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e C = smooth projective curve over a field K C C
e g =genus of C =dimH(C,QL) >2
e PeC(K)

o J= PicOC/K = Jacobian (abelian) variety of dimension g

Embeddings: C — J
p(Q) =1Q)—(P)]  p(Q)=1[(P)—(Q)]

The Ceresa cycle:

kp(C) = [tp(C)] — [tp(C)] € CH1(J) := Fap(curves C J)/ ~rat

Observation: xp(C) is null-homologous

kp(C) € CHy(J)o := ker(CHy(J) S5 H2%E—2(J(C), Z)).

Proof: 1, = [~1] op and [—1] acts as +1 on H?672(J) = A2 72H(J).
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Algebraic equivalence:

CH1(J)alg := > I, (Pic’(X))
X /K sm. proj. curve
rcXxJ dim=2

Z M”‘ﬁ; 2. Xxj
,—‘l
G b Lu>§\f'«

The Ceresa class: £(C) := [kp(C)]aig € CH1(J)o/ CH1(JS)atlg =: Gri(J)
Question: Is x(C) =0 in Gry(J)?
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A brief history of the Ceresa cycle

Observation: C hyperelliptic = k(C) =0

Proof: If 0 = hyper. inv., then 1z = 1,(py 0 0, 50 15 (C) = 15(p)(C). O

Infinite order Ceresa class:
Very general curves /C g>3 Ceresa/Top 1983/89
F*: X*+Y*+2Z*=0 g=3 Harris/Bloch 1983/84
XY3+vZ3+2x3=0 g =3 Kimura/Tadokoro 2000/08
[P 200 4 A S 70 = ()
if 3p > 7 such that p | m g(m)  Eskandari-Murty 2021

Question: (Clemens, g = 3) C hyperelliptic <= k(C) =07

Theorem (Beauville-Schoen, 2021)
For C: y® =x*+x, k(C)=0¢€ Gr;(J)® Q.
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A criterion of Beauville

The complex Abel-Jacobi map: Alc: CHi(J)o— J1(Jc)
Ji(Je) = FilEH \H?673(J(C), C)/H**(J(C), 2)

Idea: If o € Aut(C) and o(P) = P, then

~ o fixes kp(C) in CHy(J)o
~ o fixes AJ((;(HP(C)) in jl(Jc)
~ If Fix(o) € J1(Jc) is finite, then Alc(rxp(C)) is torsion

Let V = H(Cc, Q). The finiteness of Fix(c) is equivalent to:
Criterion (+): 1 is not an eigenvalue for o acting on

To(J1(Jc)) = Filf™! = (A$3V @ ABV*) @ (AE72V @ A8~1V).

Theorem (Beauville, 2021)
For C: y* = x* 4+ x, Alc(k(0,0)(C)) is torsion in J1(Jc).

Proof: V = {dx/y?, xdx/y? dx/y} and o(x,y) = ({5 >x, (5 ). O
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o Iy :={(r,s) € (Z/mZ)®* | r,s,r +s#0,br = as (mod m)}

o (F) Vi, = {x=my@=tdy | (r,s) € Iy, (r) + (s) < m}
basis of o,,-eigenvectors.

If {a,b,m—a— b} = {ta’, tb',t(m—a — b))} (mod m) for some

t € (Z/mZ)* (written (a,b) ~p, (&', b)), then CJy =~ C7 ..

Observation: C[ is hyperelliptic if and only if (a, b) ~p, (1,1) or
m=2nand (a,b) ~m (L,n). .,



Testing Beauville’s criterion



Testing Beauville’s criterion

Recall: 1], = {(r,s) € (Z/mZ)®? | r,s,r + s #0,br = as (mod m)}.



Testing Beauville’s criterion

Recall: 1], = {(r,s) € (Z/mZ)®? | r,s,r + s #0,br = as (mod m)}.

Proposition: Criterion (%) for CI") and ¢ = oy, is equivalent to:

For all pairwise distinct (rn, 5)3_; € 177, Zi=1(rn75n) #(0,0) ().



Testing Beauville’s criterion

Recall: 1], = {(r,s) € (Z/mZ)®? | r,s,r + s #0,br = as (mod m)}.

Proposition: Criterion (%) for CI") and ¢ = oy, is equivalent to:

For all pairwise distinct (rn, 5)3_; € 177, Zizl(rn,sn) #(0,0) ().

Theorem (L.—Shnidman)
Up to ~,-equivalence, the only non-hyperelliptic cyclic Fermat
quotients C", with m < 100 that satisfy Criterion (xx) are:



Testing Beauville’s criterion

Recall: 1], = {(r,s) € (Z/mZ)®? | r,s,r + s #0,br = as (mod m)}.

Proposition: Criterion (%) for CI") and ¢ = oy, is equivalent to:

For all pairwise distinct (rn, 5)3_; € 177, Zizl(rn,sn) #(0,0) ().

Theorem (L.—Shnidman)

Up to ~,-equivalence, the only non-hyperelliptic cyclic Fermat

quotients C", with m < 100 that satisfy Criterion (xx) are:
G, ~ y*=x*4+x g=3 (Beauville)



Testing Beauville’s criterion

Recall: 1], = {(r,s) € (Z/mZ)®? | r,s,r + s #0,br = as (mod m)}.

Proposition: Criterion (%) for CI") and ¢ = oy, is equivalent to:

For all pairwise distinct (rn, 5)3_; € 177, Zizl(rn,sn) #(0,0) ().

Theorem (L.—Shnidman)
Up to ~,-equivalence, the only non-hyperelliptic cyclic Fermat
quotients C", with m < 100 that satisfy Criterion (xx) are:
G, ~ y*=x*4+x g=3 (Beauville)
C1123 ~ y3=x*+1 g=3



Testing Beauville’s criterion

Recall: 1], = {(r,s) € (Z/mZ)®? | r,s,r + s #0,br = as (mod m)}.

Proposition: Criterion (%) for CI") and ¢ = oy, is equivalent to:

For all pairwise distinct (rn, 5)3_; € 177, Zizl(rn,sn) #(0,0) ().

Theorem (L.—Shnidman)
Up to ~,-equivalence, the only non-hyperelliptic cyclic Fermat
quotients C", with m < 100 that satisfy Criterion (xx) are:
G, ~ y*=x*4+x g=3 (Beauville)
C1123 ~ y3=x*+1 g=3
Gy ~ y*=x+1 g=4



Testing Beauville’s criterion

Recall: 1], = {(r,s) € (Z/mZ)®? | r,s,r + s #0,br = as (mod m)}.

Proposition: Criterion (%) for CI") and ¢ = oy, is equivalent to:

For all pairwise distinct (rn, 5)3_; € 177, Zizl(rn,sn) #(0,0) ().

Theorem (L.—Shnidman)
Up to ~,-equivalence, the only non-hyperelliptic cyclic Fermat
quotients C", with m < 100 that satisfy Criterion (xx) are:
G, ~ y*=x*4+x g=3 (Beauville)
C1123 ~ y3=x*+1 g=3
Gy ~ y*=x+1 g=4

In particular, Alc(k0,0)(C)) is torsion for these three curves.



Testing Beauville’s criterion

Recall: 1], = {(r,s) € (Z/mZ)®? | r,s,r + s #0,br = as (mod m)}.

Proposition: Criterion (%) for CI") and ¢ = oy, is equivalent to:

For all pairwise distinct (rn, 5)3_; € 177, Zizl(rn,sn) #(0,0) ().

Theorem (L.—Shnidman)

Up to ~,-equivalence, the only non-hyperelliptic cyclic Fermat
quotients C", with m < 100 that satisfy Criterion (xx) are:

G, ~ y*=x*4+x g=3 (Beauville)
C1123 ~ y3=x*+1 g=3
Gy ~ y*=x+1 g=4

In particular, Alc(k0,0)(C)) is torsion for these three curves.

Upper bounds: # Fix(c9) = 81, # Fix(c12) = 36, # Fix(015) = 2025.
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The Jacobian J7, of C"y has CM by Q((m)
= H*((L)an ) = (M) ® (h)agn)

Theorem (L.—Shnidman)

ords—> L((M172)@(gg)+,s) = 1
ord5:2 L((M%%)Q(Q ) S) = 0
ords—3 L((Mi%)a(s)t+5) = 2

Proof: A}, = (J,)"" has dimension ¢(m)/2 and CM by Q((m)
= L(A:b/QS) = L(T:,qb/@(Cm)vs)
for a Hecke character 77,1 lg(¢,)(m)—C* given by Jacobi sum (Weil)

) == Y xp@xp(l-2),  x(2) = 275 (mod p).

2€F,\{0,1}

E.g. L((M:?,z)Q(Cg)+»5) = L(T:L9,273,473,1/Q(C9)a5)r sign = —1, L'(2) # 0.
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So far:
o Alc(r(0.0)(C3)) torsion <2 k(g 0)(C13) torsion in CH1(J13)o
o L(Mi3)acay2) # 0 =2 # Gn((H)g(cn) ) < o0
e (3~yi=x"+1.
Theorem (L.—Shnidman)
K(C13) =0€Gr(43) @ Q

Proof: Adaptation of Beauville=Schoen'’s proof that /{(Cﬁz) is torsion.
Key input: J13/(012) is uniruled.

All three J7,/(09), J1%3/(012), J1%/(015) are uniruled and currently
constitute the only known (to my knowledge) non-hyperelliptic examples.

O

There can be no such examples for g =5 or g > 21 (Beauville, 2022).
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~~ applies to Cgpm, C117237 Ciring, and 1-dimensional family in g = 4,5.

e Ellenberg—Logan—Srinivasan—Venkatesh (20237): ~ 200.000 smooth
plane quartics over Q have kp(C) # 0 € CHy(J)o ® Q.

Thank you for your attention!

10/10



Thanks to the organizers for a wonderful week at CIRM!




