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What is metastability?

Metastability is a phenomenon where a system, under the influence of a
stochastic dynamics, moves between different regions of its state space on
different time scales.

Fast time scale:
quasi-
equilibrium
within single
subregion

Slow time scale:
transitions be-
tween different
subregions

In Physics: metastability is the dynamical manifestation of a phase transition.

Elena Pulvirenti Metastability with inhomogeneous disorder 2 / 21



How to study metastability?

Given F the free energy, the quantities of interest are

1 Metastable parameter regime → multiple minima of F

2 Critical points of F :

local minima (metastable states)
global minimum (stable state)
local maxima/saddle points

3 Mean hitting time: the mean time the system (subject to a stochastic
dynamics) needs to “hit” the stable state starting from a metastable state.

Arrhenius law: E(τ) ∼ exp(N∆F ), in the limit N →∞.

Monographs:

Olivieri and Vares 2005

Bovier and den Hollander
2015
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The quenched model

Mean-field version of Ising type spin model with inhomogeneous bond disorder.
N spins, [N ] = {1, 2, . . . , N}
Configuration space SN = {−1,+1}N
Configuration σ = (σi)i∈[N ] ∈ SN , σi ∈ {−1,+1}
h > 0 constant magnetic field.
Hamiltonian of quenched/dilute model

Hque
N (σ) = − 1

N

∑
1≤i<j≤N

Jijσiσj − h
N∑
i=1

σi
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Let (Ω,F ,P) be a probability space and let (Jij)1≤i,j<∞ a triangular array of
random variables.
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The quenched model

Hamiltonian

Hque
N (σ) = − 1

N

∑
1≤i<j≤N

Jijσiσj − h
N∑
i=1

σi

We take Jij = AijBij

where (Aij), (Bij), (Pij) are sequences of random variables such that

|Aij | ≤ a, Bij ∈ [0, b], Pij ∈ (0, 1], P-a.s., ∀ i, j

(Bij) are mutually independent

Bij ⊥⊥ FA and E
[
Bij | FP

]
= Pij P-a.s., ∀ i, j

Notation: FA and FP are the σ-algebras generated by (Aij) and (Pij).

Elena Pulvirenti Metastability with inhomogeneous disorder 5 / 21



The quenched model

Hamiltonian

Hque
N (σ) = − 1

N

∑
1≤i<j≤N

Jijσiσj − h
N∑
i=1

σi

We take Jij = AijBij

where (Aij), (Bij), (Pij) are sequences of random variables such that

|Aij | ≤ a, Bij ∈ [0, b], Pij ∈ (0, 1], P-a.s., ∀ i, j

(Bij) are mutually independent

Bij ⊥⊥ FA and E
[
Bij | FP

]
= Pij P-a.s., ∀ i, j

Three possible randomness levels:

1 Bij random

2 E
[
Bij | FP

]
= Pij random (quenched on this)

3 Aij random (quenched on this)
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Example: Ising model on random graphs

Jij = AijBij ,

Hque
N (σ) = − 1

N

∑
1≤i<j≤N

Jijσiσj − h
∑

1≤i≤N

σi,

if Aij ≡ 1, Bij ∼ Be(Pij) ∈ {0, 1}

Hque
N (σ) = − 1

N

∑
1≤i<j≤N

Bijσiσj − h
∑

1≤i≤N

σi,

= − 1

N

∑
(i,j)∈E

σiσj − h
∑

1≤i≤N

σi
−1

+1

+1

−1

−1

+1

The interaction graph G = ([N ], E) : (i, j) ∈ E ⇐⇒ Bij 6= 0.

=⇒ Ising model on dense (inhomogeneous) random graphs:
P((i, j) ∈ E) = P(Bij = 1) = Pij .

Examples:

Curie–Weiss model: Bij ≡ 1 =⇒ Ising on the complete graph

Bij ∼ Be(p) i.i.d. =⇒ (Pij ≡ p) Ising on the Erdős–Rényi random graph

Bij ∼ Be(ViVj), Vi i.i.d. =⇒ (Pij ≡ ViVj) Ising on the Chung-Lu r. g.

Elena Pulvirenti Metastability with inhomogeneous disorder 6 / 21



Example: Ising model on random graphs

Jij = AijBij , if Aij ≡ 1, Bij ∼ Be(Pij) ∈ {0, 1}

Hque
N (σ) = − 1

N

∑
1≤i<j≤N

Bijσiσj − h
∑

1≤i≤N

σi,

if Aij ≡ 1, Bij ∼ Be(Pij) ∈ {0, 1}

Hque
N (σ) = − 1

N

∑
1≤i<j≤N

Bijσiσj − h
∑

1≤i≤N

σi,

= − 1

N

∑
(i,j)∈E

σiσj − h
∑

1≤i≤N

σi
−1

+1

+1

−1

−1

+1

The interaction graph G = ([N ], E) : (i, j) ∈ E ⇐⇒ Bij 6= 0.

=⇒ Ising model on dense (inhomogeneous) random graphs:
P((i, j) ∈ E) = P(Bij = 1) = Pij .

Examples:

Curie–Weiss model: Bij ≡ 1 =⇒ Ising on the complete graph

Bij ∼ Be(p) i.i.d. =⇒ (Pij ≡ p) Ising on the Erdős–Rényi random graph
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Bij ∼ Be(ViVj), Vi i.i.d. =⇒ (Pij ≡ ViVj) Ising on the Chung-Lu r. g.

Elena Pulvirenti Metastability with inhomogeneous disorder 6 / 21



Example: dilute Hopfield model

Hopfield model, with n patterns.

Let (ξi)i∈N, ξi ∈ {−1, 1}n random (typically P(ξki = 1) = 1
2 ):

ξ =


+1 −1 −1 +1 −1 −1 −1 . . .
−1 −1 −1 +1 −1 +1 −1 . . .
−1 +1 −1 −1 +1 −1 +1 . . .
−1 −1 −1 +1 +1 −1 −1 . . .
+1 +1 +1 +1 −1 +1 −1 . . .


HHop
N (σ) = − 1

N

∑
1≤i<j≤N

n∑
k=1

σiσjξ
k
i ξ
k
j σ ∈ {−1, 1}N

[Anton Bovier, Veronique Gayrard, Pierre Picco...]
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Example: dilute Hopfield model

Randomly dilute Hopfield model, with n patterns.

Let (ξi)i∈N, ξi ∈ {−1, 1}n random (typically P(ξki = 1) = 1
2 ):

ξ =


+1 −1 −1 +1 −1 −1 −1 . . .
−1 −1 −1 +1 −1 +1 −1 . . .
−1 +1 −1 −1 +1 −1 +1 . . .
−1 −1 −1 +1 +1 −1 −1 . . .
+1 +1 +1 +1 −1 +1 −1 . . .


Jij = AijBij . Taking Aij =

∑
1≤k≤n ξ

k
i ξ
k
j , Bij ∼ Be(p), p ∈ (0, 1)

Hque
N (σ) = − 1

N

∑
1≤i<j≤N

AijBijσiσj − h
∑

1≤i≤N

σi, σ ∈ {−1, 1}N .
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The annealed model

Notation: PB [ · ] = P[ · | FA∪P ].

Then the Hamiltonian of the (partially) annealed model is

Hann
N (σ) = EB [Hque

N (σ)] = − 1

N

∑
1≤i<j≤N

Aij EB [Bij ]σiσj − h
N∑
i=1

σi
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Notation: PB [ · ] = P[ · | FA∪P ].

Then the Hamiltonian of the (partially) annealed model is

Hann
N (σ) = EB [Hque

N (σ)] = − 1

N

∑
1≤i<j≤N

Aij EB [Bij ]σiσj − h
N∑
i=1

σi

Examples:

Ising on Erdős–Rényi,
annealed
=====⇒ Curie-Weiss

[Bovier, Marello, P. (2021), den Hollander, Jovanovski (2021), BdHMPS (2022+)]

Ising on Chung-Lu random graph: Bij ∼ Be(ViVj), Vi iid

annealed
=====⇒ Ising with product disorder: Bij = ViVj , Vi iid

[BdHMSP (2022+), Bovier, den Hollander, Marello (2022)]

Dilute Hopfield
annealed
=====⇒ Hopfield

[BdHMSP (2022+), an der Heiden (2007)]
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The Glauber dynamics

At equilibrium we define the Gibbs measure, σ ∈ SN ,

µN,β(σ) =
e−βHN (σ)

ZN,β
with ZN,β =

∑
σ∈SN

e−βHN (σ)

were β ∈ (0,∞) is the inverse temperature and ZN,β the partition function.
Continuous-time Glauber dynamics on SN with Metropolis transition rates

pN (σ, σ′) =

{
exp(−β[HN (σ′)−HN (σ)]+) if σ ∼ σ′,
0 otherwise.

−1

+1

+1

−1

−1

+1

+1

+1

+1

−1

−1

+1

µN,β is the unique invariant and reversible measure.
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Key questions

Assume metastability of the annealed model.
Questions:

1 Is the random model metastable too?

In particular, denoting by P the law of the Markov chain, let τA be the first
return time to A and define last exit-biased distribution

νA,B(σ) =
µ(σ) Pσ

[
τB < τA

]∑
σ∈A µ(σ) Pσ

[
τB < τA

] , σ ∈ A.

2 What is the mean hitting time of the more stable set B, i.e.

EνA,B

[
τB
]

?

Two kind of results: tail behaviour of the distribution and sharp estimates of the
moments. All results quenched in Aij and Pij .
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Definition of metastability

Consider a simple case where M = {m1, ...,mk} ⊂ S is a set of points, e.g.
minima of F . Then a Markov process X = {Xt : t ≥ 0} is said to be
ρ-metastable with respect to the set of metastable points M if

maxm∈M Pm
[
τM\m < τm

]
minA⊂S\M Pµ|A

[
τM < τA

] ≤ ρ� 1,

Definition from Schlichting and Slowik (’19). More classical definition in BdH.
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Results: metastability for the random model

Assumption

For P-a.e. realization of the r.v.’s, there exist N0 <∞ and ∀N disjoint subsets
M1,N , . . . ,MK,N of SN such that, for all N ≥ N0, the annealed model is
ρ̃N := e−c1N -metastable with respect to {M1,N , . . . ,MK,N}.

Theorem 1 (BdHMPS)

Under the Assumption and for P-a.e. realization of the r.v.’s and any c2 ∈ (0, c1),
there exists N1(c2) <∞ such that, for all N ≥ N1(c2) the random model is
ρN := e−c2N -metastable with respect to M = {M1,N , . . . ,MK,N}.
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Results: tail estimates

Fix i ∈ {2, . . . ,K} and take A =Mi,N . Choose B as the union of all the other
metastable sets with lower free energy.
Notation: all quantities which refer to the annealed model have the tilda.

Theorem 2 (BdHMPS)

Under the Assumption, for any s > 0 and P-a.e. realization of the r.v.’s

lim
N→∞

PB

[
e−s−αN

(
1 + o(1)

)
≤

EνA,B

[
τB
]

Ẽν̃A,B

[
τ̃B
] ≤ es+2αN

(
1 + o(1)

)]
≥ 1− 4e−c̄s

2

where c̄ := 1/(βa b)2 and

αN :=
β2

2N2

∑
1≤i<j≤N

A2
ij VarB [Bij ].
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Results: moments

Theorem 3 (BdHMPS)

For any q ≥ 1 and P-a.e. realization of the r.v.’s

e−αN
(
1 + o(1)

)
≤

EB
[
EνA,B

[
τB
]q]1/q

Ẽν̃A,B

[
τ̃B
] ≤ e4qαN

(
1 + o(1)

)
for all N ≥ N1(c2, ω).
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Strategy in two steps

Target result: tail estimates

lim
N→∞

PB

[
e−s−αN

(
1 + o(1)

)
≤

EνA,B

[
τB
]

Ẽν̃A,B

[
τ̃B
] ≤ es+2αN

(
1 + o(1)

)]
≥ 1− 4e−c̄s

2

First step: concentration inequality

PB
[∣∣ log EνA,B

[
τB
]
− EB

[
log EνA,B

[
τB
]]∣∣ > s

]
≤ 4e−c̄s

2

+ o(1),

Second step: annealed estimates

−αN (1 + o(1)) ≤ EB
[
log EνA,B

[
τB
]]
− log Ẽν̃A,B

[
τ̃B
]
≤ 2αN (1 + o(1)),
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Potential theoretic approach (Bovier, Eckhoff, Gayrard and Klein, 2001)

Translates the problem of understanding the metastable behaviour of Markov
processes to the study of capacities of electric networks. Link between mean
metastable crossover time and capacity.
For A,B disjoint subsets of SN , the key formula is

EνA,B

[
τB
]

=
∑
σ∈A

νA,B(σ) Eσ[τB] =
1

cap(A,B)

∑
σ′∈SN

µ(σ′)hAB(σ′),

where
cap(A,B) =

∑
σ∈A

µN (σ) Pσ(τB < τA)

and hAB is called harmonic function

hAB(σ) =

{
Pσ(τA < τB) σ ∈ SN \ (A ∪ B),

1A(σ) σ ∈ A ∪ B.

⇒ we need to prove the two steps (concentration and annealed estimates) for
cap(A,B) and hAB.
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One related problem

Metastability for the dilute Curie-Weiss Potts model: spins in {1, ..., q}
and random couplings (together with Johan Dubbeldam, Vicente Lenz and
Martin Slowik)

Thank you for your attention!
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Variational principles for the capacity

Dirichlet principle

cap(A,B) = inf
g∈HAB

1

2

∑
σ,σ′∈SN

µN (σ)pN (σ, σ′)[g(σ)− g(σ′)]2.

HAB := {g : SN → [0, 1] : g|A = 1, g|B = 0}

Thomson principle

cap(A,B) = sup
φ∈UAB

1

D(φ)
,

where

D(φ) =
∑

(σ,σ′)∈E

φ(σ, σ′)2

µN (σ)pN (σ, σ′)

UAB is the space of all unit flows from A to B
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McDiarmid concentration inequality

Classical concentration inequality for functionals of independent random variables
satisfying a bounded difference estimate

Theorem 4 (McDiarmid’s inequality)

Let X be a Polish space. Consider a vector X = (X1, . . . , Xn) of independent
X -valued random variables and suppose that f : Xn → R satisfies, for any
i ∈ {1, . . . , n}, the bounded differences inequality, i.e.∣∣f(X1, . . . , Xn)− f(X1, . . . , Xi−1, X

′
i, Xi+1, . . . , Xn)

∣∣ ≤ ci ∈ [0,∞) P -a.s.,

where (X ′1, . . . , X
′
n) is an independent copy of (X1, . . . , Xn). Then, P-a.s. for

any t ≥ 0,

P
[
f(X)− E[f(X)] > t

]
≤ e−t

2/2v,

where v := 1
4

∑n
i=1 c

2
i .
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Concentration inequality for the capacity

Consider two disjoint subsets X ,Y ⊂ SN . Then, P-a.s., for any t ≥ 0,

PB
[∣∣∣log

(
Zcap(X ,Y)

)
− EB

[
log
(
Zcap(X ,Y)

)]∣∣∣ > t
]
≤ 2 e−2t2c̄,

where c̄ = 1/(βa b)2.
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Concentration inequality for the capacity

Consider two disjoint subsets X ,Y ⊂ SN . Then, P-a.s., for any t ≥ 0,

PB
[∣∣∣log

(
Zcap(X ,Y)

)
− EB

[
log
(
Zcap(X ,Y)

)]∣∣∣ > t
]
≤ 2 e−2t2c̄,

where c̄ = 1/(βa b)2.

Proof: the map

(Bij) 7−→ F
(
(Bij)

)
:= log

(
ZBcapB(X ,Y)

)
satisfies a bounded difference inequality:∣∣F ((Bij))− F ((B′ij))∣∣ ≤ βab

N
P -a.s.,

when B′ij = Bij for any (i, j) 6= (k, `) and B′k` independent copy of Bk`.
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PB
[∣∣∣log

(
Zcap(X ,Y)

)
− EB

[
log
(
Zcap(X ,Y)
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Proof: the map

(Bij) 7−→ F
(
(Bij)

)
:= log

(
ZBcapB(X ,Y)

)
satisfies a bounded difference inequality:∣∣F ((Bij))− F ((B′ij))∣∣ ≤ βab

N
P -a.s.,

when B′ij = Bij for any (i, j) 6= (k, `) and B′k` independent copy of Bk`.

ZBcapB(X ,Y) = inf
f

Z

2

∑
σ,η∈SN

e−β(HB(σ)∨HB(η)) (f(σ)− f(η))
2
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Concentration inequality for the capacity

Consider two disjoint subsets X ,Y ⊂ SN . Then, P-a.s., for any t ≥ 0,

PB
[∣∣∣log

(
Zcap(X ,Y)

)
− EB

[
log
(
Zcap(X ,Y)

)]∣∣∣ > t
]
≤ 2 e−2t2c̄,

where c̄ = 1/(βa b)2.

Proof: the map

(Bij) 7−→ F
(
(Bij)

)
:= log

(
ZBcapB(X ,Y)

)
satisfies a bounded difference inequality:∣∣F ((Bij))− F ((B′ij))∣∣ ≤ βab

N
P -a.s..

Obtain BDI via: Dirichlet principle, comparison of Dirichlet forms and

max
σ∈SN

∣∣HB(σ)−HB′
(σ)
∣∣ ≤ |Ak`| ∣∣Bkl −B′kl∣∣

N
≤ a b

N

Elena Pulvirenti Metastability with inhomogeneous disorder 21 / 21



Annealed estimates for the capacity

Consider two disjoint subsets X ,Y ⊂ SN . Then, P-a.s.,∣∣∣EB[log
(
Zcap(X ,Y)

)]
− log

(
Z̃ c̃ap(X ,Y)

)∣∣∣ = αN +O
( 1√

N

)

Via comparison of the Dirichlet form for functions EN (f) and the Dirichlet form
for unit-flows DN (ϕ)

EB
[
ZNEN (f)

]
= Z̃N ẼN (f) eαN

(
1 +O(N−1/2)

)
∀ f ∈ HX ,Y ,

EB
[
Z−1
N DN (ϕ)

]
= Z̃−1

N D̃N (ϕ) eαN
(
1 +O(N−1/2)

)
∀ϕ ∈ UX ,Y .

And via annealed estimates on ∆N (σ) := HN (σ)− H̃N (σ), i.e. for any σ ∈ SN
and P-a.s.,

EB
[
e±β∆N (σ)

]
= eαN

(
1 +O(N−1)

)
.
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− log

(
Z̃ c̃ap(X ,Y)

)∣∣∣ = αN +O
( 1√

N

)
Via comparison of the Dirichlet form for functions EN (f) and the Dirichlet form
for unit-flows DN (ϕ)

EB
[
ZNEN (f)

]
= Z̃N ẼN (f) eαN

(
1 +O(N−1/2)

)
∀ f ∈ HX ,Y ,

EB
[
Z−1
N DN (ϕ)

]
= Z̃−1

N D̃N (ϕ) eαN
(
1 +O(N−1/2)

)
∀ϕ ∈ UX ,Y .

And via annealed estimates on ∆N (σ) := HN (σ)− H̃N (σ), i.e. for any σ ∈ SN
and P-a.s.,

EB
[
e±β∆N (σ)

]
= eαN

(
1 +O(N−1)

)
.
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