Approximation method to metastability: an application to Ising/Potts models without external fields

Seonwoo Kim (joint work with Insuk Seo)

Department of Mathematical Sciences, Seoul National University (SNU)

Analysis and simulations of metastable systems, CIRM

April 5th, 2023

Image: A math a math

Ising/Potts Hamiltonian

- Lattice $\Lambda = \{1, \dots, L\} \times \{1, \dots, L\}$ given periodic boundary conditions.
- Spins $S = \{1, 2, ..., q\}$ and configuration space $\mathcal{X} = S^{\Lambda}$.
- For each $\sigma \in \mathcal{X}$, the *Ising/Potts Hamiltonian* is

$$H(\sigma) = \sum_{\{x,y\} \subset \Lambda: x \sim y} \mathbb{1}\{\sigma(x) \neq \sigma(y)\}.$$

For each $a \in S$, denote by $\mathbf{a} \in \mathcal{X}$ the configuration satisfying

$$\mathbf{a}(x) = a$$
 for all $x \in \Lambda$.

Then, collect

$$\mathcal{S} = \{1,2,\ldots,q\}.$$

Each $\mathbf{a} \in S$ is called a *ground state*, since $S = \arg \min_{\sigma \in \mathcal{X}} H(\sigma)$.

イロト イヨト イヨト・

Gibbs distribution and Metropolis-Hastings dynamics

Gibbs distribution

For inverse temperature $\beta > 0$, the *Gibbs distribution* on \mathcal{X} is

$$\mu_{\beta}(\sigma) = rac{1}{Z_{\beta}} e^{-\beta H(\sigma)}.$$

< ロ > < 回 > < 回 > < 回 > <</p>

Gibbs distribution and Metropolis-Hastings dynamics

Gibbs distribution

For inverse temperature $\beta > 0$, the *Gibbs distribution* on $\mathcal X$ is

$$\mu_{\beta}(\sigma) = rac{1}{Z_{\beta}} e^{-\beta H(\sigma)}.$$

Metropolis-Hastings (MH) dynamics

Continuous-time Markov chain $\sigma_{eta}(t), \ t \geq 0$ defined by an infinitesimal generator

$$(\mathcal{L}_{\beta}f)(\sigma) = \sum_{x \in \Lambda} \sum_{a \in S} e^{-\beta \max\{H(\sigma^{x,a}) - H(\sigma), 0\}} [f(\sigma^{x,a}) - f(\sigma)].$$

 $\sigma^{x,a} \in \mathcal{X}$: configuration obtained from σ by updating the spin at $x \in \Lambda$ to $a \in S$.

イロト イヨト イヨト イヨ

Gibbs distribution and Metropolis-Hastings dynamics

Gibbs distribution

For inverse temperature $\beta >$ 0, the $\mathit{Gibbs}\ \mathit{distribution}$ on $\mathcal X$ is

$$\mu_{\beta}(\sigma) = rac{1}{Z_{\beta}} e^{-\beta H(\sigma)}.$$

Metropolis-Hastings (MH) dynamics

Continuous-time Markov chain $\sigma_{eta}(t), \ t \geq 0$ defined by an infinitesimal generator

$$(\mathcal{L}_{\beta}f)(\sigma) = \sum_{x \in \Lambda} \sum_{a \in S} e^{-\beta \max\{H(\sigma^{x,a}) - H(\sigma), 0\}} [f(\sigma^{x,a}) - f(\sigma)].$$

 $\sigma^{x,a} \in \mathcal{X}$: configuration obtained from σ by updating the spin at $x \in \Lambda$ to $a \in S$. The MH dynamics is irreducible and *reversible* w.r.t. to the Gibbs measure μ_{β} :

$$\mu_{\beta}(\sigma)r_{\beta}(\sigma,\sigma^{x,a})=\mu_{\beta}(\sigma^{x,a})r_{\beta}(\sigma^{x,a},\sigma).$$

イロト イヨト イヨト イヨ

Classical model: $S = \{1,2\}$ and the Hamiltonian is

$$H(\sigma) = \sum_{\{x,y\}\subset\Lambda:\,x\sim y} \mathbb{1}\{\sigma(x) \neq \sigma(y)\} - \frac{h}{\sum_{x\in\Lambda}} \mathbb{1}\{\sigma(x) = 1\},$$

for small h > 0 (external field).

・ロト ・日下・ ・ ヨト

Classical model: $S = \{1,2\}$ and the Hamiltonian is

$$H(\sigma) = \sum_{\{x,y\} \subset \Lambda: x \sim y} \mathbb{1}\{\sigma(x) \neq \sigma(y)\} - h \sum_{x \in \Lambda} \mathbb{1}\{\sigma(x) = 1\},$$

for small h > 0 (external field). Metastability of this model is well understood:

- Neves-Schonmann '91 : pathwise point of view.
- Ben Arous-Cerf '96 : 3D analogue.
- Bovier–Manzo '02 : potential-theoretic approach.

< ロ > < 四 > < 回 > < 回 > <</p>

Classical model: $S = \{1,2\}$ and the Hamiltonian is

$$H(\sigma) = \sum_{\{x,y\} \subset \Lambda: x \sim y} \mathbb{1}\{\sigma(x) \neq \sigma(y)\} - h \sum_{x \in \Lambda} \mathbb{1}\{\sigma(x) = 1\},$$

for small h > 0 (external field). Metastability of this model is well understood:

- Neves-Schonmann '91 : pathwise point of view.
- Ben Arous-Cerf '96 : 3D analogue.
- Bovier–Manzo '02 : potential-theoretic approach.

Features of Ising model with positive external field

- **1** is stable and **2** is metastable.
- There is exactly one metastable state, 2, in the system.
- The saddle structure is sharp.

・ロト ・日下・ ・ ヨト・

Features of Ising model with positive external field

- **1** is stable and **2** is metastable.
- There is exactly one metastable state, 2, in the system.
- The saddle structure is sharp.

・ロト ・回ト ・目下

Features of Ising/Potts models with zero external field

- The ground states in $S = \{1, ..., q\}$ are equally metastable.
- There are more than one metastable state.
- The saddle structure is flat and forms a huge plateau.

イロト イヨト イヨト イ

LDP-type results (Nardi–Zocca '19)

Let $\Gamma := 2L + 2$. Suppose that the process starts from $\mathbf{a} \in \mathcal{S}$.

- $\lim_{\beta \to \infty} \frac{1}{\beta} \log \tau_{S \setminus \{a\}} = \Gamma$ in probability.
- $2 \ \lim_{\beta \to \infty} \frac{1}{\beta} \log \mathbb{E}_{\mathbf{a}}[\tau_{S \setminus \{\mathbf{a}\}}] = \Gamma.$
- $\ \, \bullet \ \, \tau_{\mathcal{S} \setminus \{a\}} / \mathbb{E}_{a}[\tau_{\mathcal{S} \setminus \{a\}}] \to \mathrm{Exp}(1) \text{ in distribution.}$

イロト イヨト イヨト イ

LDP-type results (Nardi–Zocca '19)

Let $\Gamma := 2L + 2$. Suppose that the process starts from $\mathbf{a} \in \mathcal{S}$.

If
$$\lim_{\beta \to \infty} \frac{1}{\beta} \log \tau_{S \setminus \{a\}} = \Gamma$$
 in probability.

$$Iim_{\beta \to \infty} \frac{1}{\beta} \log \mathbb{E}_{\mathbf{a}}[\tau_{S \setminus \{\mathbf{a}\}}] = \Gamma.$$

$$\ \, \mathfrak{I}_{\mathcal{S}\setminus\{\mathbf{a}\}}/\mathbb{E}_{\mathbf{a}}[\tau_{\mathcal{S}\setminus\{\mathbf{a}\}}] \to \mathrm{Exp}(1) \text{ in distribution.}$$

Tools: analysis on the energy landscape (energy barrier, depth of valleys, etc.) & pathwise approach applied to the path trajectories.

Image: A math a math

LDP-type results (Nardi–Zocca '19)

Let $\Gamma := 2L + 2$. Suppose that the process starts from $\mathbf{a} \in \mathcal{S}$.

If
$$\lim_{\beta \to \infty} \frac{1}{\beta} \log \tau_{S \setminus \{a\}} = \Gamma$$
 in probability.

$$Iim_{\beta \to \infty} \frac{1}{\beta} \log \mathbb{E}_{\mathbf{a}}[\tau_{S \setminus \{\mathbf{a}\}}] = \Gamma.$$

$$\ \, \textbf{3} \ \, \tau_{\mathcal{S} \setminus \{\mathbf{a}\}} / \mathbb{E}_{\mathbf{a}}[\tau_{\mathcal{S} \setminus \{\mathbf{a}\}}] \to \mathrm{Exp}(1) \text{ in distribution.}$$

Tools: analysis on the energy landscape (energy barrier, depth of valleys, etc.) & pathwise approach applied to the path trajectories.

Later, [Bet–Gallo–Nardi '21] identified the *gates* of metastable transitions, and also the *tube of typical trajectories*.

Image: A mathematical states and a mathem

LDP-type results (Nardi–Zocca '19)

Let $\Gamma := 2L + 2$. Suppose that the process starts from $\mathbf{a} \in \mathcal{S}$.

If
$$\lim_{\beta \to \infty} \frac{1}{\beta} \log \tau_{S \setminus \{a\}} = \Gamma$$
 in probability.

$$Iim_{\beta \to \infty} \frac{1}{\beta} \log \mathbb{E}_{\mathbf{a}}[\tau_{\mathcal{S} \setminus \{\mathbf{a}\}}] = \Gamma.$$

$$\ \, \textbf{3} \ \, \tau_{\mathcal{S} \setminus \{\mathbf{a}\}} / \mathbb{E}_{\mathbf{a}}[\tau_{\mathcal{S} \setminus \{\mathbf{a}\}}] \to \mathrm{Exp}(1) \text{ in distribution.}$$

Tools: analysis on the energy landscape (energy barrier, depth of valleys, etc.) & pathwise approach applied to the path trajectories.

Later, [Bet–Gallo–Nardi '21] identified the *gates* of metastable transitions, and also the *tube of typical trajectories*.

Objective 1. Prefactor estimate of $\mathbb{E}_{a}[\tau_{S \setminus \{a\}}]$.

Objective 2. Scaling limit of the successive metastable transitions in S.

< □ > < □ > < □ > < □ > < □ >

Eyring-Kramers law (K.-Seo '21)

Recall that $\Gamma = 2L + 2$. There exists an explicit prefactor $\kappa = \kappa(L) > 0$ such that

$$\mathbb{E}_{\mathbf{a}}[au_{\mathcal{S}\setminus\{\mathbf{a}\}}]\simeq rac{\kappa}{q-1}\cdot e^{\Gammaeta}.$$

Moreover, the constant κ satisfies $\lim_{L\to\infty} \kappa(L) = \frac{1}{8}$.

Markov chain model reduction (K.-Seo '21)

The law of the accelerated process $\sigma_{\beta}(e^{\Gamma\beta}t)$ converges, as $\beta \to \infty$, to the law of a Markov chain Y(t) defined by jump rate $r_{Y}(\cdot, \cdot) \equiv \frac{1}{\kappa}$.

・ロト ・回 ト ・ ヨト ・

Eyring-Kramers law (K.-Seo '21)

Recall that $\Gamma = 2L + 2$. There exists an explicit prefactor $\kappa = \kappa(L) > 0$ such that

$$\mathbb{E}_{\mathsf{a}}[au_{\mathcal{S}\setminus\{\mathsf{a}\}}]\simeq rac{\kappa}{q-1}\cdot e^{\Gammaeta}.$$

Moreover, the constant κ satisfies $\lim_{L\to\infty} \kappa(L) = \frac{1}{8}$.

Markov chain model reduction (K.-Seo '21)

The law of the accelerated process $\sigma_{\beta}(e^{\Gamma\beta}t)$ converges, as $\beta \to \infty$, to the law of a Markov chain Y(t) defined by jump rate $r_Y(\cdot, \cdot) \equiv \frac{1}{\kappa}$.

Tools: *precise analysis* on the energy landscape & potential-theoretic and martingale approach to metastability.

イロト イヨト イヨト イヨ

Tools: *precise analysis* on the energy landscape & potential-theoretic and martingale approach to metastability.

Tools: *precise analysis* on the energy landscape & potential-theoretic and martingale approach to metastability.

Image: A math a math

Tools: *precise analysis* on the energy landscape & potential-theoretic and martingale approach to metastability.

Image: A math a math

Transition on the bulk part is one-dimensional.

- Transition on the bulk part is one-dimensional.
- Iransition on the edge part is more complex.

Cyclic dynamics for $q \ge 3$ (Landim–Seo '16)

Continuous-time Markov chain $\sigma^{
m cyc}_{eta}(t), \ t\geq 0$ defined by an infinitesimal generator

$$(\mathcal{L}_{\beta}^{\mathsf{cyc}}f)(\sigma) = \sum_{\mathsf{x} \in \mathsf{A}} e^{-\beta \max_{\mathsf{a} \in S} \{H(\sigma^{\mathsf{x},\mathsf{a}}) - H(\sigma)\}} [f(\tau_{\mathsf{x}}\sigma) - f(\sigma)].$$

 $\tau_x \sigma \in \mathcal{X}$: configuration obtained from σ by *rotating* the spin at $x \in \Lambda$ from $\sigma(x)$ to $\sigma(x) + 1$, where we understand q + 1 as 1.

A D M A B M A B M

Cyclic dynamics for $q \ge 3$ (Landim–Seo '16)

Continuous-time Markov chain $\sigma^{
m cyc}_{eta}(t), \ t\geq 0$ defined by an infinitesimal generator

$$(\mathcal{L}_{\beta}^{\mathsf{cyc}}f)(\sigma) = \sum_{x \in \Lambda} e^{-\beta \max_{a \in S} \{H(\sigma^{x,a}) - H(\sigma)\}} [f(\tau_x \sigma) - f(\sigma)]$$

 $\tau_x \sigma \in \mathcal{X}$: configuration obtained from σ by *rotating* the spin at $x \in \Lambda$ from $\sigma(x)$ to $\sigma(x) + 1$, where we understand q + 1 as 1.

The cyclic dynamics is irreducible, but *non-reversible* w.r.t. to μ_{β} , since spins can only rotate in one direction $(1 \rightarrow 2 \rightarrow \cdots \rightarrow q \rightarrow 1)$ and not in the opposite direction $(1 \rightarrow q \rightarrow \cdots \rightarrow 2 \rightarrow 1)$:

$$r^{\mathsf{cyc}}_{eta}(\sigma, au_x\sigma)>0, \quad ext{whereas} \quad r^{\mathsf{cyc}}_{eta}(au_x\sigma,\sigma)=0.$$

イロト イ団ト イヨト イヨト

Eyring-Kramers law and MC model reduction (K.-Seo '22)

Define $\Gamma' = 2L + 4$. Then, there exists $\kappa' = \kappa'(L) > 0$ such that

$$\mathbb{E}_{\mathbf{a}}[\tau_{\mathcal{S}\setminus\{\mathbf{a}\}}] \simeq \frac{\kappa'}{q-1} \cdot e^{\Gamma'\beta},$$

where $\lim_{L\to\infty} \kappa'(L) = \frac{1}{8}$. Moreover, the law of $\sigma_{\beta}^{\text{cyc}}(e^{\Gamma'\beta}t)$ converges to the law of a Markov chain Y'(t) defined by jump rate $r_{Y'}(\cdot, \cdot) \equiv \frac{1}{\kappa'}$.

A D M A B M A B M

Eyring-Kramers law and MC model reduction (K.-Seo '22)

Define $\Gamma' = 2L + 4$. Then, there exists $\kappa' = \kappa'(L) > 0$ such that

$$\mathbb{E}_{\mathbf{a}}[\tau_{\mathcal{S}\setminus\{\mathbf{a}\}}] \simeq \frac{\kappa'}{q-1} \cdot e^{\Gamma'\beta},$$

where $\lim_{L\to\infty} \kappa'(L) = \frac{1}{8}$. Moreover, the law of $\sigma_{\beta}^{\text{cyc}}(e^{\Gamma'\beta}t)$ converges to the law of a Markov chain Y'(t) defined by jump rate $r_{Y'}(\cdot, \cdot) \equiv \frac{1}{\kappa'}$.

Remarks.

- **(**) Constants κ and κ' are different (cf. $\lim_{L\to\infty} \kappa(L) = \lim_{L\to\infty} \kappa'(L) = \frac{1}{8}$).
- Although the microscopic system σ^{cyc}_β(t) updates the spins in one direction only, the macroscopic limit Y'(t) becomes symmetric. This suggests a *coarse-graining effect* in the limit which removes the cyclic feature.
- Scherichter in the second seco

< □ > < □ > < □ > < □ > < □ >

Extension 2: three-dimensional model

3D Lattice $\Lambda^{3D} = \{1, \dots, L\}^3$, given periodic boundary conditions.

メロト メタト メヨト メヨ

Extension 2: three-dimensional model

3D Lattice $\Lambda^{3D} = \{1, \dots, L\}^3$, given periodic boundary conditions.

LDP-type results (K.-Seo '21)

Let $\Gamma^{3D} := 2L^2 + 2L + 2.$

•
$$\lim_{\beta\to\infty} \frac{1}{\beta} \log \tau_{S\setminus\{a\}} = \Gamma^{3D}$$
 in probability.

$$Iim_{\beta \to \infty} \frac{1}{\beta} \log \mathbb{E}_{\mathbf{a}}[\tau_{\mathcal{S} \setminus \{\mathbf{a}\}}] = \Gamma^{3D}$$

 $\ \, \mathfrak{I}_{\mathcal{S}\setminus\{\mathbf{a}\}}/\mathbb{E}_{\mathbf{a}}[\tau_{\mathcal{S}\setminus\{\mathbf{a}\}}] \to \mathrm{Exp}(1) \text{ in distribution}.$

Eyring–Kramers law and MC model reduction (K.–Seo '21)

$$\mathbb{E}_{\mathbf{a}}[\tau_{\mathcal{S}\setminus\{\mathbf{a}\}}] \simeq \frac{\kappa^{3\mathsf{D}}}{q-1} \cdot \mathbf{e}^{\Gamma^{3\mathsf{D}}\beta},$$

where $\lim_{L\to\infty} \kappa^{3D}(L) = \frac{1}{48}$. Moreover, the law of $\sigma_{\beta}(e^{\Gamma^{3D}\beta}t)$ converges to the law of a Markov chain $Y^{3D}(t)$ defined by jump rate $r_{Y^{3D}}(\cdot, \cdot) \equiv \frac{1}{\kappa^{3D}}$.

イロト イヨト イヨト イヨト

Energy landscape analysis is far more complicated in the 3D model.

LDP-type results (K.–Seo '21)

Let $\Gamma^{3D} := 2L^2 + 2L + 2$.

•
$$\lim_{\beta \to \infty} \frac{1}{\beta} \log \tau_{S \setminus \{a\}} = \Gamma^{3D}$$
 in probability.

$$Iim_{\beta \to \infty} \frac{1}{\beta} \log \mathbb{E}_{\mathbf{a}}[\tau_{\mathcal{S} \setminus \{\mathbf{a}\}}] = \Gamma^{3D}$$

 $\ \, \mathfrak{I}_{\mathcal{S}\setminus\{\mathbf{a}\}}/\mathbb{E}_{\mathbf{a}}[\tau_{\mathcal{S}\setminus\{\mathbf{a}\}}] \to \mathrm{Exp}(1) \text{ in distribution.}$

Eyring–Kramers law and MC model reduction (K.–Seo '21)

$$\mathbb{E}_{\mathbf{a}}[\tau_{\mathcal{S}\setminus\{\mathbf{a}\}}] \simeq \frac{\kappa^{3\mathsf{D}}}{q-1} \cdot \mathbf{e}^{\Gamma^{3\mathsf{D}}\beta},$$

where $\lim_{L\to\infty} \kappa^{3D}(L) = \frac{1}{48}$. Moreover, the law of $\sigma_{\beta}(e^{\Gamma^{3D}\beta}t)$ converges to the law of a Markov chain $Y^{3D}(t)$ defined by jump rate $r_{Y^{3D}}(\cdot, \cdot) \equiv \frac{1}{\kappa^{3D}}$.

イロト イヨト イヨト イヨト

Energy landscape analysis is far more complicated in the 3D model.

A D > A B > A

Energy landscape analysis is far more complicated in the 3D model.

Image: A math a math

Energy landscape analysis is far more complicated in the 3D model.

In the boundary between the bulk and edge parts is unclear.

< □ > < 同 >

Energy landscape analysis is far more complicated in the 3D model.

- In the boundary between the bulk and edge parts is unclear.
- Iransition is highly complex even in the bulk part.

Energy landscape analysis is far more complicated in the 3D model.

- The boundary between the bulk and edge parts is unclear.
- Iransition is highly complex even in the bulk part.

Remark. In higher dimensions, $d \ge 4$, the energy barrier is conjectured as

$$\Gamma(d) = 2L^{d-1} + 2L^{d-2} + \dots + 2L + 2.$$

Extension 3: growing lattice

In $\Lambda = \Lambda_L = \{1, \dots, L\}^2$, suppose that L also grows to infinity in the limit $\beta \to \infty$.

イロト イヨト イヨト イ

Extension 3: growing lattice

In $\Lambda = \Lambda_L = \{1, \dots, L\}^2$, suppose that L also grows to infinity in the limit $\beta \to \infty$.

Sharp thresholds of energy vs. entropy (K.–Seo '22)

- If $L^{1/2} \ll e^{\beta}$, then the ground states in S are metastable.
- ② If $L^{1/4} \ll e^{eta} \ll L^{1/2}$, then the valleys around ${\cal S}$ are metastable.
- If $e^{\beta} \ll L^{1/4}$, then the valleys are not metastable.

Idea of proof: analyze the Gibbs distribution μ_{β} .

A D F A A F F A

Extension 3: growing lattice

In $\Lambda = \Lambda_L = \{1, \dots, L\}^2$, suppose that L also grows to infinity in the limit $\beta \to \infty$.

Sharp thresholds of energy vs. entropy (K.–Seo '22)

- If $L^{1/2} \ll e^{\beta}$, then the ground states in S are metastable.
- (a) If $L^{1/4} \ll e^{\beta} \ll L^{1/2}$, then the valleys around S are metastable.
- If $e^{\beta} \ll L^{1/4}$, then the valleys are not metastable.

Eyring–Kramers law and MC model reduction (K.–Seo '22)

Recall that $\Gamma = 2L + 2$. If $L^3 \ll e^{\beta}$, it holds that

$$\mathbb{E}_{\mathbf{a}}[au_{\mathcal{S}\setminus\{\mathbf{a}\}}]\simeq rac{1}{8(q-1)}\cdot e^{\Gammaeta}.$$

Moreover, the law of $\sigma_{\beta}(e^{\Gamma_{\beta}}t)$ converges to the law of Y''(t) where $r_{Y''}(\cdot, \cdot) \equiv 8$.

Remark. Also applicable to the same model on the 2D hexagonal lattice.

イロン イロン イヨン イヨン

Other extensions and related recent works

Degenerate Potts model with external field towards one direction:

- (negative external field) Bet-Gallo-Nardi '22.
- (positive external field) Bet-Gallo-Nardi '21.

Blume-Capel model with zero chemical potential and zero external field: K. '21. Potts model with general interaction constants: Bet-Gallo-K. '22. Potts model with general external fields: Ahn '23+. Ising model on the hexagonal lattice: Apollonio-Jacquier-Nardi-Troiani '22. Ising model under Kawasaki dynamics:

- (square lattice) Baldassarri–Nardi '22.
- (hexagonal lattice) Baldassarri-Jacquier '23.

• • • • • • • • • • • •

Thank you! Merci!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで