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Iterated function systems and their attractors

In this presentation an affine iterated function system or affine
IFS will be a finite collection (Ti )i∈I of invertible affine
contractions of Rd .

By default I will write the transformation Ti as
Tix = Aix + vi .

For every such IFS there exists a unique compact nonempty
set X which satisfies X =

⋃
i∈I TiX , and for every probability

vector (pi )i∈I there exists a unique Borel probability measure
m on Rd satisfying m =

∑
i∈I pi (Ti )∗m.

General problem: find the Hausdorff dimensions of this
self-affine set X and these self-affine measures m.
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Some examples. . .
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The classical self-similar case

If every Ti is a similarity transformation then we may write
Ti = riOix + vi where ri ∈ (0, 1) and Oi ∈ O(d).

In this case the dimension of X and m are well-understood,
assuming that the maps Ti are “sufficiently distinct”.

T1x := 1
2x

T2x := 1
2x +

(
1
2
0

)
T3x := 1

2x +

(
1
4√
3
4

)
The dimension s of the attractor solves

∑
i∈I r

s
i = 1.

Ian D. Morris

A variational principle relating self-affine measures and self-affine sets 4 / 25



Introduction The self-affine case Variational principles Proof outline

The classical self-similar case

If every Ti is a similarity transformation then we may write
Ti = riOix + vi where ri ∈ (0, 1) and Oi ∈ O(d).

In this case the dimension of X and m are well-understood,
assuming that the maps Ti are “sufficiently distinct”.

T1x := 1
2x

T2x := 1
2x +

(
1
2
0

)
T3x := 1

2x +

(
1
4√
3
4

)
The dimension s of the attractor solves

∑
i∈I r

s
i = 1.

Ian D. Morris

A variational principle relating self-affine measures and self-affine sets 4 / 25



Introduction The self-affine case Variational principles Proof outline

The classical self-similar case

If every Ti is a similarity transformation then we may write
Ti = riOix + vi where ri ∈ (0, 1) and Oi ∈ O(d).

In this case the dimension of X and m are well-understood,
assuming that the maps Ti are “sufficiently distinct”.

T1x := 1
2x

T2x := 1
2x +

(
1
2
0

)
T3x := 1

2x +

(
1
4√
3
4

)

The dimension s of the attractor solves
∑

i∈I r
s
i = 1.

Ian D. Morris

A variational principle relating self-affine measures and self-affine sets 4 / 25



Introduction The self-affine case Variational principles Proof outline

The classical self-similar case

If every Ti is a similarity transformation then we may write
Ti = riOix + vi where ri ∈ (0, 1) and Oi ∈ O(d).

In this case the dimension of X and m are well-understood,
assuming that the maps Ti are “sufficiently distinct”.

T1x := 1
2x

T2x := 1
2x +

(
1
2
0

)
T3x := 1

2x +

(
1
4√
3
4

)
The dimension s of the attractor solves

∑
i∈I r

s
i = 1.

Ian D. Morris

A variational principle relating self-affine measures and self-affine sets 4 / 25



Introduction The self-affine case Variational principles Proof outline

In more detail: suppose that there exists a nonempty, bounded
open set U ⊂ Rd such that the images TiU for i ∈ I are
pairwise disjoint subsets of U.

We can estimate dimH X from above by using the sets
Ti1 · · ·TinU as covers.

Since for every n ≥ 1,∑
i1,...,in∈I

(
diamTi1 · · ·TinU

)s
=

∑
i1,...,in∈I

r si1 · · · r
s
in (diamU)s

= (diamU)s ,

we have dimH X ≤ s.
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To get the lower bound we construct a measure m on Rd

which assigns measure r si1 · · · r
s
in
to each of the sets

Ti1 · · ·TinU.

Let ΣI = IN be the set of all one-sided infinite sequences
over I, and let ν be the Bernoulli measure on ΣI
corresponding to the probability vector (pi )i∈I .

Define a continuous function π : ΣI → Rd by

∞⋂
n=1

Ti1 · · ·TinX = {π[(ik)∞k=1]}

which is a singleton set because the maps Ti are contractions.

The measure m := π∗ν has Hausdorff dimension s and
support X . The former is normally deduced by demonstrating
the finiteness of the integral

∫∫
∥x − y∥−sdm(x)dm(u).
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The self-affine case

When the maps Ti are not similitudes there are numerous
complications.

Covering directly by sets of the form Ti1 · · ·TinU is no longer
useful: these sets are (in general) long and narrow, but the
definition of Hausdorff dimension rewards covers which use
“round” sets.

Computing the dimensions of self-affine measures is also much
harder and remains a wide open problem in dimension d ≥ 4.

If the linear parts Ai are algebraically degenerate (e.g. if they
are all diagonal matrices) then various exceptional examples
occur (e.g. the “carpet” fractals of Bedford and McMullen
and their extensions by Gatzouras-Lalley, Das-Simmons,
Feng-Wang, Fraser &c.).
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In 1988, Falconer obtained an upper bound for the dimension
of a self-affine set essentially by “chopping” the sets
Ti1 · · ·TinX into round pieces to create a more efficient cover.
This gives a bound called the affinity dimension of (Ti )i∈I ,
written dimaff(Ti )i∈I .

Falconer showed that if the linear parts Ai are fixed, then for
Lebesgue-typical choices of the translation parts vi , the
Hausdorff dimension of the attractor equals the affinity
dimension (assuming a strong contraction condition on the
the Ai ’s).

Feng more recently showed that the set of good translation
vectors is also residual.

Explicit examples of self-affine sets with known Hausdorff
dimension remained rare until the late 2010s (e.g.
Hueter-Lalley ’95).
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The affinity dimension is defined in terms of the singular
values of products Ai1 · · ·Ain of the linear maps Ai .

Given B ∈ GLd(R), let σ1(B) ≥ σ2(B) · · · ≥ σd(B) denote
the singular values. For each s ∈ [0, d ] define

φs(B) := σ1(B)σ2(B) · · ·σ⌊s⌋(B)σ⌈s⌉(B)s−⌊s⌋.

The affinity dimension s of (Ti )i∈I is defined to be the unique
s ≥ 0 such that the quantity

P((Ti )i∈I ; s) := lim
n→∞

1

n
log

∑
i1,...,in∈I

φs(Ai1 · · ·Ain)

is equal to 0.
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Similarly, in 2004, Käenmäki defined a quantity called the
Lyapunov dimension, dimLyap µ, for each ergodic measure µ
on ΣI .

It is the unique solution s to

h(µ) + lim
n→∞

1

n

∫
ΣI

φs(Ai1 · · ·Ain)dµ [(ik)
∞
k=1] = 0.

Subsequent research showed that dimH π∗µ ≤ dimLyap µ and
that there always exists an ergodic equilibrium state µ such
that dimLyap µ = dimaff(Ti )i∈I .

A possible strategy for the general problem: understand
enough about the equilibrium states µ, and the dimensions of
measures of the form π∗µ, to find a measure on the attractor
X with Hausdorff dimension equal to dimaff(Ti )i∈I .
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Progress in the last decade: what is µ?

In “typical” cases there is a unique equilibrium state µ, and in
this case for every i1, . . . , in ∈ I,

µ([i1 · · · in]) ≈ φs(Ai1 · · ·Ain)

where s = dimaff(Ti )i∈I .

All equilibrium states are fully supported.

If ergodic, they are measurably isomorphic to finite extensions
of Bernoulli processes.

If s = dimaff(Ti )i∈I then there are not more than
( d
⌊s⌋
)( d

⌈s⌉
)

distinct ergodic equilibrium states, or
(d
s

)
when s is an integer.

In the integer case this bound is sharp. (Conjecture: the exact
bound is (d − ⌊s⌋)

( d
⌊s⌋
)
when s is non-integer.)
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( d
⌊s⌋
)( d

⌈s⌉
)
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s

)
when s is an integer.
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( d
⌊s⌋
)
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dimH π∗µ = dimLyap µ when µ is a non-degenerate Bernoulli
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The dimension d is at most 3
(Ti ) satisfies suitable separation conditions (e.g. SOSC)
(Ai )i∈I satisfies certain algebraic non-degeneracy conditions
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See work of Bárány, Hochman, Rapaport, Feng. . .

If we knew that the equilibrium states were Bernoulli measures
then we could make the lower and upper bounds meet.

However, this is never the case except when the maps Ai are
conformal or admit an invariant linear subspace (M.-Sert ’19).
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Why are the equilibrium states not Bernoulli measures?

In typical cases the equilibrium state µ is unique and satisfies

µ([i1 · · · in]) ≈ φs(Ai1 · · ·Ain)

for every i1, . . . , in ∈ I.
If µ is Bernoulli then µ([i1 · · · in]) does not change if the order
of the symbols i1, . . . , in is permuted. But φs(Ai1 · · ·Ain) does
not have this property.

Intuitive idea: for large n, many of the linear maps Ai1 · · ·Ain

look similar to one another (e.g. eigenspaces are in similar
places, eigenvalues are of similar magnitude).

If we “threw away” a subset of products corresponding to a
set of small µ-measure, the ones which we keep would
“almost commute”. Would they (almost?) have a Bernoulli
equilibrium state?

Ian D. Morris
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From self-affine measures to self-affine sets

Indeed, let’s consider a recoding strategy as follows:

Let In denote the set of all words i1 · · · in over the alphabet I.
Write i for an element of In. If i = i1i2 · · · in ∈ In, write
Ti := Ti1 · · ·Tin .

Clearly, (Ti)i∈In is an IFS with the same attractor as (Ti )i∈I .
It also has the same affinity dimension.

By taking n sufficiently large, can we find Bernoulli measures
on ΣIn with Lyapunov dimension close to dimaff(Ti )i∈I?
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Answer is yes: by adapting a 2014 argument of Feng and
Shmerkin we can construct a Bernoulli measure on ΣIn with
Lyapunov dimension close to dimaff(Ti )i∈I .

But: this measure is not (in general) fully supported.

This is a problem since results on self-affine measures apply
only to fully-supported Bernoulli measures.

In effect, we’ve found a smaller IFS (Ti)i∈J , where J ⊂ In,
which has a fully-supported Bernoulli measure with large
Lyapunov dimension.

This smaller IFS may fail to inherit key algebraic properties
from (Ti)i∈In such as strong irreducibility, which are
necessary for theorems on self-affine measures to work.

We need a theorem showing that the desired analytic
properties described above can be obtained in a way which
ensures that (Ti)i∈J has the same algebraic features as
(Ti )i∈I .
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The variational principle for planar affine IFS

Theorem (M. - Shmerkin ’16)

If (Ti )i∈I is an irreducible affine IFS acting on R2, then for every
ε > 0 we may find n ≥ 1 and J ⊂ In such that:

1 The uniform Bernoulli measure ν on ΣJ satisfies
dimLyap ν > dimaff(Ti )i∈I − ε.

2 If (Ti )i∈I is strongly irreducible then so is (Ti)i∈J .

3 If (Ti )i∈I is proximal then (Ti)i∈J is dominated.

4 If (Ti )i∈I satisfies the SOSC then (Ti)i∈J satisfies the SSC.

This allowed deep results of Bárány, Hochman and Rapaport on
planar self-affine measures to translate directly into results on
planar self-affine sets.
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Proof idea in the proximal & strongly irreducible case

Choose an equilibrium state µ. It can be shown to have
distinct Lyapunov exponents.

Using the Subadditive Ergodic Theorem and
Shannon-McMillan-Breiman, find a collection J of at least
en(h(µ)−ε) words i ∈ In such that Ai has norm nε-close to
the top Lyapunov exponent of (Ai )i∈I with respect to µ.

Using a pigeonhole argument and non-atomicity of the
distribution of the Oseledec subspaces, we can do this in a
way which ensures that {Ai : i ∈ J } is an irreducible and
dominated semigroup. Strong irreducibility follows.

Control on cardinality of J and on Lyapunov exponents
implies control of the Lyapunov dimension of the measure of
maximal entropy on ΣJ .

Ian D. Morris
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implies control of the Lyapunov dimension of the measure of
maximal entropy on ΣJ .
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Problems in higher dimensions

It is no longer well understood where the gaps between
Lyapunov exponents are found. (The equilibrium state must
have some gaps between Lyapunov exponents, but where?)

We need to consider irreducibility and proximality across
multiple representations (e.g. different exterior powers).

There are very few subgroups of GL2(R), resulting in what
could be seen as a case-by-case argument depending on which
linear algebraic group (Ai )i∈I generates. In general
dimensions no analogous case-by-case argument is possible.
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...and now the result:

Theorem (M. - Sert ’23)

If (Ti )i∈I is a completely reducible affine IFS acting on Rd , then
for every ε > 0 we may find n ≥ 1 and J ⊂ In such that:

1 The uniform Bernoulli measure ν on ΣJ satisfies
dimLyap ν > dimaff(Ti )i∈I − ε.

2 If G ≤ GLd(R) denotes the Zariski closure of the semigroup
generated by {Ai : i ∈ I}, then the semigroup generated by
{Ai : i ∈ J } is Zariski dense in the identity component of G.

3 If (Ti )i∈I is k-proximal and k-strongly irreducible then
(Ti)i∈J is k-dominated and k-strongly irreducible.

4 If (Ti )i∈I satisfies the SOSC then (Ti)i∈J satisfies the SSC.
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This implies an extension of a recent result of A. Rapaport on
self-affine measures in R3:

Corollary

Let (Ti )i∈I be a strongly irreducible affine iterated function system
acting on R3 and satisfying the strong open set condition. Then
the Hausdorff dimension of the attractor is equal to the affinity
dimension of (Ti )i∈I .
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An overview of the proof (with simplifications)

1 Choose an equilibrium state µ and use SAET and SMBT as
before to find a set J0 ⊂ In of at least en(h(µ)−ε) words i
such that the singular values of every Ai are nε-close to the
respective Lyapunov exponents.

2 By a pigeonhole argument, pass to a set J1 ⊂ In of at least
en(h(µ)−2ε) words all belonging to the same connected
component of G .

3 Extending those words by an a priori bounded amount, pass to
a new set J2 ⊂ In+k of at least en(h(µ)−3ε) words which
generate a narrow Schottky subsemigroup of the identity
component and where the singular values are still 2nε-close to
the respective Lyapunov exponents.
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An overview of the proof (with simplifications)

4 Select some additional words k1, . . . , kt which, when
appended to J3, ensure that a Zariski-dense subsemigroup of
the identity component is generated. (Moreover, do this in
such a way that substituting any power of ki for the relevant
word ki has the same effect.)

5 The set J3 ∪ {k1, . . . , kt} no longer consists of words of a
consistent length, so choose integers m, r1, . . . , rt such that

J4 = {i1 · · · im : ij ∈ J3} ∪ {kr11 , . . . , k
rt
t }

consists of words of a consistent length.
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An overview of the proof (with simplifications)

6 Some of those words do not have a priori control on their
singular values, so instead consider

J5 = {i1 · · · im+p : ij ∈ J3} ∪ {ipkr11 , . . . , i
pkrtt }

where i ∈ J3 is arbitrary, and p is large enough that Ap
i

generates a Zariski-connected semigroup, and also large
enough that the singular values are 3nε-controlled.

7 The number of elements, their length & singular values are
now controlled, and they generate a semigroup which is
dominated and has the correct Zariski closure.

8 Control on the number of elements and their Lyapunov
exponents implies control on the Lyapunov dimension.
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A list of ingredients (not exhaustive):

Bochi-Gourmelon: characterisations of domination

Benoist: finding Zariski dense, narrow Schottky
subsemigroups of semigroups of linear maps

Tits: finding small generating sets for Zariski dense
subsemigroups

Abels-Margulis-Soifer: finding large proximal subsets of
semigroups of linear maps

Guivarc’h-Raugi: separating Lyapunov exponents for Bernoulli
measures

. . . and extensive prior results by many researchers on affine
IFS.
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Thanks for listening!
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