The congruence ideal associated to p-adic families of Yoshida lifts

Bharathwaj Palvannan

Indian Institute of Science (IISc)

Centre International de Rencontres Mathématiques (CIRM) Symposium on Arithmetic Geometry and its Applications (SAGA)

February 2023

An ongoing work, joint with

Ming-Lun Hsieh (National Taiwan University)

Motivation: Herbrand-Ribet theorem / Irregular primes

- Let *p* denote an odd prime.
- Let *A* denote the *p*-primary part of the class group of $\mathbb{Q}(\zeta_p)$.

$$\omega: \operatorname{Gal}\left(\mathbb{Q}(\zeta_p)/\mathbb{Q}\right) \cong \left(\mathbb{Z}/p\mathbb{Z}\right)^{\times} \hookrightarrow \mathbb{Z}_p^{\times}.$$

$$\mathbf{A} \cong \bigoplus_{j=0}^{p-2} A_j, \qquad A_j := A^{\omega^j}.$$

Theorem (Herbrand–Ribet)

Let k be an even integer between 2 and p-1. The following statements are equivalent.

1 *p* divides the numerator of $\zeta(1-k)$.

 $2 A_{p-k} \neq 0.$

Ribet's method: congruences involving Eisenstein series

The idea for the converse can also be traced to earlier (unpublished) calculations of Greenberg, Monsky.

An example

Take p = 691 and k = 12.

$$\zeta(1-12) = \frac{691}{32760}.$$

Then, $A_{691-12} \cong \mathbb{Z}/691\mathbb{Z}$.

The *q*-expansion $E_{12}(q)$

 $\frac{691}{65520} + q + 2049q^2 + 177148q^3 + 4196353q^4 + 48828126q^5 + O(q^6).$

The *q*-expansion of $\tau_{12}(q)$:

$$0 + q - 24q^2 + 252q^3 - 1472q^4 + 4830q^5 + O(q^6).$$

Their difference divided by 691:

 $\tfrac{1}{65520} + 3q^2 + 256q^3 + 6075q^4 + 70656q^5 + O(q^6).$

An upgrade to *p*-adic families: Iwasawa Main conjecture

Theorem (Mazur–Wiles, Ohta, Rubin)

Fix an odd integer $3 \le i \le p-2$ *. We have an equality of ideals in* Λ *:*

 $\operatorname{Char}(X_i) = (\theta_i).$

• The Iwasawa algebra Λ is a completed group ring

$$\lim_{n} \mathbb{Z}_p \left[\operatorname{Gal} \left(\mathbb{Q}(\mu_{p^n}) / \mathbb{Q}(\mu_p) \right) \right].$$

It is isomorphic to a power series ring $\mathbb{Z}_p[[x]]$.

The Iwasawa module X_i is the ω^i -eigencomponent of the class group of $\mathbb{Q}(\mu_{p^{\infty}})$.

It is a torsion-module over Λ .

• θ_i is the Kubota–Leopoldt *p*-adic *L*-function.

It is an element in Λ .

Divisibility afforded by the method of congruences

Theorem (Mazur–Wiles, Ohta)

 $\operatorname{Char}(X_i) \subset (\theta_i).$

The divisibility afforded by the Euler system method

Theorem (Rubin, Kolvyagin, Thaine)

 $\operatorname{Char}(X_i) \supset (\theta_i).$

Main conjecture: Rankin-Selberg product of Hida families

In general, both methods involving *Euler systems* and *Congruences* might be required to prove main conjectures since generalisations of the analytic class number formula might not be available.

The method of congruences introduces a third ideal and leads to the opposite inclusion:

Char(Sel)
$$\stackrel{?}{\subset}$$
 cong ideal $\stackrel{?}{\subset}$ (θ).

Main conjecture: Rankin-Selberg product of Hida families

Theorem (Lei–Loeffler–Zerbes, Kings–Loeffler–Zerbes)

Char(Sel) \supset (θ).

Main conjecture: Rankin-Selberg product of Hida families

Theorem (ongoing work of Hsieh-Liu)

cong ideal \subset (θ).

Previous works on Yoshida lifts

- Here's an incomplete list of authors who have studied the Yoshida lifts of two cusp forms:
 - Yoshida
 - Böcherer–Schulze-Pillot
 - Agarwal–Klosin
 - Böcherer–Dummigan–Schulze-Pillot
 - Roberts
 - Saha
 - Saha–Schmidt
 - Hsieh–Namikawa
- Agarwal–Klosin and Böcherer–Dummigan–Schulze-Pillot used congruences with Yoshida lifts towards Bloch–Kato conjectures for Rankin–Selberg product of cuspforms.

Formalizing congruences (Hida, Doi–Hida, Ribet)

► T: the local component of the Hecke algebra, corresponding to E_k, acting on M_k(SL₂(ℤ)).

$$\phi_{E_k}: \mathbf{T} \twoheadrightarrow \mathbb{Z}_p,$$
$$T_l \to 1 + l^{k-1}$$

T_{cusp}: the max. quotient of T acting faithfully on $S_k(SL_2(\mathbb{Z}))$.

$$T \rightarrow T_{cusp}$$

• The image of ker(ϕ_{E_k}) in T_{cusp} is called the Eisenstein ideal.

- Emerton (level 1) and Ohta (general level) studied the map ϕ associated to the Λ -adic Eisenstein series so that \perp = cusp and ? = Eis.
- Hida–Tilouine have studied the map φ associated to Λ-adic CM forms to prove one divisibility towards anti-cyclotomic main conjectures. It is this work of Hida–Tilouine that is our main source of inspiration.
- Our main goal is to generalize the congruence ideal method of Hida–Tilouine to the case of (tempered) endoscopic congruences for GSp₄.

- Emerton (level 1) and Ohta (general level) studied the map ϕ associated to the Λ -adic Eisenstein series so that \perp = cusp and ? = Eis.
- Hida–Tilouine have studied the map φ associated to Λ-adic CM forms to prove one divisibility towards anti-cyclotomic main conjectures. It is this work of Hida–Tilouine that is our main source of inspiration.
- Our main goal is to generalize the congruence ideal method of Hida–Tilouine to the case of (tempered) endoscopic congruences for GSp₄.

- Emerton (level 1) and Ohta (general level) studied the map ϕ associated to the Λ -adic Eisenstein series so that \perp = cusp and ? = Eis.
- Hida–Tilouine have studied the map φ associated to Λ-adic CM forms to prove one divisibility towards anti-cyclotomic main conjectures. It is this work of Hida–Tilouine that is our main source of inspiration.
- Our main goal is to generalize the congruence ideal method of Hida–Tilouine to the case of (tempered) endoscopic congruences for GSp₄.

- Emerton (level 1) and Ohta (general level) studied the map ϕ associated to the Λ -adic Eisenstein series so that \perp = cusp and ? = Eis.
- Hida–Tilouine have studied the map φ associated to Λ-adic CM forms to prove one divisibility towards anti-cyclotomic main conjectures. It is this work of Hida–Tilouine that is our main source of inspiration.
- Our main goal is to generalize the congruence ideal method of Hida–Tilouine to the case of (tempered) endoscopic congruences for GSp₄.

- ► f_{new} be a cuspidal eigen newform in $S_k(\Gamma_1(N))$ with weight ≥ 2 .
- We assume throughout that *p* does not divide *N*.
- ▶ We will also assume that *f*_{new} is *p*-ordinary. That is, the *p*-adic valuation of the Hecke polynomial at *p* equals

$$0, k-1.$$

- Let *f* be the ordinary *p*-stabilization of f_{new} . This is a cuspform in $S_k(\Gamma_1(Np))$.
- ▶ f is an eigenform for the Hecke operators T_l and the diamond operators S_l for l not divinding N along with the U_p operator.
- Let T denote the local component (corresponding to *f*) of the *p*-adic Hecke algebra generated by these operators.

- ► f_{new} be a cuspidal eigen newform in $S_k(\Gamma_1(N))$ with weight ≥ 2 .
- We assume throughout that *p* does not divide *N*.
- ▶ We will also assume that *f*_{new} is *p*-ordinary. That is, the *p*-adic valuation of the Hecke polynomial at *p* equals

$$0, k-1.$$

- Let *f* be the ordinary *p*-stabilization of f_{new} . This is a cuspform in $S_k(\Gamma_1(Np))$.
- ▶ f is an eigenform for the Hecke operators T_l and the diamond operators S_l for l not divinding N along with the U_p operator.
- Let T denote the local component (corresponding to *f*) of the *p*-adic Hecke algebra generated by these operators.

- ► f_{new} be a cuspidal eigen newform in $S_k(\Gamma_1(N))$ with weight ≥ 2 .
- We assume throughout that *p* does not divide *N*.
- We will also assume that f_{new} is p-ordinary. That is, the p-adic valuation of the Hecke polynomial at p equals

$$0, k-1.$$

- Let *f* be the ordinary *p*-stabilization of f_{new} . This is a cuspform in $S_k(\Gamma_1(Np))$.
- ▶ f is an eigenform for the Hecke operators T_l and the diamond operators S_l for l not divinding N along with the U_p operator.
- Let T denote the local component (corresponding to *f*) of the *p*-adic Hecke algebra generated by these operators.

- ► f_{new} be a cuspidal eigen newform in $S_k(\Gamma_1(N))$ with weight ≥ 2 .
- We assume throughout that *p* does not divide *N*.
- We will also assume that f_{new} is p-ordinary. That is, the p-adic valuation of the Hecke polynomial at p equals

$$0, k-1.$$

- Let *f* be the ordinary *p*-stabilization of f_{new} . This is a cuspform in $S_k(\Gamma_1(Np))$.
- ▶ f is an eigenform for the Hecke operators T_l and the diamond operators S_l for l not divinding N along with the U_p operator.
- ▶ Let T denote the local component (corresponding to *f*) of the *p*-adic Hecke algebra generated by these operators.

- ► f_{new} be a cuspidal eigen newform in $S_k(\Gamma_1(N))$ with weight ≥ 2 .
- We assume throughout that *p* does not divide *N*.
- We will also assume that f_{new} is p-ordinary. That is, the p-adic valuation of the Hecke polynomial at p equals

$$0, k-1.$$

- Let *f* be the ordinary *p*-stabilization of f_{new} . This is a cuspform in $S_k(\Gamma_1(Np))$.
- ▶ f is an eigenform for the Hecke operators T_l and the diamond operators S_l for l not divinding N along with the U_p operator.
- ▶ Let T denote the local component (corresponding to *f*) of the *p*-adic Hecke algebra generated by these operators.

- ► f_{new} be a cuspidal eigen newform in $S_k(\Gamma_1(N))$ with weight ≥ 2 .
- We assume throughout that *p* does not divide *N*.
- We will also assume that f_{new} is p-ordinary. That is, the p-adic valuation of the Hecke polynomial at p equals

$$0, k-1.$$

- Let *f* be the ordinary *p*-stabilization of f_{new} . This is a cuspform in $S_k(\Gamma_1(Np))$.
- ▶ *f* is an eigenform for the Hecke operators *T_l* and the diamond operators *S_l* for *l* not divinding *N* along with the *U_p* operator.
- Let T denote the local component (corresponding to *f*) of the *p*-adic Hecke algebra generated by these operators.

- ► f_{new} be a cuspidal eigen newform in $S_k(\Gamma_1(N))$ with weight ≥ 2 .
- We assume throughout that *p* does not divide *N*.
- We will also assume that f_{new} is p-ordinary. That is, the p-adic valuation of the Hecke polynomial at p equals

$$0, k-1.$$

- Let *f* be the ordinary *p*-stabilization of f_{new} . This is a cuspform in $S_k(\Gamma_1(Np))$.
- ▶ *f* is an eigenform for the Hecke operators *T_l* and the diamond operators *S_l* for *l* not divinding *N* along with the *U_p* operator.
- Let T denote the local component (corresponding to *f*) of the *p*-adic Hecke algebra generated by these operators.

Suppose *F* and *G* are two Hida families passing through two ordinary *p*-stabilizations f_0 and g_0 .

$$b: \mathbf{T} \to \mathbf{I}$$
 (

- **T**, **I** are finitely generated over a subring over $\mathbb{Z}_p[[x]]$.
- ► **T**: Λ -adic Hecke algebra generated by the Hecke operators T_l and diamond operators S_l for primes l not divinding N and the U_p operator acting on the space of Λ -adic cuspforms.
- **T** is reduced.
- ▶ I is the normalization of T/η , for some minimal prime ideal η .
- ► There exists a dense set of height one prime ideals p_k in **T** (with $k \ge 2$) containing η and $(1 + x)^m (1 + p)^{mp^{k-1}}$, for some $m \ge 1$, such that

$$\mathbf{T} \xrightarrow{\phi} \mathbf{I} \to \mathbf{T}/\mathfrak{p}_k \hookrightarrow \overline{\mathbb{Z}}_p$$

Suppose *F* and *G* are two Hida families passing through two ordinary *p*-stabilizations f_0 and g_0 .

(

$$b: \mathbf{T} \to \mathbf{I} \tag{1}$$

- ▶ **T**, **I** are finitely generated over a subring over $\mathbb{Z}_p[[x]]$.
- T: Λ -adic Hecke algebra generated by the Hecke operators T_l and diamond operators S_l for primes l not divinding N and the U_p operator acting on the space of Λ -adic cuspforms.
- **T** is reduced.
- ▶ I is the normalization of T/η , for some minimal prime ideal η .
- ► There exists a dense set of height one prime ideals p_k in **T** (with $k \ge 2$) containing η and $(1 + x)^m (1 + p)^{mp^{k-1}}$, for some $m \ge 1$, such that

$$\mathbf{T} \xrightarrow{\phi} \mathbf{I} \to \mathbf{T}/\mathfrak{p}_k \hookrightarrow \overline{\mathbb{Z}}_p$$

Suppose *F* and *G* are two Hida families passing through two ordinary *p*-stabilizations f_0 and g_0 .

$$\phi: \mathbf{T} \to \mathbf{I} \tag{1}$$

- ▶ **T**, **I** are finitely generated over a subring over $\mathbb{Z}_p[[x]]$.
- ► **T**: Λ -adic Hecke algebra generated by the Hecke operators T_l and diamond operators S_l for primes l not divinding N and the U_p operator acting on the space of Λ -adic cuspforms.
- **T** is reduced.
- ▶ I is the normalization of \mathbf{T}/η , for some minimal prime ideal η .
- ► There exists a dense set of height one prime ideals p_k in **T** (with $k \ge 2$) containing η and $(1 + x)^m (1 + p)^{mp^{k-1}}$, for some $m \ge 1$, such that

$$\mathbf{T} \xrightarrow{\phi} \mathbf{I} \to \mathbf{T}/\mathfrak{p}_k \hookrightarrow \overline{\mathbb{Z}}_p$$

Suppose *F* and *G* are two Hida families passing through two ordinary *p*-stabilizations f_0 and g_0 .

$$\phi: \mathbf{T} \to \mathbf{I} \tag{1}$$

- ▶ **T**, **I** are finitely generated over a subring over $\mathbb{Z}_p[[x]]$.
- **T**: Λ -adic Hecke algebra generated by the Hecke operators T_l and diamond operators S_l for primes l not divinding N and the U_p operator acting on the space of Λ -adic cuspforms.
- T is reduced.
- I is the normalization of T/η , for some minimal prime ideal η .
- ► There exists a dense set of height one prime ideals p_k in **T** (with $k \ge 2$) containing η and $(1 + x)^m (1 + p)^{mp^{k-1}}$, for some $m \ge 1$, such that

$$\mathbf{T} \xrightarrow{\phi} \mathbf{I} \to \mathbf{T}/\mathfrak{p}_k \hookrightarrow \overline{\mathbb{Z}}_p$$

Suppose *F* and *G* are two Hida families passing through two ordinary *p*-stabilizations f_0 and g_0 .

$$\phi: \mathbf{T} \to \mathbf{I} \tag{1}$$

- ▶ **T**, **I** are finitely generated over a subring over $\mathbb{Z}_p[[x]]$.
- ► **T**: Λ -adic Hecke algebra generated by the Hecke operators T_l and diamond operators S_l for primes l not divinding N and the U_p operator acting on the space of Λ -adic cuspforms.
- T is reduced.
- I is the normalization of T/η , for some minimal prime ideal η .
- ► There exists a dense set of height one prime ideals p_k in **T** (with $k \ge 2$) containing η and $(1 + x)^m (1 + p)^{mp^{k-1}}$, for some $m \ge 1$, such that

$$\mathbf{\Gamma} \xrightarrow{\phi} \mathbf{I} \to \mathbf{T}/\mathfrak{p}_k \hookrightarrow \overline{\mathbb{Z}}_p$$

Suppose *F* and *G* are two Hida families passing through two ordinary *p*-stabilizations f_0 and g_0 .

$$\phi: \mathbf{T} \to \mathbf{I} \tag{1}$$

- ▶ **T**, **I** are finitely generated over a subring over $\mathbb{Z}_p[[x]]$.
- ► **T**: Λ -adic Hecke algebra generated by the Hecke operators T_l and diamond operators S_l for primes l not divinding N and the U_p operator acting on the space of Λ -adic cuspforms.
- T is reduced.
- I is the normalization of T/η , for some minimal prime ideal η .
- ► There exists a dense set of height one prime ideals p_k in **T** (with $k \ge 2$) containing η and $(1 + x)^m (1 + p)^{mp^{k-1}}$, for some $m \ge 1$, such that

$$\mathbf{T} \xrightarrow{\phi} \mathbf{I} \to \mathbf{T}/\mathfrak{p}_k \hookrightarrow \overline{\mathbb{Z}}_p$$

Suppose *F* and *G* are two Hida families passing through two ordinary *p*-stabilizations f_0 and g_0 .

$$\phi: \mathbf{T} \to \mathbf{I} \tag{1}$$

- ▶ **T**, **I** are finitely generated over a subring over $\mathbb{Z}_p[[x]]$.
- ► **T**: Λ -adic Hecke algebra generated by the Hecke operators T_l and diamond operators S_l for primes l not divinding N and the U_p operator acting on the space of Λ -adic cuspforms.
- T is reduced.
- I is the normalization of \mathbf{T}/η , for some minimal prime ideal η .
- ► There exists a dense set of height one prime ideals \mathfrak{p}_k in **T** (with $k \ge 2$) containing η and $(1 + x)^m (1 + p)^{mp^{k-1}}$, for some $m \ge 1$, such that

$$\mathbf{T} \xrightarrow{\phi} \mathbf{I} \to \mathbf{T}/\mathfrak{p}_k \hookrightarrow \overline{\mathbb{Z}}_p$$

Theorem (Hida)

There exists a continuous Galois representation

 ρ_F : Gal (\mathbb{Q}_S/\mathbb{Q}) \rightarrow GL₂(Frac(\mathbf{I}_F))

such that specialization of ρ_F at a classical prime is isomorphic to Shimura–Deligne Galois representation.

We are interested in studying the Iwasawa main conjecture associated to the Galois representation given by the acton of Gal $(\mathbb{Q}_S/\mathbb{Q})$ on

Hom (ρ_F, ρ_G) .

Theorem (Hida)

There exists a continuous Galois representation

 ρ_F : Gal (\mathbb{Q}_S/\mathbb{Q}) \rightarrow GL₂(Frac(\mathbf{I}_F))

such that specialization of ρ_F at a classical prime is isomorphic to Shimura–Deligne Galois representation.

We are interested in studying the Iwasawa main conjecture associated to the Galois representation given by the acton of Gal $(\mathbb{Q}_S/\mathbb{Q})$ on

Hom (ρ_F, ρ_G) .

- Suppose you have a Hida family *F* passing through an Eisenstein series with weight ≥ 2 . Are all the classical specializations (with weight ≥ 2) of the Hida family *F* Eisenstein? (Yes due to Hida)
- 2 Suppose you have a Hida family *F* passing through a CM form *f* with weight ≥ 2 . Are all the classical specializations (with weight ≥ 2) of the Hida family *F* CM forms? (Yes due to Hida)
- ► Hida proved that there exists a unique Hida family passing through classical points with weight ≥ 2.
- ► Hida explicitly constructed a CM/Eisenstein Hida family.
- How does one answer the above question by simply considering the Galois representation ρ_F (which contains all the info about *F*)?
- ► If the Galois representation ρ_f , associated to a classical specialization of weight \geq 2, induced from a Hecke character of an imaginary quadratic field, then is ρ_F also induced from a Λ -adic Hecke character?
- ► If a classical specialization (with weight \geq 2) of ρ_F is reducible, is ρ_F reducible? (Yes, due to Bellaïche–Chenevier)

- Suppose you have a Hida family *F* passing through an Eisenstein series with weight ≥ 2 . Are all the classical specializations (with weight ≥ 2) of the Hida family *F* Eisenstein? (Yes due to Hida)
- ② Suppose you have a Hida family *F* passing through a CM form *f* with weight ≥ 2. Are all the classical specializations (with weight ≥ 2) of the Hida family *F* CM forms? (Yes due to Hida)
- ► Hida proved that there exists a unique Hida family passing through classical points with weight ≥ 2.
- ► Hida explicitly constructed a CM/Eisenstein Hida family.
- How does one answer the above question by simply considering the Galois representation ρ_F (which contains all the info about *F*)?
- ► If the Galois representation ρ_f , associated to a classical specialization of weight \geq 2, induced from a Hecke character of an imaginary quadratic field, then is ρ_F also induced from a Λ -adic Hecke character?
- ► If a classical specialization (with weight \geq 2) of ρ_F is reducible, is ρ_F reducible? (Yes, due to Bellaïche–Chenevier)

- Suppose you have a Hida family *F* passing through an Eisenstein series with weight ≥ 2 . Are all the classical specializations (with weight ≥ 2) of the Hida family *F* Eisenstein? (Yes due to Hida)
- ② Suppose you have a Hida family *F* passing through a CM form *f* with weight ≥ 2. Are all the classical specializations (with weight ≥ 2) of the Hida family *F* CM forms? (Yes due to Hida)
- ► Hida proved that there exists a unique Hida family passing through classical points with weight ≥ 2.
- ▶ Hida explicitly constructed a CM/Eisenstein Hida family.
- How does one answer the above question by simply considering the Galois representation ρ_F (which contains all the info about *F*)?
- ► If the Galois representation ρ_f , associated to a classical specialization of weight \geq 2, induced from a Hecke character of an imaginary quadratic field, then is ρ_F also induced from a Λ -adic Hecke character?
- ► If a classical specialization (with weight \geq 2) of ρ_F is reducible, is ρ_F reducible? (Yes, due to Bellaïche–Chenevier)

- Suppose you have a Hida family *F* passing through an Eisenstein series with weight ≥ 2 . Are all the classical specializations (with weight ≥ 2) of the Hida family *F* Eisenstein? (Yes due to Hida)
- 2 Suppose you have a Hida family *F* passing through a CM form *f* with weight ≥ 2 . Are all the classical specializations (with weight ≥ 2) of the Hida family *F* CM forms? (Yes due to Hida)
- ► Hida proved that there exists a unique Hida family passing through classical points with weight ≥ 2.
- ► Hida explicitly constructed a CM/Eisenstein Hida family.
- How does one answer the above question by simply considering the Galois representation ρ_F (which contains all the info about *F*)?
- ► If the Galois representation ρ_f , associated to a classical specialization of weight \geq 2, induced from a Hecke character of an imaginary quadratic field, then is ρ_F also induced from a Λ -adic Hecke character?
- ► If a classical specialization (with weight \geq 2) of ρ_F is reducible, is ρ_F reducible? (Yes, due to Bellaïche–Chenevier)

- Suppose you have a Hida family *F* passing through an Eisenstein series with weight ≥ 2 . Are all the classical specializations (with weight ≥ 2) of the Hida family *F* Eisenstein? (Yes due to Hida)
- ② Suppose you have a Hida family *F* passing through a CM form *f* with weight ≥ 2. Are all the classical specializations (with weight ≥ 2) of the Hida family *F* CM forms? (Yes due to Hida)
- ► Hida proved that there exists a unique Hida family passing through classical points with weight ≥ 2.
- ► Hida explicitly constructed a CM/Eisenstein Hida family.
- How does one answer the above question by simply considering the Galois representation ρ_F (which contains all the info about F)?
- ▶ If the Galois representation ρ_f , associated to a classical specialization of weight ≥ 2, induced from a Hecke character of an imaginary quadratic field, then is ρ_F also induced from a Λ -adic Hecke character?
- ► If a classical specialization (with weight \geq 2) of ρ_F is reducible, is ρ_F reducible? (Yes, due to Bellaïche–Chenevier)

- Suppose you have a Hida family *F* passing through an Eisenstein series with weight ≥ 2 . Are all the classical specializations (with weight ≥ 2) of the Hida family *F* Eisenstein? (Yes due to Hida)
- 2 Suppose you have a Hida family *F* passing through a CM form *f* with weight ≥ 2 . Are all the classical specializations (with weight ≥ 2) of the Hida family *F* CM forms? (Yes due to Hida)
- ► Hida proved that there exists a unique Hida family passing through classical points with weight ≥ 2.
- ► Hida explicitly constructed a CM/Eisenstein Hida family.
- How does one answer the above question by simply considering the Galois representation ρ_F (which contains all the info about F)?
- ► If the Galois representation ρ_f , associated to a classical specialization of weight \geq 2, induced from a Hecke character of an imaginary quadratic field, then is ρ_F also induced from a Λ -adic Hecke character?
- ► If a classical specialization (with weight \geq 2) of ρ_F is reducible, is ρ_F reducible? (Yes, due to Bellaïche–Chenevier)

- Suppose you have a Hida family *F* passing through an Eisenstein series with weight ≥ 2 . Are all the classical specializations (with weight ≥ 2) of the Hida family *F* Eisenstein? (Yes due to Hida)
- 2 Suppose you have a Hida family *F* passing through a CM form *f* with weight ≥ 2 . Are all the classical specializations (with weight ≥ 2) of the Hida family *F* CM forms? (Yes due to Hida)
- ► Hida proved that there exists a unique Hida family passing through classical points with weight ≥ 2.
- ► Hida explicitly constructed a CM/Eisenstein Hida family.
- How does one answer the above question by simply considering the Galois representation ρ_F (which contains all the info about *F*)?
- ► If the Galois representation ρ_f , associated to a classical specialization of weight ≥ 2 , induced from a Hecke character of an imaginary quadratic field, then is ρ_F also induced from a Λ -adic Hecke character?
- ► If a classical specialization (with weight \ge 2) of ρ_F is reducible, is ρ_F reducible? (Yes, due to Bellaïche–Chenevier)

$$\operatorname{GSp}_4 = \left\{ g \in \operatorname{GL}_4, \text{ such that } g^T \begin{bmatrix} 0 & I_2 \\ -I_2 & 0 \end{bmatrix} g = \lambda(g) \begin{bmatrix} 0 & I_2 \\ -I_2 & 0 \end{bmatrix} \right\}.$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}, \begin{bmatrix} a' & b' \\ c' & d' \end{bmatrix} \rightarrow \begin{bmatrix} a & b & b' \\ a' & b' \\ c & d & c' & d' \end{bmatrix} \in \operatorname{GSp}_4$$

Suppose f_0 and g_0 satisfy:

(Neben) — $\psi_{f_0} = \psi_{g_0}$. (weight) — weight(f_0) = weight(g_0) mod 2.

$$\rho_{f_0}, \qquad \rho_{g_0}\left(\chi_p^{(\mathrm{wt}(f_0)-\mathrm{wt}(g_0))/2}\right).$$

$$\operatorname{GSp}_4 = \left\{ g \in \operatorname{GL}_4, \text{ such that } g^T \begin{bmatrix} 0 & I_2 \\ -I_2 & 0 \end{bmatrix} g = \lambda(g) \begin{bmatrix} 0 & I_2 \\ -I_2 & 0 \end{bmatrix} \right\}.$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}, \begin{bmatrix} a' & b' \\ c' & d' \end{bmatrix} \rightarrow \begin{bmatrix} a & b & b' \\ a' & b' \\ c & d & c' & d' \end{bmatrix} \in \operatorname{GSp}_4$$

Suppose f_0 and g_0 satisfy:

(Neben) — $\psi_{f_0} = \psi_{g_0}$. (weight) — weight(f_0) = weight(g_0) mod 2

$$\rho_{f_0}, \qquad \rho_{g_0}\left(\chi_p^{(\mathrm{wt}(f_0)-\mathrm{wt}(g_0))/2}\right).$$

$$\operatorname{GSp}_4 = \left\{ g \in \operatorname{GL}_4, \text{ such that } g^T \begin{bmatrix} 0 & I_2 \\ -I_2 & 0 \end{bmatrix} g = \lambda(g) \begin{bmatrix} 0 & I_2 \\ -I_2 & 0 \end{bmatrix} \right\}.$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}, \begin{bmatrix} a' & b' \\ c' & d' \end{bmatrix} \rightarrow \begin{bmatrix} a & b & b' \\ a' & b' \\ c & d & b' \\ c & c' & d' \end{bmatrix} \in \operatorname{GSp}_4$$

Suppose f_0 and g_0 satisfy:

(Neben) — $\psi_{f_0} = \psi_{g_0}$. (weight) — weight(f_0) = weight(g_0) mod 2.

$$\rho_{f_0}, \qquad \rho_{g_0}\left(\chi_p^{(\mathrm{wt}(f_0)-\mathrm{wt}(g_0))/2}\right).$$

$$\operatorname{GSp}_4 = \left\{ g \in \operatorname{GL}_4, \text{ such that } g^T \begin{bmatrix} 0 & I_2 \\ -I_2 & 0 \end{bmatrix} g = \lambda(g) \begin{bmatrix} 0 & I_2 \\ -I_2 & 0 \end{bmatrix} \right\}.$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}, \begin{bmatrix} a' & b' \\ c' & d' \end{bmatrix} \rightarrow \begin{bmatrix} a & b & b' \\ a' & b' \\ c & d & b' \\ c & c' & d' \end{bmatrix} \in \operatorname{GSp}_4$$

Suppose f_0 and g_0 satisfy:

(Neben) — $\psi_{f_0} = \psi_{g_0}$. (weight) — weight(f_0) = weight(g_0) mod 2.

$$\rho_{f_0}, \qquad \rho_{g_0}\Big(\chi_p^{(\mathrm{wt}(f_0)-\mathrm{wt}(g_0))/2}\Big).$$

- ► (Laumon, Taylor, Weissauer) One can attach a Galois representation $\operatorname{Gal}(\mathbb{Q}_S/\mathbb{Q}) \to \operatorname{GSp}_4(\overline{\mathbb{Q}}_p)$ to Siegel cuspidal eigen forms over GSp_4 with weight (κ_1, κ_2) with $\kappa_1 \ge \kappa_2 \ge 3$.
- Is there a cuspidal Siegel form whose Galois representation is isomorphic to

$$\rho_{f_0} \oplus \rho_{g_0} \left(\chi_p^{(\mathrm{wt}(f_0) - \mathrm{wt}(g_0))/2} \right).$$

- Ves (Yoshida lifts) but the following hypothesis is necessary: (JL) — There exists a prime $l \neq p$ such that both f_0 and g_0 participate in the local Jacquet Langlands correspondence.
 - ▶ (Yoshida, Böcherer–Schulze-Pillot) Explicit theta correspondences.
 - (Roberts) Establishing Arthur's multiplicity formula for the Yoshida packet.

$$(\kappa_1, \kappa_2) = \left(\frac{\operatorname{wt}(f_0) + \operatorname{wt}(g_0)}{2}, \frac{\operatorname{wt}(f_0) - \operatorname{wt}(g_0)}{2} + 2\right).$$

- ► (Laumon, Taylor, Weissauer) One can attach a Galois representation $\operatorname{Gal}(\mathbb{Q}_S/\mathbb{Q}) \to \operatorname{GSp}_4(\overline{\mathbb{Q}}_p)$ to Siegel cuspidal eigen forms over GSp_4 with weight (κ_1, κ_2) with $\kappa_1 \ge \kappa_2 \ge 3$.
- Is there a cuspidal Siegel form whose Galois representation is isomorphic to

$$\rho_{f_0} \oplus \rho_{g_0} \Big(\chi_p^{(\operatorname{wt}(f_0) - \operatorname{wt}(g_0))/2} \Big).$$

- ▶ Yes (Yoshida lifts) but the following hypothesis is necessary: (JL) — There exists a prime $l \neq p$ such that both f_0 and g_0 participate in the local Jacquet Langlands correspondence.
 - ▶ (Yoshida, Böcherer–Schulze-Pillot) Explicit theta correspondences.
 - (Roberts) Establishing Arthur's multiplicity formula for the Yoshida packet.

$$(\kappa_1, \kappa_2) = \left(\frac{\operatorname{wt}(f_0) + \operatorname{wt}(g_0)}{2}, \frac{\operatorname{wt}(f_0) - \operatorname{wt}(g_0)}{2} + 2\right).$$

- ► (Laumon, Taylor, Weissauer) One can attach a Galois representation $\operatorname{Gal}(\mathbb{Q}_S/\mathbb{Q}) \to \operatorname{GSp}_4(\overline{\mathbb{Q}}_p)$ to Siegel cuspidal eigen forms over GSp_4 with weight (κ_1, κ_2) with $\kappa_1 \ge \kappa_2 \ge 3$.
- Is there a cuspidal Siegel form whose Galois representation is isomorphic to

$$\rho_{f_0} \oplus \rho_{g_0} \Big(\chi_p^{(\operatorname{wt}(f_0) - \operatorname{wt}(g_0))/2} \Big).$$

- ▶ Yes (Yoshida lifts) but the following hypothesis is necessary: (JL) — There exists a prime $l \neq p$ such that both f_0 and g_0 participate in the local Jacquet Langlands correspondence.
 - Yoshida, Böcherer–Schulze-Pillot) Explicit theta correspondences.
 - (Roberts) Establishing Arthur's multiplicity formula for the Yoshida packet.

$$(\kappa_1, \kappa_2) = \left(\frac{\operatorname{wt}(f_0) + \operatorname{wt}(g_0)}{2}, \frac{\operatorname{wt}(f_0) - \operatorname{wt}(g_0)}{2} + 2\right).$$

- ► (Laumon, Taylor, Weissauer) One can attach a Galois representation $\operatorname{Gal}(\mathbb{Q}_S/\mathbb{Q}) \to \operatorname{GSp}_4(\overline{\mathbb{Q}}_p)$ to Siegel cuspidal eigen forms over GSp_4 with weight (κ_1, κ_2) with $\kappa_1 \ge \kappa_2 \ge 3$.
- Is there a cuspidal Siegel form whose Galois representation is isomorphic to

$$\rho_{f_0} \oplus \rho_{g_0} \Big(\chi_p^{(\operatorname{wt}(f_0) - \operatorname{wt}(g_0))/2} \Big).$$

- ▶ Yes (Yoshida lifts) but the following hypothesis is necessary: (JL) — There exists a prime $l \neq p$ such that both f_0 and g_0 participate in the local Jacquet Langlands correspondence.
 - Yoshida, Böcherer–Schulze-Pillot) Explicit theta correspondences.
 - (Roberts) Establishing Arthur's multiplicity formula for the Yoshida packet.

$$(\kappa_1, \kappa_2) = \left(\frac{\operatorname{wt}(f_0) + \operatorname{wt}(g_0)}{2}, \ \frac{\operatorname{wt}(f_0) - \operatorname{wt}(g_0)}{2} + 2\right)$$

- ► (Laumon, Taylor, Weissauer) One can attach a Galois representation $\operatorname{Gal}(\mathbb{Q}_S/\mathbb{Q}) \to \operatorname{GSp}_4(\overline{\mathbb{Q}}_p)$ to Siegel cuspidal eigen forms over GSp_4 with weight (κ_1, κ_2) with $\kappa_1 \ge \kappa_2 \ge 3$.
- Is there a cuspidal Siegel form whose Galois representation is isomorphic to

$$\rho_{f_0} \oplus \rho_{g_0} \Big(\chi_p^{(\operatorname{wt}(f_0) - \operatorname{wt}(g_0))/2} \Big).$$

- ▶ Yes (Yoshida lifts) but the following hypothesis is necessary: (JL) — There exists a prime $l \neq p$ such that both f_0 and g_0 participate in the local Jacquet Langlands correspondence.
 - (Yoshida, Böcherer–Schulze-Pillot) Explicit theta correspondences.
 (Roberts) Establishing Arthur's multiplicity formula for the Yoshida packet

$$(\kappa_1, \kappa_2) = \left(\frac{\operatorname{wt}(f_0) + \operatorname{wt}(g_0)}{2}, \ \frac{\operatorname{wt}(f_0) - \operatorname{wt}(g_0)}{2} + 2\right).$$

- ► (Laumon, Taylor, Weissauer) One can attach a Galois representation $\operatorname{Gal}(\mathbb{Q}_S/\mathbb{Q}) \to \operatorname{GSp}_4(\overline{\mathbb{Q}}_p)$ to Siegel cuspidal eigen forms over GSp_4 with weight (κ_1, κ_2) with $\kappa_1 \ge \kappa_2 \ge 3$.
- Is there a cuspidal Siegel form whose Galois representation is isomorphic to

$$\rho_{f_0} \oplus \rho_{g_0} \Big(\chi_p^{(\operatorname{wt}(f_0) - \operatorname{wt}(g_0))/2} \Big).$$

- ▶ Yes (Yoshida lifts) but the following hypothesis is necessary: (JL) — There exists a prime $l \neq p$ such that both f_0 and g_0 participate in the local Jacquet Langlands correspondence.
 - ▶ (Yoshida, Böcherer–Schulze-Pillot) Explicit theta correspondences.
 - (Roberts) Establishing Arthur's multiplicity formula for the Yoshida packet.

$$(\kappa_1, \kappa_2) = \left(\frac{\operatorname{wt}(f_0) + \operatorname{wt}(g_0)}{2}, \ \frac{\operatorname{wt}(f_0) - \operatorname{wt}(g_0)}{2} + 2\right).$$

- ► (Laumon, Taylor, Weissauer) One can attach a Galois representation $\operatorname{Gal}(\mathbb{Q}_S/\mathbb{Q}) \to \operatorname{GSp}_4(\overline{\mathbb{Q}}_p)$ to Siegel cuspidal eigen forms over GSp_4 with weight (κ_1, κ_2) with $\kappa_1 \ge \kappa_2 \ge 3$.
- Is there a cuspidal Siegel form whose Galois representation is isomorphic to

$$\rho_{f_0} \oplus \rho_{g_0} \Big(\chi_p^{(\operatorname{wt}(f_0) - \operatorname{wt}(g_0))/2} \Big).$$

- ▶ Yes (Yoshida lifts) but the following hypothesis is necessary: (JL) — There exists a prime $l \neq p$ such that both f_0 and g_0 participate in the local Jacquet Langlands correspondence.
 - ▶ (Yoshida, Böcherer–Schulze-Pillot) Explicit theta correspondences.
 - (Roberts) Establishing Arthur's multiplicity formula for the Yoshida packet.

$$(\kappa_1, \kappa_2) = \left(\frac{\operatorname{wt}(f_0) + \operatorname{wt}(g_0)}{2}, \ \frac{\operatorname{wt}(f_0) - \operatorname{wt}(g_0)}{2} + 2\right).$$

A Siegel cusp form with weight (κ₁, κ₂) is *p*-ordinary if the *p*-adic valuations of the Hecke polynomial at *p*:

- The Yoshida lift of f_0 and g_0 turns out to be *p*-ordinary.
- One can apply Hida theory for GSp₄ (Tilouine–Urban, Hida, Pilloni). Again, one needs to *p*-stabilize. However, there could be more than one Hida family passing through an ordinary form.
- ▶ T: the $\mathbb{Z}_p[[t_1, t_2]]$ -adic Hecke algebra generated by $T_{l,1}$, $T_{l,2}$ and S_l operators for good primes *l* along with the $U_{p,1}$ and $U_{p,2}$ operator.

$$\phi:\mathbb{T}\to\mathbb{I}.$$

A Siegel cusp form with weight (κ₁, κ₂) is *p*-ordinary if the *p*-adic valuations of the Hecke polynomial at *p*:

0, $\kappa_2 - 2$, $\kappa_1 - 1$, $\kappa_1 + \kappa_2 - 3$.

• The Yoshida lift of f_0 and g_0 turns out to be *p*-ordinary.

- One can apply Hida theory for GSp₄ (Tilouine–Urban, Hida, Pilloni). Again, one needs to *p*-stabilize. However, there could be more than one Hida family passing through an ordinary form.
- ▶ T: the $\mathbb{Z}_p[[t_1, t_2]]$ -adic Hecke algebra generated by $T_{l,1}$, $T_{l,2}$ and S_l operators for good primes *l* along with the $U_{p,1}$ and $U_{p,2}$ operator.

$$\phi:\mathbb{T}\to\mathbb{I}.$$

A Siegel cusp form with weight (κ₁, κ₂) is *p*-ordinary if the *p*-adic valuations of the Hecke polynomial at *p*:

- The Yoshida lift of f_0 and g_0 turns out to be *p*-ordinary.
- One can apply Hida theory for GSp₄ (Tilouine–Urban, Hida, Pilloni). Again, one needs to *p*-stabilize. However, there could be more than one Hida family passing through an ordinary form.
- ▶ T: the $\mathbb{Z}_p[[t_1, t_2]]$ -adic Hecke algebra generated by $T_{l,1}$, $T_{l,2}$ and S_l operators for good primes *l* along with the $U_{p,1}$ and $U_{p,2}$ operator.

$$\phi: \mathbb{T} \to \mathbb{I}.$$

A Siegel cusp form with weight (κ₁, κ₂) is *p*-ordinary if the *p*-adic valuations of the Hecke polynomial at *p*:

- The Yoshida lift of f_0 and g_0 turns out to be *p*-ordinary.
- One can apply Hida theory for GSp₄ (Tilouine–Urban, Hida, Pilloni). Again, one needs to *p*-stabilize. However, there could be more than one Hida family passing through an ordinary form.
- ▶ T: the $\mathbb{Z}_p[[t_1, t_2]]$ -adic Hecke algebra generated by $T_{l,1}$, $T_{l,2}$ and S_l operators for good primes *l* along with the $U_{p,1}$ and $U_{p,2}$ operator.

$$\phi: \mathbb{T} \to \mathbb{I}.$$

A Siegel cusp form with weight (κ₁, κ₂) is *p*-ordinary if the *p*-adic valuations of the Hecke polynomial at *p*:

- The Yoshida lift of f_0 and g_0 turns out to be *p*-ordinary.
- One can apply Hida theory for GSp₄ (Tilouine–Urban, Hida, Pilloni). Again, one needs to *p*-stabilize. However, there could be more than one Hida family passing through an ordinary form.
- ▶ T: the $\mathbb{Z}_p[[t_1, t_2]]$ -adic Hecke algebra generated by $T_{l,1}$, $T_{l,2}$ and S_l operators for good primes *l* along with the $U_{p,1}$ and $U_{p,2}$ operator.

$$\phi: \mathbb{T} \to \mathbb{I}.$$

Congruence ideals associated to Yoshida lifts

- We need ϕ to pass through a *p*-family of Yoshida lifts.
- So far, we only know that it passes through one classical Yoshida lift.
- We need \mathbb{T}_{\perp} to contain no Yoshida lifts.

(RT) — $\mathbf{R}^{\text{ord}} = \mathbf{T} \text{ for } \overline{\rho}_{f_0} \text{ and } \overline{\rho}_{g_0}.$

(Cong Num) — p doesn't divide congruence number for F and G.

Congruence ideals associated to Yoshida lifts

- We need ϕ to pass through a *p*-family of Yoshida lifts.
- So far, we only know that it passes through one classical Yoshida lift.
- We need \mathbb{T}_{\perp} to contain no Yoshida lifts.

(RT) — $\mathbf{R}^{\text{ord}} = \mathbf{T} \text{ for } \overline{\rho}_{f_0} \text{ and } \overline{\rho}_{g_0}.$

(Cong Num) — p doesn't divide congruence number for F and G.

One starting approach: a direct automorphic construction of the desired *p*-adic family of Siegel forms.

Question

Suppose you have a GSp_4 Hida family passing through the Yoshida lift of f_0 and g_0 . Do almost all classical specializations of the Hida family correspond to Yoshida lifts?

Question

Suppose you have a GSp_4 Hida family passing through the Yoshida lift of f_0 and g_0 . Do almost all classical specializations of the Hida family correspond to Yoshida lifts?

Henceforth, we work under all the assumptions stated above.

Theorem (Hsieh–P.)

The p-adic family of Hecke eigensystems

 $\phi:\mathbb{T}\to\mathbb{I}$

corresponds to the Yoshida lifts of F and G.

Every irreducible component of T_⊥ does not correspond to a Yoshida lift of Hida families.

Theorem (Hsieh–P.)

$$\operatorname{Char}\left(\operatorname{Sel}_{\mathbf{F},G}(\mathbb{Q})^{\vee}\right) \subset \operatorname{cong} \operatorname{ideal}^*.$$

Henceforth, we work under all the assumptions stated above.

Theorem (Hsieh–P.)

The p-adic family of Hecke eigensystems

 $\phi:\mathbb{T}\to\mathbb{I}$

corresponds to the Yoshida lifts of F and G.

Every irreducible component of \mathbb{T}_{\perp} does not correspond to a Yoshida lift of Hida families.

Theorem (Hsieh–P.)

$$\operatorname{Char}\left(\operatorname{Sel}_{\mathbf{F},G}(\mathbb{Q})^{\vee}\right) \subset \operatorname{cong} \operatorname{ideal}^*.$$

Henceforth, we work under all the assumptions stated above.

Theorem (Hsieh–P.)

The p-adic family of Hecke eigensystems

 $\phi:\mathbb{T}\to\mathbb{I}$

corresponds to the Yoshida lifts of F and G.

► Every irreducible component of T_⊥ does not correspond to a Yoshida lift of Hida families.

Theorem (Hsieh-P.)

$$\operatorname{Char}\left(\operatorname{Sel}_{\mathbf{F},G}(\mathbb{Q})^{\vee}\right) \subset \operatorname{cong}\operatorname{ideal}^*.$$

(2)

Henceforth, we work under all the assumptions stated above.

Theorem (Hsieh–P.)

The p-adic family of Hecke eigensystems

 $\phi:\mathbb{T}\to\mathbb{I}$

corresponds to the Yoshida lifts of F and G.

► Every irreducible component of T_⊥ does not correspond to a Yoshida lift of Hida families.

Theorem (Hsieh-P.)

$$\operatorname{Char}\left(\operatorname{Sel}_{\mathbf{F},G}(\mathbb{Q})^{\vee}\right) \subset \operatorname{cong}\operatorname{ideal}^*.$$

(2)

Thank you.