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Pitfalls of hardcore particle sampling

Non-reversible and continuous-time sampling by ECMC
Invariance through interplay of transport and direction changes
Ergodicity

Generalized deterministic flow

Anisotropic hardcore particles
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A general method, suitable for fast computmg machines, for mvesugatmg such properties as equauons of
state for consisting of il ivi molecules is described. The method consists of a
modified Monte Carlo integration over configuration space. Results for the two-dimensional rigid-sphere
system have been obtained on the Los Alamos MANTAC and are presented here. These results are compared
to the free volume equation of state and to a four-term virial coefficient expansion.

Metropolis algorithm Diffusive dynamics
@ » Correlated sample: 02(8) x 7(©)
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Cluster algorithms (Swendsen and Wang (1987), Wolff (1989))
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Cluster algorithms (Swendsen and Wang (1987), Wolff (1989))

Cluster algorithms (Swendsen-Wang et al (1987); Wolff et al (1989))
» Instead of single-spin flip, flip of correlated-spin clusters
— reduction of critical slowing down
» Create or not a bond between neighboring spins.
» Pick a random value for each newly built cluster

Detailed balance is fulfilled: flipping is involutary
q(x’,x)/q(x,x") = w(x")/7(x) = no rejection
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A general method, suitable for fast compunng machmes for investigating such properties as equations of

state for consisting of molecules is described. The method consists of a
modified Monte Carlo integration over configuration space. Results for the two-dimensional rigid-sphere
system have been obtained on the Los Alamos MANIAC and are presented here. These results are compared O

to the free volume equation of state and to a four-term virial coefficient expansion.

Metropolis algorithm How to produce collective moves?

OOOO ® @) O ® » Continuous state space. No discrete symmetry as for spin lattices to

Qo O G% easily build global gq.

O(/ OOO OOO » With detailed balance in hard-core particle systems: symmetric
proposal probabilities are necessary for the scheme to be rejection-free.
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A general method, suitable lor (as! computing machines, for investigating such properties as equations of
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system have been obtained on the Los Alamos MANTAC and are presented here. These results are compared
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Event-chain Monte Carlo
Bernard et al (2009)

1953

Michel et al (2014), Kapfer et al (2015)
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Non-reversible and continuous-time sampling by ECMC
Event-chain Monte Carlo
Piecewise Deterministic Markov Processes
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Event-chain Monte Carlo
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» (b-c) At some point, an event with another sphere is triggered and the ballistic flow is
updated.

amer =exp(—{>_; 0Ejj]+) — arace =exp(—>_;[0Ej]+) 1o 1-8%;[dE]+

> (d-e) A refreshment is triggered and the ballistic flow is updated.

a b C
OCo [P0 ||©e-
O O O

> (a) A sphere is updated ballistically.

ECMC is rejection-free and relies on a control by the events of the ballistic exploration to
ensure the correct invariant distribution.
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Piecewise Deterministic Markov Process

PDMP characterizing elements (Davis (1993), in MCMC:
Bouchard-Cété et al (2018), Bierkens et al (2018))

» Differential flow (¢¢)¢>0
> Jump rate A\(x,e) + X
» Markov kernel @
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Piecewise Deterministic Markov Process

PDMP characterizing elements (Davis (1993), in MCMC:
Bouchard-Cété et al (2018), Bierkens et al (2018))

» Differential flow (¢¢)r>0
> Jump rate A\(x,e) + A
» Markov kernel @

P.f—f
t

AF = Dyf(x, )+ A(x, e) / (F(x, &) — F(x, €))Q((x, ), de’) + X / (F(x, &) — F(x, &))u(de)
N—— AV %

Transport

Infinitesimal generator Af = lim;_, , Dyf(x,e) = limeg M

Events - Direction changes Refreshment
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ECMC in isotropic particle systems

0) > Particle systems, E(x) = >, ; Ej(x),

Qad ) v =(e,i) € {(0,1),(1,0)} x {1.N}
)5 083

@

Michel et al (2014), Monemvassitis et al (2023)
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ECMC in isotropic particle systems

0) > Particle systems, E(x) = >, ; Ej(x),

99 o v=(e,i) €{(0.1),(1,0)} x {1.N}
% » Differential flow ¢:(x, (e, 7)) = ({x1, .., xi + te, .., xn}, (v, 1))
Co OO

Michel et al (2014), Monemvassitis et al (2023)
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ECMC in isotropic particle systems

0) > Particle systems, E(x) = >, ; Ej(x),

99 o v=(e,i) €{(0.1),(1,0)} x {1.N}

% » Differential flow ¢:(x, (e, 7)) = ({x1, .., xi + te, .., xn}, (v, 1))
@ © > Event rate 37, i(x, (e, 1)) = X, (V Ej(x), €)1
© > Markov kernel Q;((x, (e, )),di’'de’) =d(j — i")é(e — €')de’di’

Michel et al (2014), Monemvassitis et al (2023)
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ECMC in isotropic particle systems
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Soft spheres

> Particle systems, E(x) = >, ; Ej(x),
v=(e,i) e {(0,1),(1,0)} x {1.N}
» Differential flow ¢:(x, (e, 7)) = ({x1, .., xi + te, .., xn}, (v, 1))
> Event rate > \j(x, (e, 7)) = >, (VxEj(x), €)+
> Markov kernel Q;((x, (e, )),di’'de’) =d(j — i")é(e — €')de’di’

Af(x, (e, i) =(Vf(x, (e, i)+ Z)\k(x, (e,1)) (/v Q((x, (e, 1), de’,di"Yf(x, (¢',i")) — f(x, (e, :)))

Michel et al (2014), Monemvassitis et al (2023)
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ECMC in isotropic particle systems

0) > Particle systems, E(x) = >, ; Ej(x),
Qad ® v=1(e,i) €{(0,1),(1,0)} x {1.N}
% » Differential flow ¢:(x, (e, 7)) = ({x1, .., xi + te, .., xn}, (v, 1))
@ © o > Event rate 37, i(x, (e, 1)) = X, (V Ej(x), €)1

> Markov kernel Q;((x, (e, )),di’'de’) =d(j — i")é(e — €')de’di’
Soft spheres

N
Af(x, (e, i) =(Vf(x, (e, i)+ Z M(x, (e, 1)) (/v Q((x, (e, 1), de’,di"Yf(x, (¢',i")) — f(x, (e, 1)))
Hard spheres = boundary effect
{ Af(x,(e,i)) = (Vf(x,(e,0)),e),e),(x,(ei)eE

Qb((xv (e,0)),A) = ZQLI,#/ fv La(x, (6/7 i/))Qk(Xv (e, ), de’, di’)v (x,(e,i)) € OE

Michel et al (2014), Monemvassitis et al (2023)
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Refreshment at fixed time = a boundary effect

Common: exponential refreshment
(x,v) e E=QxV

Af(x,v) = (Vif(x,v),v) + A(x, v) (fv Q((x,v),dv')f(x,v') — f(x,v))
+Ar (fv f(x,v)duy(v') = f(x,v)), (x,v) € E

Q%((x,v),A) = fv Ta(x, v')K(v,dv'),(x,v) € OE

Monemvassitis et al (2023)
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Refreshment at fixed time = a boundary effect

Common: exponential refreshment
(x,v) e E=QxV

Af(x,v) = (Vif(x,v),v) + A(x, v) (fv Q((x,v),dv')f(x,v') — f(x,v))
+Ar (fv f(x,v)duy(v') = f(x,v)), (x,v) € E

Q%((x,v),A) = fv Ta(x, v')K(v,dv'),(x,v) € OE

In practice, fixed-time refreshment

Monemvassitis et al (2023)
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Refreshment at fixed time = a boundary effect

Common: exponential refreshment
(x,v) e E=QxV
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Refreshment at fixed time = a boundary effect
Common: exponential refreshment
(x,v) e E=QxV

Af(x,v) = (Vif(x,v),v) + A(x, v) (fv Q((x,v),dv')f(x,v') — f(x,v))
+Ar (fv f(x,v)duy(v') = f(x,v)), (x,v) € E

Qb((xa V)7A) = f]} ]]'A(X7 VI)K(V7dVI)7(X7 V) € 0E
In practice, fixed-time refreshment
— Describe it as a boundary effect, I € £, 0L =0, (x,v,) EE=QxV x L

Areff (x, v, 1) = (Vif(x,v,1),v) = Oif (x,v,])
+A(x,v) (fy, QUx, v), dV)F(x, v/, 1) = f(x, v, 1)), (x,v,]) € E

Q,gef((x, Lv),A)= 1y, fL Ta(x, ', vYR(, dIN)dpy (V')
+(1 = Toac) [, Lalx, [, V)K(v,dV'), (x,v, 1) € OE

Monemvassitis et al (2023)
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Refreshment as a boundary effect

In practice, fixed-time refreshment
— Describe it as a boundary effect, | € £, | ~ py, 0L = {0}, (x,v,) e E=Q XV X L

Areff (x, v, 1) = (Vif(x,v,1),v) = Oif (x,v,])
+A(x,v) (Jy, QUx, v), dV)F(x, v/, 1) = f(x, v, 1)), (x,v,]) € E

Q,gef((x, ILv),A) = 1lg, fL Ta(x, ', vYR(, dIN)dpy (V')
+(1 = Toar) [, Lalx, [,V )K(v,dV'), (x,v,]) € OE

Monemvassitis et al (2023)
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Refreshment as a boundary effect

In practice, fixed-time refreshment
— Describe it as a boundary effect, | € £, | ~ py, 0L = {0}, (x,v,) e E=Q XV X L

Areff (x, v, 1) = (Vif(x,v,1),v) = Oif (x,v,])
+A(x,v) (Jy, QUx, v), dV)F(x, v/, 1) = f(x, v, 1)), (x,v,]) € E

Q,gef((x, ILv),A) = 1lg, fL Ta(x, ', vYR(, dIN)dpy (V')
+(1 = Toar) [, Lalx, [,V )K(v,dV'), (x,v,]) € OE

Conditions on R and p;: Transport by —0, compensated by R-jump

e (07)R(0,dl) = (=ipc(1)dl <= (1) = h(1)1c,

where L C £ and h decreasing over L so that h(0") >0, [, _NaL’(‘(‘Ji()')d/ =1

Monemvassitis et al (2023)
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Refreshment as a boundary effect
Conditions on R and p;: Transport by —0, compensated by R-jump

e (07)R(0,dl) = (=ipe(1)dl <= puu(l) = h(1)Le,

where L C £ and h decreasing over L so that h(0%) >0, [. 7H‘32’(‘f)§()')d/ =1
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Refreshment as a boundary effect
Conditions on R and p;: Transport by —0, compensated by R-jump

e (07)R(0,dl) = (=ipe(1)dl <= puu(l) = h(1)Le,

where L C £ and h decreasing over L so that h(0%) >0, [. 7H‘32’(‘f)§()')d/ =1

Recovering exponential and fixed-time refreshment

{ fixed-time T: pui (/) = F1jo,7and R(/,d/) = 6(/' — T)dl', with T >0, L =0, T]

exponential of rate \,: (/) = A\,e 1 js0and R(/,d/") = Ae M 1o0dl, with A, >0,L =L
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Refreshment as a boundary effect

Conditions on R and p;: Transport by —0, compensated by R-jump

e (07)R(0,dl) = (=ipe(1)dl <= puu(l) = h(1)Le,

where L C £ and h decreasing over L so that h(0%) >0, [. 7H‘32’(‘f)§()')d/ =1

Recovering exponential and fixed-time refreshment
fixed-time T: pui (/) = F1jo,7and R(/,d/) = 6(/' — T)dl', with T >0, L =0, T]
exponential of rate \,: (/) = A\,e 1 js0and R(/,d/") = Ae M 1o0dl, with A, >0,L =L
But also
> u ()= A(T — I)*1Lo</<7, and refreshment R(0,d/) = & (T — 1)k 1loci<7,

> u ()= (T+l) zLo<s, and refreshment R(0,d/) = Wlkh

> u ()= Ae= T lo</, and refreshment R(0,d/) = kT~ lg—TI" To<y, etc

where (T, k) € R¥?, | € £ and A is a suitable normalization constant. Monemvassitis et al (2023)
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Invariance: Transport compensated by the direction changes

Pif—f
t

(F(x.€') — f(x,€)Q((x, ), de’) + A /V(f(x, e') — f(x, e))u(de’)

Events - Direction changes Refreshment

Infinitesimal generator Af = lim;_,q

Af = Dyf(x,e)+ A(x, e)/
—— Vv

Transport

Conditions for # = m x y invariant: [, ., Afdrdp =0

Jaxy Dsf(x; e)m(dx)u(de)
:foV fv )\(X, e)(f(X, e’) _ f(X, e))Q((X’ e)’ de/)W(dX)p(de)
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Invariance: Transport compensated by the direction changes

Pif—f
t

(F(x.€') — f(x,€)Q((x, ), de’) + A /V(f(x, e') — f(x, e))u(de’)

Events - Direction changes Refreshment

Infinitesimal generator Af = lim;_,q

Af = Dyf(x,e)+ A(x, e)/
—— Vv

Transport

Conditions for # = m x y invariant: [, ., Afdrdp =0

Jaxy Dsf(x; e)m(dx)u(de)
:foV fv )\(X, e)(f(X, e’) _ f(X, e))Q((X’ 6)7 de/)W(dX)p(de)

With a flow along e, by integration by part, (7(x) o« exp(—E(x)) e
- )\

| (VE)e)fxenide)= [ [ (VEG.hflx,€)Q(x. ). de u(de) 4 J

v vJy VEV e

brought by transport redistribution by direction change
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Designing events through global symmetry exploitation

[ (VECe)fixemtde)= [ [ (TEG).)-f(x )0 ). deutde)
2 v JY

brought by transport redistribution by direction change

» Exploitation of mirror symmetry through factorization (Michel et al 2014)
V. Eij(x) = =V Ej(x) (i.e. divE; = 0) = Qi((x, (e, i)),di'de’) = 6(j — i")d(e — €")de'd/’
= Qi((x, (e, )),di'de’) = 6(j — i")d(e — R«(€’))de'd/’
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Designing events through global symmetry exploitation

[ (VECe)fixemtde)= [ [ (TEG).)-f(x )0 ). deutde)
2 v JY

brought by transport redistribution by direction change

» Exploitation of mirror symmetry through factorization (Michel et al 2014)
V. Eij(x) = =V Ej(x) (i.e. divE; = 0) = Qi((x, (e, i)),di'de’) = 6(j — i")d(e — €")de'd/’
= Qi((x, (e, )),di'de’) = 6(j — i")d(e — R«(€’))de'd/’

» Exploitation of translational invariance (Harland et al 2017)

V- E=0- Q((x (e.0),di'de’) = Y saEEl=s(e — &)d(k — I')dedl
P JANY XS
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Designing events through global symmetry exploitation

[ (VECe)fixemtde)= [ [ (TEG).)-f(x )0 ). deutde)
2 v JY

brought by transport redistribution by direction change
» Exploitation of mirror symmetry through factorization (Michel et al 2014)
V. Eij(x) = =V Ej(x) (i.e. divE; = 0) = Qi((x, (e, i)),di'de’) = 6(j — i")d(e — €")de'd/’
= Qi((x, (e, )),di'de’) = 6(j — i")d(e — R«(€’))de'd/’
» Exploitation of translational invariance (Harland et al 2017)

V- E=0- Q((x (e.0),di'de’) = Y saEEl=s(e — &)d(k — I')dedl
P JANY XS

» Exploitation of rotational invariance (Michel et al 2020)

/(VE, e)u(de) =0 — Q((x, (e,1)),di'de’) o< (VE, &) _p(de’)(...di")
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Ergodicity
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Ergodicity in sphere systems

Ergodicity in PDMP

» Goal is to find a density of paths connecting two states, while probability minorization
(positive Harris recurrent, irreducible skeleton chain, Meyn and Tweedie (1993)). Gain
randomness through the jump or refreshment times.
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Ergodicity in sphere systems

Ergodicity in PDMP

» Goal is to find a density of paths connecting two states, while probability minorization
(positive Harris recurrent, irreducible skeleton chain, Meyn and Tweedie (1993)). Gain
randomness through the jump or refreshment times.

» Gaining density, via submersion argument as done in Benaim, Le Borgne, Malrieu, Zitt
(2015) and Bierkens, Roberts and Zitt (2019): connect the two states by a path in which
all possible (e, /) appears at least once.
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Ergodicity in sphere systems

Ergodicity in PDMP

» Goal is to find a density of paths connecting two states, while probability minorization
(positive Harris recurrent, irreducible skeleton chain, Meyn and Tweedie (1993)). Gain
randomness through the jump or refreshment times.

» Gaining density, via submersion argument as done in Benaim, Le Borgne, Malrieu, Zitt
(2015) and Bierkens, Roberts and Zitt (2019): connect the two states by a path in which
all possible (e, /) appears at least once.

In soft/hard-sphere systems

» Dealing with diverging A — control of a minimal distance

» Dealing with hardcore conditions — density condition (~ can pack 3N spheres of radius
dpair) (Metropolis algorithm, Diaconis, Lebeau, Michel (2011): linear)

» Dealing with periodicity and e = +-uy, +u,
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In soft/hard-sphere systems
» Dealing with diverging A — control of a minimal distance > 0

» Dealing with hardcore conditions — density condition (~ can pack 3N spheres of radius
dpair) (Metropolis algorithm, Diaconis, Lebeau, Michel (2011): linear)
» Dealing with periodicity and e = 4-uy, +u,
Strategy xo — Xr

» Start in the case of well-separated spheres
(min,-;,gj(d(xo,,-,xo,j), d(X()’i,Xf’j), d(Xfy,',Xf,j)) > 2dpair) (d:periodic distance).
Show the possibility to define a valid path only along +uy and +u, from any path along
+uy, u, which directly connects xp and x¢.
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In soft/hard-sphere systems
» Dealing with diverging A — control of a minimal distance > 0

» Dealing with hardcore conditions — density condition (~ can pack 3N spheres of radius
dpair) (Metropolis algorithm, Diaconis, Lebeau, Michel (2011): linear)

» Dealing with periodicity and e = 4-uy, +u,
Strategy xo — Xr
> Start in the case of well-separated spheres
(min,-;,gj(d(xo,,-,xo,j), d(X()’i,Xf’j), d(Xfy,',Xf,j)) > 2dpair) (d:periodic distance).

Show the possibility to define a valid path only along +uy and +u, from any path along
+uy, u, which directly connects xp and x¢.

» if mind(xo,i, xrj) < 2dpair: consider an intermediate x;
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In soft/hard-sphere systems
» Dealing with diverging A — control of a minimal distance > 0

» Dealing with hardcore conditions — density condition (~ can pack 3N spheres of radius
dpair) (Metropolis algorithm, Diaconis, Lebeau, Michel (2011): linear)
» Dealing with periodicity and e = 4-uy, +u,
Strategy xo — Xr

» Start in the case of well-separated spheres
(min,-;,gj(d(xo,;,xo,j), d(Xoﬁi,Xf}j), d(Xfy,',XfJ)) > 2dpair) (d:periodic distance).
Show the possibility to define a valid path only along +uy and +u, from any path along
+uy, u, which directly connects xp and x¢.

» if mind(xo,i, xrj) < 2dpair: consider an intermediate x;

» If mind(xo,i, x0,;) < 2dpair: Define an expansion strategy otherwise: show by induction one
can always expand any sich xo to x” with min d(x;, x/) > min d(x;, x;) + é.
Careful with periodicity, no linear condition but use of hexagonal packing to exploit the
existence of one separation of 4dpair/\/§.
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» Dealing with periodicity and e = 4-uy, +u,
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» Start in the case of well-separated spheres
(min,-;,gj(d(xo,;,xo,j), d(Xoﬁi,Xf}j), d(Xfy,',XfJ)) > 2dpair) (d:periodic distance).
Show the possibility to define a valid path only along +uy and +u, from any path along
+uy, u, which directly connects xp and x¢.

» if mind(xo,i, xrj) < 2dpair: consider an intermediate x;

» If mind(xo,i, x0,;) < 2dpair: Define an expansion strategy otherwise: show by induction one
can always expand any sich xo to x” with min d(x;, x/) > min d(x;, x;) + é.
Careful with periodicity, no linear condition but use of hexagonal packing to exploit the
existence of one separation of 4dpair/\/§.

Can ease the dependence on xp (only travel times) for soft spheres.

Maoanemvuaccitic of al (202)
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Upgrading the deterministic flow

FCOAST eI
0g 8

General flow: differential drift ¢, ¢ris = b¢ © s j
d(x,ve) {

c;;.* “ = d)(xﬁ Vt) ‘.{‘., : ’ }j

/.Af(x, v)dr(x)du(v) — /dw(x)d,u(v)f(x, v)V-¢(x, v)+transport+events
Vanetti et al (2017)

Rotational flow, ¢r: a- rotation of i-th sphere around a point at

xj = I(cos(¢), sin(1)))
(x,v) = (x,a,1,9) and ¢(x,v) = (/(—siny,cos)),0,0,a) = V- pr(x,v) =0

Hybrid flow: alternate between ¢g and ¢+ depending on w

(x,v) = (x,w, (e, i),a,l,7) and
(bH(X? V) = w(e7 0,0, 070) + (1 - UJ)(/(— 5in¢7C05¢))7 0, 0,070[) - V- ¢H(X7 V) =0

Guyon et al (2023)
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Applications to hard disks - at hexatic density
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Observable: ¢g, N = 256

Guyon et al (2023)
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Non-reversible sampling of anisotropic particles

Without rotational flow

Hybrid Metropolis/ECMC
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Klement et al (2021)

Elastic length

Harland et al (2017)

Tethered interaction
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Hollmer et al (2021)
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Rotations are necessary to thermalize dimers

ﬂ\ ﬂ% R Bisector rotation
\ B <IN

Self-Rotations cannot be naively
propagated as translations, as
breaking of symmetry:

|dr(i)Ejj| # |dr(j)Ej| in general

g

No backtracking!
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Numerical comparaison - (density p = 0.7, N = 32)
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Guyon et al (2023)
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Numerical comparaison - (density p = 0.5, N = 32)
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Conclusion
Finding the entropic opening by building persistency into moves along PDMP

» Non-reversibility obtained by exploiting global symmetries

m Flexible schemes based on the exploitation and (stochastic) control of a ballistic exploration

of the state space.
m The PDMP framework allows for a clear and direct formalism.
m Generalisation to other flows than the translations, generalisation to the non-reversible

sampling of anisotropic particle systems.
Some questions
> Ergodicity proof at relevant densities, with/without refreshment
» Trade off between generating persistent transport while avoiding building too strong
correlations
» Still missing something in hard disks
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Thank you for your attention!

Joint work with Arnaud Guillin, Tristan Guyon, Athina Monemvassitis (UCA)
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