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Setting

Consider
o A discrete time Markov chain (X;)¢>0
@ on a state space Q of size n,
@ with transition matrix P,

@ P reversible w.r.t. the equilibrium distribution 7,

T=7P and m(x)P(x,y) = 7(y)P(y,x)

P has positive eigenvalues,

fix an initial distribution «.
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Setting

Consider
o A discrete time Markov chain (X;)¢>0
@ on a state space Q of size n,
@ with transition matrix P,

@ P reversible w.r.t. the equilibrium distribution 7,

T=7P and m(x)P(x,y) = 7(y)P(y,x)

P has positive eigenvalues,

fix an initial distribution «.

What is the distribution of the chain in the long run, t > 1, conditioning on the
event

“X; is not at equilibrium” ?
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Two cartoons

Entropy driven metastability Energy driven metastability

O=O \/
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Two cartoons

Entropy driven metastability Energy driven metastability

OO \/

When t is “large”

{not at equilibrium at time t} ~ {7¢ > t}
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Quasi-stationary distributions (QSD) with killing on G

Fix a target set: G C Q.
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Quasi-stationary distributions (QSD) with killing on G

Fix a target set: G C Q.

@ [P]¢ the restricted matrix in which rows/columns relative to G are erased.
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@ [P]g is a sub-stochastic matrix: The process is killed in G.
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Quasi-stationary distributions (QSD) with killing on G

Fix a target set: G C Q.

@ [P]¢ the restricted matrix in which rows/columns relative to G are erased.
@ [P]¢ is a sub-stochastic matrix: The process is killed in G.

@ Fix « a probability distribution on Q\ G.

@ There exists a probability distribution % on Q\ G such that

tlim Po(Xe = x| 76 > t) = pg(x) Vx € Q\ G.
—r o0
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Quasi-stationary distributions (QSD) with killing on G

Fix a target set: G C Q.

[P]¢ the restricted matrix in which rows/columns relative to G are erased.
[P]¢ is a sub-stochastic matrix: The process is killed in G.

Fix v a probability distribution on Q\ G.

There exists a probability distribution % on Q\ G such that

tlim Po(Xe = x| 76 > t) = pg(x) Vx € Q\ G.
—r o0

Lx is the quasi-stationary distribution associated to « (and to the target G).
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Quasi-stationary distributions (QSD) with killing on G

Fix a target set: G C Q.

[P]¢ the restricted matrix in which rows/columns relative to G are erased.
[P]¢ is a sub-stochastic matrix: The process is killed in G.

Fix v a probability distribution on Q\ G.

There exists a probability distribution % on Q\ G such that

tlim Po(Xe = x| 76 > t) = pg(x) Vx € Q\ G.
—r o0

Lx is the quasi-stationary distribution associated to « (and to the target G).
@ Moreover, there exists A € (0, 1) such that

pelPle = A2 i
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Quasi-stationary distributions (QSD) with killing on G

Fix a target set: G C Q.

[P]¢ the restricted matrix in which rows/columns relative to G are erased.
[P]¢ is a sub-stochastic matrix: The process is killed in G.

Fix v a probability distribution on Q\ G.

There exists a probability distribution % on Q\ G such that

tlim Po(Xe = x| 76 > t) = pg(x) Vx € Q\ G.
—r o0

Lx is the quasi-stationary distribution associated to « (and to the target G).
@ Moreover, there exists A € (0, 1) such that

pelPle = A2 i

o It follows
P (¢ > t) = (/\f)t

and
Pua(Xe =x |16 > t) = pg(x) , Vt>0,xe.
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Optimal Strong Stationary Times (OSST)

o For a given initial distribution « let

pe(x) =Y _aly)P'(y.x), VxeQ.

y€eQ
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Optimal Strong Stationary Times (OSST)

o For a given initial distribution « let

pe(x) =Y _aly)P'(y.x), VxeQ.

y€eQ

@ We will use the separation distance to quantify the convergence to

stationarity
sf* = max <1 — Ht((X))> .
m(x
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Optimal Strong Stationary Times (OSST)

o For a given initial distribution « let

pe(x) =Y aly)Pi(y.x),  VxeQ

@ We will use the separation distance to quantify the convergence to

stationarity
s i=max | 1— e (x) .
x€Q 7(x)

@ An optimal strong stationary time 7 is a random time such that

Po(X: = x, 72 < t) = m(x)Po (7 < t), vVt >0, x € Q,

and, further,
Po (78 > t) = s, vt > 0.

Matteo Quattropani Quasi-stationary distributions without killing



Optimal Strong Stationary Times (OSST)

o For a given initial distribution « let
pe(x) == Z a(y)P(y,x), Vx € Q.
yeQ
@ We will use the separation distance to quantify the convergence to

stationarity
s i=max | 1— e (x) .
x€Q 7(x)

@ An optimal strong stationary time 7 is a random time such that

Po(X: = x, 72 < t) = m(x)Po (7 < t), vVt >0, x € Q,

and, further,
Po (78 > t) = s, vt > 0.

@ In our setting, a OSST always exists.
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QSD without killing

Consider the sequence of conditional distributions (¢¢):>0, defined as follows:

(y) =Pa(Xe=y |2 >1), Vt>0,yeQ (1)

If the transition matrix P is reversible, irreducible and with positive eigenvalues,
then for every starting distribution a: # 7 there exists the limit

Pily) = lim ¢e(y),  VyeQ
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For every a there exists a couple (v®, \*) € RI?l x (0,1) such that



For every a there exists a couple (v®, \*) € RI?l x (0,1) such that
Q (v, \¥) satisfy
vOP = A%v*



Characterization of ¢

For every o there exists a couple (v®, A*) € RI®l x (0, 1) such that
Q (v, \¥) satisfy

veP = \Yve.
@ The distribution ¢% is in the span of v® and «. In particular

oY =v* 4+
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Characterization of ¢

For every o there exists a couple (v®, A*) € RI®l x (0, 1) such that
Q (v, \¥) satisfy

veP = \Yve.

@ The distribution ¢% is in the span of v® and «. In particular
e =vi 4+

© The distribution ¢ satisfies

CeP = A% + (1 — )\a)ﬂ'.
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Characterization of ¢

For every o there exists a couple (v®, A*) € RI®l x (0, 1) such that
Q (v, \¥) satisfy

VP = \Yve.
@ The distribution ¢% is in the span of v® and «. In particular
e =vi 4+
© The distribution ¢ satisfies
EEP = X% + (1= AT
@ The separation distance, starting at «, decays exponentially at rate A%, i.e.,

1
t'_“;‘;o(st) A%
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Characterization of ¢

For every o there exists a couple (v®, A*) € RI®l x (0, 1) such that
Q (v, \¥) satisfy

VP = \Yve.
@ The distribution ¢% is in the span of v® and «. In particular

e =vi 4+
© The distribution ¢ satisfies

EEP = X% + (1= AT
@ The separation distance, starting at «, decays exponentially at rate A%, i.e.,
t|l>r20 (S?)% =A%

@ It exists some state y € Q such that

ei(y)=0.

Matteo Quattropani Quasi-stationary distributions without killing



An explicit formula for %

By spectral decomposition

=)+ Nl (gl (ol =(]+ D clail
i=2 i=2
Define

AY = {n;ax {Nist. i #0} and ZI%:={ic{2,...,n}st. N\ ="}
ie{2,...,n}
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An explicit formula for %

By spectral decomposition

=[1) <7r\+z/\,-|f,~> (il <a|:<7T|+ZC/<gi|-

Define

A% = max {)\ st. ¢ #0} and ZI%:={ie€{2,...,n}st. N\ ="}

i€{2,...,n}

(0% 1
(el = (v +ml = 5 > cilgil+ (]
© jeZe
where
/% — max —C,gi(y)
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Conclusions

@ There is a natural way to define QSDs in a setting without killing.
@ Such QSDs share the same set of features of the classical QSD, i.e.,

o Can be read as a Yaglom limit.

o Can be characterized in a linear-algebraic way.

o Exhibit an exponential law of the "hitting of the target”, i.e., 7.
o The rate of the exponential is an eigenvalue of P.
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Conclusions

@ There is a natural way to define QSDs in a setting without killing.
@ Such QSDs share the same set of features of the classical QSD, i.e.,

o Can be read as a Yaglom limit.

o Can be characterized in a linear-algebraic way.

o Exhibit an exponential law of the “hitting of the target”, i.e., 7.
o The rate of the exponential is an eigenvalue of P.

©® Open problem:

Is there a natural notion of Doob's transform associated to ¢¢7
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Thank you!



