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Setting

Consider

A discrete time Markov chain (Xt)t≥0

on a state space Ω of size n,

with transition matrix P,

P reversible w.r.t. the equilibrium distribution π,

π = πP and π(x)P(x , y) = π(y)P(y , x)

P has positive eigenvalues,

fix an initial distribution α.

Question

What is the distribution of the chain in the long run, t � 1, conditioning on the
event

“Xt is not at equilibrium” ?
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Two cartoons

Entropy driven metastability Energy driven metastability

Heuristically:

When t is “large”

{not at equilibrium at time t} ≈ {τG > t}
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Quasi-stationary distributions (QSD) with killing on G

Fix a target set: G ⊂ Ω.

[P]G the restricted matrix in which rows/columns relative to G are erased.

[P]G is a sub-stochastic matrix: The process is killed in G .

Fix α a probability distribution on Ω \ G .

There exists a probability distribution µα? on Ω \ G such that

lim
t→∞

Pα(Xt = x | τG > t) = µα? (x) , ∀x ∈ Ω \ G .

µ? is the quasi-stationary distribution associated to α (and to the target G ).

Moreover, there exists λα? ∈ (0, 1) such that

µα? [P]G = λα? µ
α
?

It follows
Pµα? (τG > t) = (λα? )t

and
Pµα? (Xt = x | τG > t) = µα? (x) , ∀t ≥ 0, x ∈ Ω .
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Optimal Strong Stationary Times (OSST)

For a given initial distribution α let

µαt (x) :=
∑
y∈Ω

α(y)P t(y , x), ∀x ∈ Ω.

We will use the separation distance to quantify the convergence to
stationarity

sαt := max
x∈Ω

(
1− µαt (x)

π(x)

)
.

An optimal strong stationary time ταπ is a random time such that

Pα(Xt = x , ταπ ≤ t) = π(x)Pα(ταπ ≤ t), ∀t ≥ 0, x ∈ Ω,

and, further,
Pα(ταπ > t) = sαt , ∀t ≥ 0.

In our setting, a OSST always exists.
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QSD without killing

Consider the sequence of conditional distributions (ϕαt )t≥0, defined as follows:

ϕαt (y) := Pα (Xt = y | ταπ > t) , ∀t ≥ 0, y ∈ Ω. (1)

Theorem

If the transition matrix P is reversible, irreducible and with positive eigenvalues,
then for every starting distribution α 6= π there exists the limit

ϕα? (y) := lim
t→∞

ϕαt (y), ∀y ∈ Ω.
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Characterization of ϕα?
For every α there exists a couple (vα, λα) ∈ R|Ω| × (0, 1) such that

1 (vα, λα) satisfy
vαP = λαvα.

2 The distribution ϕα? is in the span of vα and π. In particular

ϕα? = vα + π.

3 The distribution ϕα? satisfies

ϕα?P = λαϕα? +
(
1− λα

)
π.

4 The separation distance, starting at α, decays exponentially at rate λα, i.e.,

lim
t→∞

(sαt )
1
t = λα.

5 It exists some state y ∈ Ω such that

ϕα? (y) = 0.
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An explicit formula for ϕα?

By spectral decomposition

P = |1〉 〈π|+
n∑

i=2

λi |fi 〉 〈gi | , 〈α| = 〈π|+
n∑

i=2

ci 〈gi | .

Define

λα := max
i∈{2,...,n}

{λi s.t. ci 6= 0} and Iα := {i ∈ {2, . . . , n} s.t. λi = λα}.

Proposition

〈ϕα? | = 〈vα|+ 〈π| =
1

`α

∑
i∈Iα

ci 〈gi |+ 〈π|

where

`α = max
y∈Ω

∑
i∈Iα
−ci

gi (y)

π(y)
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A toy example
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Conclusions

1 There is a natural way to define QSDs in a setting without killing.

2 Such QSDs share the same set of features of the classical QSD, i.e.,

Can be read as a Yaglom limit.
Can be characterized in a linear-algebraic way.
Exhibit an exponential law of the “hitting of the target”, i.e., π.
The rate of the exponential is an eigenvalue of P.

3 Open problem:

Is there a natural notion of Doob’s transform associated to ϕα? ?
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Thank you!


