dieulefait-Freitas, 2022)

Assume that $a \equiv 0 \pmod 2$ and $b \equiv 1 \pmod 4$. Suppose further that $\overline{\rho}_{J_r,\mathfrak{p}}$ is absolutely irreducible. Then, there is a Hilbert newform g over K of parallel weight 2, trivial character and level $2^2\mathfrak{p}_r^2\mathfrak{n}'$ such that

$$\overline{\rho}_{J_r,\mathfrak{p}} \simeq \overline{\rho}_{g,\mathfrak{P}}$$

- Uses a refined level lowering theorem of Breuil–Diamond.
- ▶ Various situations where the irreducibility assumption is satisfied.

Table of contents

Quick review on the modular method

Extension of Darmon's program

Diophantine results

Step 5 – Main obstacles

In applying the modular method to Fermat equations of the shape

$$x^r + y^r = Cz^p$$

for specific values of r and C, we find that the **contradiction step** (and, to some extent, the irreducibility step) is the most problematic:

- ➤ Newform subspaces may not be accessible to computer softwares (as they are too large or by lack of efficient algorithms, for instance).
- We miss a general method to discard an isomorphism of the shape $\overline{\rho}_{J_r,\mathfrak{p}} \simeq \overline{\rho}_{a,\mathfrak{P}}$.

Step 5 – Main obstacles

In applying the modular method to Fermat equations of the shape

$$x^r + y^r = Cz^p$$

for specific values of r and C, we find that the **contradiction step** (and, to some extent, the irreducibility step) is the most problematic:

- ➤ Newform subspaces may not be accessible to computer softwares (as they are too large or by lack of efficient algorithms, for instance).
- We miss a general method to discard an isomorphism of the shape $\overline{\rho}_{J_r,\mathfrak{p}} \simeq \overline{\rho}_{a,\mathfrak{P}}$.

Step 5 – Main obstacles

In applying the modular method to Fermat equations of the shape

$$x^r + y^r = Cz^p$$

for specific values of r and C, we find that the **contradiction step** (and, to some extent, the irreducibility step) is the most problematic:

- ➤ Newform subspaces may not be accessible to computer softwares (as they are too large or by lack of efficient algorithms, for instance).
- We miss a general method to discard an isomorphism of the shape $\overline{\rho}_{J_r,\mathfrak{p}} \simeq \overline{\rho}_{q,\mathfrak{P}}$.

Theorem (B.-Chen-Dieulefait-Freitas, 2022)

$$a^7+b^7=3c^n,\quad abc\neq 0,\quad \gcd(a,b,c)=1.$$

- Multi-Frey approach using two Frey elliptic curves E and F associated with $x^7 + y^7 = Cz^p$ defined over \mathbf{Q} and over $\mathbf{Q}(\zeta_7)^+$ respectively (Darmon, Freitas) and the hyperelliptic Frey curve C_7 .
- Computations in (Hilbert) modular form spaces (Magma).
- Four different proofs : (twists of) F (~ 1.3 hour), E+F (~ 1 hour), $(E+)F+C_7$ (~ 8 minutes), $F+C_7$ in the case $14 \mid a+b \mid (\sim 1 \text{ minute})$.
- \rightarrow Proofs using the hyperelliptic curve C_7 are faster!

Theorem (B.-Chen-Dieulefait-Freitas, 2022)

$$a^7 + b^7 = 3c^n$$
, $abc \neq 0$, $gcd(a, b, c) = 1$.

- ▶ Multi-Frey approach using two Frey elliptic curves E and F associated with $x^7 + y^7 = Cz^p$ defined over \mathbf{Q} and over $\mathbf{Q}(\zeta_7)^+$ respectively (Darmon, Freitas) and the hyperelliptic Frey curve C_7 .
- Computations in (Hilbert) modular form spaces (Magma).
- Four different proofs : (twists of) F (~ 1.3 hour), E+F (~ 1 hour), $(E+)F+C_7$ (~ 8 minutes), $F+C_7$ in the case $14 \mid a+b \mid (\sim 1 \text{ minute})$.
- \rightarrow Proofs using the hyperelliptic curve C_7 are faster!

Theorem (B.-Chen-Dieulefait-Freitas, 2022)

$$a^7 + b^7 = 3c^n$$
, $abc \neq 0$, $gcd(a, b, c) = 1$.

- Multi-Frey approach using two Frey elliptic curves E and F associated with $x^7 + y^7 = Cz^p$ defined over \mathbf{Q} and over $\mathbf{Q}(\zeta_7)^+$ respectively (Darmon, Freitas) and the hyperelliptic Frey curve C_7 .
- ➤ Computations in (Hilbert) modular form spaces (Magma).
- Four different proofs : (twists of) F (~ 1.3 hour), E+F (~ 1 hour), $(E+)F+C_7$ (~ 8 minutes), $F+C_7$ in the case $14 \mid a+b \mid (\sim 1 \text{ minute})$.
- ightharpoonup Proofs using the hyperelliptic curve C_7 are faster!

Theorem (B.-Chen-Dieulefait-Freitas, 2022)

$$a^7 + b^7 = 3c^n$$
, $abc \neq 0$, $gcd(a, b, c) = 1$.

- ▶ Multi-Frey approach using two Frey elliptic curves E and F associated with $x^7 + y^7 = Cz^p$ defined over \mathbf{Q} and over $\mathbf{Q}(\zeta_7)^+$ respectively (Darmon, Freitas) and the hyperelliptic Frey curve C_7 .
- Computations in (Hilbert) modular form spaces (Magma).
- Four different proofs : (twists of) F (~ 1.3 hour), E+F (~ 1 hour), $(E+)F+C_7$ (~ 8 minutes), $F+C_7$ in the case $14 \mid a+b$ (~ 1 minute).
- ightharpoonup Proofs using the hyperelliptic curve C_7 are faster!

Theorem (B.-Chen-Dieulefait-Freitas, 2022)

$$a^7 + b^7 = 3c^n$$
, $abc \neq 0$, $gcd(a, b, c) = 1$.

- ▶ Multi-Frey approach using two Frey elliptic curves E and F associated with $x^7 + y^7 = Cz^p$ defined over \mathbf{Q} and over $\mathbf{Q}(\zeta_7)^+$ respectively (Darmon, Freitas) and the hyperelliptic Frey curve C_7 .
- ➤ Computations in (Hilbert) modular form spaces (Magma).
- Four different proofs : (twists of) F (~ 1.3 hour), E+F (~ 1 hour), $(E+)F+C_7$ (~ 8 minutes), $F+C_7$ in the case $14 \mid a+b$ (~ 1 minute).
- \rightarrow Proofs using the hyperelliptic curve C_7 are faster!

Theorem (B.-Chen-Dieulefait-Freitas, 2022)

$$a^{11} + b^{11} = c^n$$
, $abc \neq 0$, $\gcd(a, b, c) = 1$, and $(2 \mid a + b \text{ or } 11 \mid a + b)$.

- Multi-Frey approach using a Frey elliptic curves $F/\mathbf{Q}(\zeta_{11})^+$ (Freitas) and the hyperelliptic Frey curve C_{11} .
- ➤ Total running time in Magma: 7 hours = 6 hours (computation of the relevant Hilbert space) + 1 hour (elimination).
- Proving this result using only properties of $F/\mathbf{Q}(\zeta_{11})^+$ requires in particular computations in the space of Hilbert newforms of level $\mathfrak{p}_2^3\mathfrak{p}_{11}$ over $\mathbf{Q}(\zeta_{11})^+$ which has dimension 12,013 and is **not** currently feasible to compute.

Theorem (B.-Chen-Dieulefait-Freitas, 2022)

$$a^{11} + b^{11} = c^n$$
, $abc \neq 0$, $gcd(a, b, c) = 1$, and $(2 \mid a + b \text{ or } 11 \mid a + b)$.

- Multi-Frey approach using a Frey elliptic curves $F/\mathbf{Q}(\zeta_{11})^+$ (Freitas) and the hyperelliptic Frey curve C_{11} .
- ➤ Total running time in Magma: 7 hours = 6 hours (computation of the relevant Hilbert space) + 1 hour (elimination).
- Proving this result using only properties of $F/\mathbf{Q}(\zeta_{11})^+$ requires in particular computations in the space of Hilbert newforms of level $\mathfrak{p}_2^3\mathfrak{p}_{11}$ over $\mathbf{Q}(\zeta_{11})^+$ which has dimension 12,013 and is **not** currently feasible to compute.

Theorem (B.-Chen-Dieulefait-Freitas, 2022)

$$a^{11} + b^{11} = c^n$$
, $abc \neq 0$, $\gcd(a, b, c) = 1$, and $(2 \mid a + b \text{ or } 11 \mid a + b)$.

- Multi-Frey approach using a Frey elliptic curves $F/\mathbf{Q}(\zeta_{11})^+$ (Freitas) and the hyperelliptic Frey curve C_{11} .
- ➤ Total running time in Magma : 7 hours = 6 hours (computation of the relevant Hilbert space) + 1 hour (elimination).
- Proving this result using only properties of $F/\mathbf{Q}(\zeta_{11})^+$ requires in particular computations in the space of Hilbert newforms of level $\mathfrak{p}_2^3\mathfrak{p}_{11}$ over $\mathbf{Q}(\zeta_{11})^+$ which has dimension 12,013 and is **not** currently feasible to compute.

Theorem (B.-Chen-Dieulefait-Freitas, 2022)

$$a^{11} + b^{11} = c^n$$
, $abc \neq 0$, $\gcd(a, b, c) = 1$, and $(2 \mid a + b \text{ or } 11 \mid a + b)$.

- Multi-Frey approach using a Frey elliptic curves $F/\mathbf{Q}(\zeta_{11})^+$ (Freitas) and the hyperelliptic Frey curve C_{11} .
- Total running time in Magma: 7 hours = 6 hours (computation of the relevant Hilbert space) + 1 hour (elimination).
- Proving this result using only properties of $F/\mathbf{Q}(\zeta_{11})^+$ requires in particular computations in the space of Hilbert newforms of level $\mathfrak{p}_2^3\mathfrak{p}_{11}$ over $\mathbf{Q}(\zeta_{11})^+$ which has dimension 12,013 and is **not** currently feasible to compute.

Thank you!