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Ferromagnetic Ising/Potts models without external field

Ising/Potts Hamiltonian

Lattice Λ = {1, . . . , L} × {1, . . . , L} given periodic boundary conditions.

Spins S = {1, 2, . . . , q} and configuration space X = SΛ.

For each σ ∈ X , the Ising/Potts Hamiltonian is

H(σ) =
∑

{x,y}⊂Λ: x∼y

1{σ(x) 6= σ(y)}.

For each a ∈ S , denote by a ∈ X the configuration satisfying

a(x) = a for all x ∈ Λ.

Then, collect
S = {1, 2, . . . ,q}.

Each a ∈ S is called a ground state, since S = arg minσ∈X H(σ).
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Gibbs distribution and Metropolis–Hastings dynamics

Gibbs distribution
For inverse temperature β > 0, the Gibbs distribution on X is

µβ(σ) =
1

Zβ
e−βH(σ).

Metropolis–Hastings (MH) dynamics

Continuous-time Markov chain σβ(t), t ≥ 0 defined by an infinitesimal generator

(Lβf )(σ) =
∑
x∈Λ

∑
a∈S

e−βmax{H(σx,a)−H(σ),0}[f (σx,a)− f (σ)].

σx,a ∈ X : configuration obtained from σ by updating the spin at x ∈ Λ to a ∈ S .
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e−βH(σ).

Metropolis–Hastings (MH) dynamics

Continuous-time Markov chain σβ(t), t ≥ 0 defined by an infinitesimal generator

(Lβf )(σ) =
∑
x∈Λ

∑
a∈S

e−βmax{H(σx,a)−H(σ),0}[f (σx,a)− f (σ)].

σx,a ∈ X : configuration obtained from σ by updating the spin at x ∈ Λ to a ∈ S .

The MH dynamics is irreducible and reversible w.r.t. to the Gibbs measure µβ :

µβ(σ)rβ(σ, σx,a) = µβ(σx,a)rβ(σx,a, σ).
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Comparison to Ising model with positive external field

Classical model: S = {1, 2} and the Hamiltonian is

H(σ) =
∑

{x,y}⊂Λ: x∼y

1{σ(x) 6= σ(y)} − h
∑
x∈Λ

1{σ(x) = 1},

for small h > 0 (external field).
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∑

{x,y}⊂Λ: x∼y

1{σ(x) 6= σ(y)} − h
∑
x∈Λ

1{σ(x) = 1},

for small h > 0 (external field). Metastability of this model is well understood:

Neves–Schonmann ’91 : pathwise point of view.

Ben Arous–Cerf ’96 : 3D analogue.

Bovier–Manzo ’02 : potential-theoretic approach.

Features of Ising model with positive external field
1 1 is stable and 2 is metastable.

2 There is exactly one metastable state, 2, in the system.

3 The saddle structure is sharp.
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Comparison to Ising model with positive external field

Features of Ising/Potts models with zero external field

1 The ground states in S = {1, . . . ,q} are equally metastable.

2 There are more than one metastable state.

3 The saddle structure is flat and forms a huge plateau.
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Metastability from pathwise approach

LDP-type results (Nardi–Zocca ’19)

Let Γ := 2L + 2. Suppose that the process starts from a ∈ S.

1 limβ→∞
1
β log τS\{a} = Γ in probability.

2 limβ→∞
1
β logEa[τS\{a}] = Γ.

3 τS\{a}/Ea[τS\{a}]→ Exp(1) in distribution.
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Let Γ := 2L + 2. Suppose that the process starts from a ∈ S.

1 limβ→∞
1
β log τS\{a} = Γ in probability.

2 limβ→∞
1
β logEa[τS\{a}] = Γ.

3 τS\{a}/Ea[τS\{a}]→ Exp(1) in distribution.

Tools: analysis on the energy landscape (energy barrier, depth of valleys, etc.) &
pathwise approach applied to the path trajectories.

Later, [Bet–Gallo–Nardi ’21] identified the gates of metastable transitions, and
also the tube of typical trajectories.

Objective 1. Prefactor estimate of Ea[τS\{a}].

Objective 2. Scaling limit of the successive metastable transitions in S.
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Main results

Eyring–Kramers law (K.–Seo ’21)

Recall that Γ = 2L + 2. There exists an explicit prefactor κ = κ(L) > 0 such that

Ea[τS\{a}] '
κ

q − 1
· eΓβ .

Moreover, the constant κ satisfies limL→∞ κ(L) = 1
8 .

Markov chain model reduction (K.–Seo ’21)

The law of the accelerated process σβ(eΓβt) converges, as β →∞, to the law of
a Markov chain Y (t) defined by jump rate rY (·, ·) ≡ 1

κ .

Tools: precise analysis on the energy landscape & potential-theoretic and
martingale approach to metastability.
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Precise analysis on the energy landscape

Tools: precise analysis on the energy landscape & potential-theoretic and
martingale approach to metastability.
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Precise analysis on the energy landscape

1 Transition on the bulk part is one-dimensional.
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Precise analysis on the energy landscape

1 Transition on the bulk part is one-dimensional.

2 Transition on the edge part is more complex.
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Extension 1: non-reversible cyclic dynamics

Cyclic dynamics for q ≥ 3 (Landim–Seo ’16)

Continuous-time Markov chain σcyc
β (t), t ≥ 0 defined by an infinitesimal generator

(Lcyc
β f )(σ) =

∑
x∈Λ

e−βmaxa∈S{H(σx,a)−H(σ)}[f (τxσ)− f (σ)].

τxσ ∈ X : configuration obtained from σ by rotating the spin at x ∈ Λ from σ(x)
to σ(x) + 1, where we understand q + 1 as 1.
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Cyclic dynamics for q ≥ 3 (Landim–Seo ’16)

Continuous-time Markov chain σcyc
β (t), t ≥ 0 defined by an infinitesimal generator

(Lcyc
β f )(σ) =

∑
x∈Λ

e−βmaxa∈S{H(σx,a)−H(σ)}[f (τxσ)− f (σ)].

τxσ ∈ X : configuration obtained from σ by rotating the spin at x ∈ Λ from σ(x)
to σ(x) + 1, where we understand q + 1 as 1.

The cyclic dynamics is irreducible, but non-reversible w.r.t. to µβ , since spins can
only rotate in one direction (1→ 2→ · · · → q → 1) and not in the opposite
direction (1→ q → · · · → 2→ 1):

r cyc
β (σ, τxσ) > 0, whereas r cyc

β (τxσ, σ) = 0.
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Main results for cyclic dynamics

Eyring–Kramers law and MC model reduction (K.–Seo ’22)

Define Γ′ = 2L + 4. Then, there exists κ′ = κ′(L) > 0 such that

Ea[τS\{a}] '
κ′

q − 1
· eΓ′β ,

where limL→∞ κ′(L) = 1
8 . Moreover, the law of σcyc

β (eΓ′βt) converges to the law

of a Markov chain Y ′(t) defined by jump rate rY ′(·, ·) ≡ 1
κ′ .

Remarks.

1 Constants κ and κ′ are different (cf. limL→∞ κ(L) = limL→∞ κ′(L) = 1
8 ).

2 Although the microscopic system σcyc
β (t) updates the spins in one direction

only, the macroscopic limit Y ′(t) becomes symmetric. This suggests a
coarse-graining effect in the limit which removes the cyclic feature.

3 LDP-type results are also attainable [Cirillo–Nardi–Sohier ’15].
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Extension 2: three-dimensional model

3D Lattice Λ3D = {1, . . . , L}3, given periodic boundary conditions.
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Extension 2: three-dimensional model

3D Lattice Λ3D = {1, . . . , L}3, given periodic boundary conditions.

LDP-type results (K.–Seo ’21)

Let Γ3D := 2L2 + 2L + 2.

1 limβ→∞
1
β log τS\{a} = Γ3D in probability.

2 limβ→∞
1
β logEa[τS\{a}] = Γ3D.

3 τS\{a}/Ea[τS\{a}]→ Exp(1) in distribution.

Eyring–Kramers law and MC model reduction (K.–Seo ’21)

Ea[τS\{a}] '
κ3D

q − 1
· eΓ3Dβ ,

where limL→∞ κ3D(L) = 1
48 . Moreover, the law of σβ(eΓ3Dβt) converges to the law

of a Markov chain Y 3D(t) defined by jump rate rY 3D (·, ·) ≡ 1
κ3D .
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Difficulties in three-dimensional model

Energy landscape analysis is far more complicated in the 3D model.

LDP-type results (K.–Seo ’21)

Let Γ3D := 2L2 + 2L + 2.

1 limβ→∞
1
β log τS\{a} = Γ3D in probability.

2 limβ→∞
1
β logEa[τS\{a}] = Γ3D.

3 τS\{a}/Ea[τS\{a}]→ Exp(1) in distribution.

Eyring–Kramers law and MC model reduction (K.–Seo ’21)

Ea[τS\{a}] '
κ3D

q − 1
· eΓ3Dβ ,

where limL→∞ κ3D(L) = 1
48 . Moreover, the law of σβ(eΓ3Dβt) converges to the law

of a Markov chain Y 3D(t) defined by jump rate rY 3D (·, ·) ≡ 1
κ3D .

Seonwoo Kim (SNU) Metastability of Ising/Potts models April 5th, 2023 11 / 14



Difficulties in three-dimensional model

Energy landscape analysis is far more complicated in the 3D model.

Seonwoo Kim (SNU) Metastability of Ising/Potts models April 5th, 2023 11 / 14



Difficulties in three-dimensional model

Energy landscape analysis is far more complicated in the 3D model.

Seonwoo Kim (SNU) Metastability of Ising/Potts models April 5th, 2023 11 / 14



Difficulties in three-dimensional model

Energy landscape analysis is far more complicated in the 3D model.

1 The boundary between the bulk and edge parts is unclear.
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Difficulties in three-dimensional model

Energy landscape analysis is far more complicated in the 3D model.

1 The boundary between the bulk and edge parts is unclear.

2 Transition is highly complex even in the bulk part.

Remark. In higher dimensions, d ≥ 4, the energy barrier is conjectured as

Γ(d) = 2Ld−1 + 2Ld−2 + · · ·+ 2L + 2.
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Extension 3: growing lattice

In Λ = ΛL = {1, . . . , L}2, suppose that L also grows to infinity in the limit β →∞.
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Extension 3: growing lattice

In Λ = ΛL = {1, . . . , L}2, suppose that L also grows to infinity in the limit β →∞.

Sharp thresholds of energy vs. entropy (K.–Seo ’22)

1 If L1/2 � eβ , then the ground states in S are metastable.

2 If L1/4 � eβ � L1/2, then the valleys around S are metastable.

3 If eβ � L1/4, then the valleys are not metastable.

Idea of proof: analyze the Gibbs distribution µβ .
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Extension 3: growing lattice

In Λ = ΛL = {1, . . . , L}2, suppose that L also grows to infinity in the limit β →∞.

Sharp thresholds of energy vs. entropy (K.–Seo ’22)

1 If L1/2 � eβ , then the ground states in S are metastable.

2 If L1/4 � eβ � L1/2, then the valleys around S are metastable.

3 If eβ � L1/4, then the valleys are not metastable.

Eyring–Kramers law and MC model reduction (K.–Seo ’22)

Recall that Γ = 2L + 2. If L3 � eβ , it holds that

Ea[τS\{a}] '
1

8(q − 1)
· eΓβ .

Moreover, the law of σβ(eΓβt) converges to the law of Y ′′(t) where rY ′′(·, ·) ≡ 8.

Remark. Also applicable to the same model on the 2D hexagonal lattice.
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Other extensions and related recent works

Degenerate Potts model with external field towards one direction:

(negative external field) Bet–Gallo–Nardi ’22.

(positive external field) Bet–Gallo–Nardi ’21.

Blume–Capel model with zero chemical potential and zero external field: K. ’21.

Potts model with general interaction constants: Bet–Gallo–K. ’22.

Potts model with general external fields: Ahn ’23+.

Ising model on the hexagonal lattice: Apollonio–Jacquier–Nardi–Troiani ’22.

Ising model under Kawasaki dynamics:

(square lattice) Baldassarri–Nardi ’22.

(hexagonal lattice) Baldassarri–Jacquier ’23.
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Thank you! Merci!


