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Mixing-time
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Mixing-time
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Well-posed problem

1 Let (Xt(x0))t≥0 be a dynamical system (model) such that the current
state at time t, Xt(x0), converges to its limiting state µ as t →∞ for
some suitable (distance/discrepancy) dist.

2 Assume that the map t 7→ dist(Xt(x0), µ) is non-increasing.

3 Well-posed problem: given a prescribed error η > 0, the
η-mixing-time is defined as

τη(x0) := inf{t ≥ 0 : dist(Xt(x0), µ) ≤ η}.

It is a hard problem in general! For instance, in ergodic Markov
chains theory we have the existence of constants C (x0,N) and δ(N)
satisfying∥∥∥XN

t (x0)− µN
∥∥∥
TV
≤ C (x0,N)e−δ(N)t for all t ≥ 0.

Here N denotes the cardinality of the space state. Good knowledge of
C (x0,N) and δ(N) is needed. What about lower bound estimates?
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A warm-up example: the Ornstein–Uhlenbeck process

Let (Xt(x0))t≥0 be the solution of the SDE

dXt = −λXtdt +
√
εdWt , X0 = x0,

with λ and ε being positive numbers. Integration by parts formula yields

Xt(x0) = e−λtx0 +
√
εe−λt

∫ t

0
eλsdWs .

Then Itô’s isometry implies

Xt(x0)
D
= N

(
e−λtx0,

ε

2λ
(1− e−2λt)

)
,

and the limiting law is given by

µ
D
= N

(
0,

ε

2λ

)
.
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OUP total variation mixing time
For computing the η-mixing time, one needs to find the smallest t > 0 for
which

‖Xt(x0)− µ‖TV =
∥∥∥N (e−λtx0, ε

2λ
(1− e−2λt)

)
−N

(
0,

ε

2λ

)∥∥∥
TV

=

∥∥∥∥∥N
(√

2λ

ε
e−λtx0, 1− e−2λt

)
−N (0, 1)

∥∥∥∥∥
TV

≤ η.

Since

|
√

1− e−2λt − 1| =
e−2λt√

1− e−2λt + 1
, morally, one needs to solve∥∥∥∥∥N

(√
2λ

ε
e−λtx0, 1

)
−N (0, 1)

∥∥∥∥∥
TV

=
2√
2π

∫ √
λ
2ε
e−λt |x0|

0
e−z

2/2dz ≤ η,

which for t large yields

2√
2π

√
λ

2ε
e−λt |x0| =

√
λ

πε
e−λt |x0| ≤ η.
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OUP Wasserstein mixing time

To compute the η-mixing time, one needs to find the smallest t > 0
satisfying

W2(Xt(x0), µ) =W2

(
N
(
e−λtx0,

ε

2λ
(1− e−2λt)

)
,N
(

0,
ε

2λ

))
=

√
e−2λtx20 +

ε

2λ

(√
1− e−2λt − 1

)2
≤ η.

Since (√
1− e−2λt − 1

)2
=

e−4λt

(
√

1− e−2λt + 1)2
,

morally, we have
e−λt |x0| ≤ η.
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Cutoff phenomenon (in total variation distance)

In the eighties, P. Diaconis and M. Shahshahani asked:

• How many shufflings do we need for the deck of cards to be
well-mixed?

• When is it random enough?
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Behavior

Figure: P. Diaconis. The cut-off phenomenon in finite Markov chains, PNAS,
USA, 93, 1659-1664, 1996.
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Random transpositions

• Space of state:
Sn = set of biyections (permutations) on {1, 2, . . . , n}. Note that
|Sn| = n! is too big.

|S52| � Avogadro’s number = 6.022× 1023.

• Dynamics: Pairs of cards are exchanged randomly.

• Equilibrium: Uniform probability on Sn, that is,

P(σ) =
1

n!
for each permutation σ ∈ Sn.

• Well-mixed: 1
2n log(n) steps. The proof can be done by Fourier

analysis and representation theory.
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The model: unidimensional Langevin dynamics

dX ε
t = −V ′(X ε

t )dt +
√
εdWt , X ε

0 = x0,

where

i) V : R→ [0,∞) is a smooth convex degenerate potential,

ii) ε ∈ (0, 1] controls the amplitude of the noise,

iii) W = (Wt)t≥0 is a unidimensional standard Brownian motion,

iv) x0 is an initial datum.
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Limiting distribution

• Under a suitable growth condition on V , the Langevin system
possesses a unique invariant probability measure µε.

• The density µε(dz) is given by

µε(dz) =
1

Zε
exp

(
−2V (z)

ε

)
dz ,

where Zε is the partition function.

• Weak ergodicity: For any initial condition x0, the law of the
marginal X ε

t (x0) converges in distribution to µε as t →∞, i.e.,

lim
t→∞

E [f (X ε
t (x0))] =

∫
R
f (z)µε(dz) for all f ∈ Cb(R,R).
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Strong ergodicity

• Strong ergodicity: For any initial condition x0, the law of the
marginal X ε

t (x0) converges in the total variation distance to µε as
t →∞, i.e.,

lim
t→∞

sup
|f |∞≤1

∣∣∣∣E [f (X ε
t (x0))]−

∫
R
f (z)µε(dz)

∣∣∣∣ = 0,

where the supremum is taken over all measurable functions
f : R→ [−1, 1].

• For short, we write ‖X ε
t (x0)− µε‖TV instead of

sup
|f |∞≤1

∣∣∣∣E [f (X ε
t (x0))]−

∫
R
f (z)µε(dz)

∣∣∣∣ .
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Rate of convergence

• Exponential ergodicity: For any ε > 0 there exists a positive
constant δε such that for any x0 ∈ R, there is a positive constant
Cε(x0) satisfying

‖X ε
t (x0)− µε‖TV ≤ Cε(x0)e−δεt for all t ≥ 0.

• Cε(x0) is hard to compute and/or estimate.

• δε is related with the spectral gap of the generator L of the Markov
process (X ε

t (x0))t≥0.

• Lower bounds for ‖X ε
t (x0)− µε‖TV are also very difficult to obtain.
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Properties of the variation distance

i) [0,∞) 3 t 7→ ‖X ε
t (x0)− µε‖TV ∈ [0, 1] is non-increasing.

ii) Variational representation:

‖X ε
t (x0)− µε‖TV = inf

π Coupling
π( outside of the diagonal ).

iii) Dual representation:

‖X ε
t (x0)− µε‖TV = sup

|f |∞≤1
|E[f (X ε

t (x0))]− Eµε [f ]| .

iv) Smooth representation:

‖X ε
t (x0)− µε‖TV =

1

2

∫
R
|f ε,x0(z , t)− f ε(z)|dz ,

where P(X ε
t (x0) ∈ dz) = f ε,x0(z , t)dz and µε(dz) = f ε(z)dz .
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Description of the variation distance
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Goal
Our aim is to analyze the shape of the convergence to zero of

d εt (x0) = ‖X ε
t (x0)− µε‖TV

for each datum x0 ∈ R and degenerate smooth convex potentials V .
In particular, there is cutoff at (aε)ε>0 if

lim
ε→0+

d εaεt(x0) =

{
1 for t ∈ (0, 1)

0 for t ∈ (1,+∞).

The cutoff phenomenon is associated to a switching phenomenon.
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Stability: degenerate vs hyperbolic fixed points

Let V such that V ′(0) = 0 and V ′′(x) ≥ 0 and consider the IVP

ϕ̇x0
t = −V ′(ϕx0

t ), ϕx0
0 = x0.

Degenerate

V ′′(0) = 0,

V (x) = x4,

V (x) = x4 + x6.

Polynomial rate
|ϕx0

t | ∼ CD(x0)t−1/2

Hyperbolic

V ′′(0) > 0,

V (x) = x2,

V (x) = x2 + x4.

Exponential rate
|ϕx0

t | ∼ CH(x0)e−2t
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Theorem (Hyperbolic case, B. & Jara, 2016, JSP)

Let V : R→ [0,∞) be a C2-function with V (0) = V ′(0) = 0 satisfying
the coercivity condition: there is a positive δ such that V ′′(x) ≥ δ for all
x ∈ R. Consider the unique strong solution of the SDE{

dX ε
t = −V ′(X ε

t )dt +
√
εdBt for t > 0,

X ε
0 = x0,

where x0 is an initial condition, (Bt)t≥0 is a standard Brownian motion.
Then for any x0 6= 0 and ρ ∈ R it follows that

lim
ε→0+

∥∥X ε
tε+ρ·wε

(x0)− µε
∥∥
TV =

2√
2π

∫ λ(x0)e−ρ

0
exp

(
−z2

2

)
dz ,

where tε := 1
2V ′′(0) ln(1/ε), wε := 1

V ′′(0) + oε→0+(1),

λ(x0) :=

√
2V ′′(0)|c(x0)|

2
with c(x0) := lim

t→∞
eV
′′(0)tX 0

t (x0) > 0.
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Idea for the proof

Linear nonhomogeneous approximation:
Freidlin–Wentzell first order

Cutoff for the nonhomoge-
neous linear approximation

Hartman–Grobman Theorem

Coupling the nonlinear
and linear approximation

Short time coupling

Coupling the limiting measures
Bootstrap argument/Direct
computation dimension one
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Main result

Theorem (Degenerate case, B., da Costa & Jara, 2022)

Let V : R→ [0,∞) be a C2, convex, even function with V (0) = 0 that
satisfies the following conditions:
(1) Local behavior at zero: there exist constants C0 > 0 and α > 0 such
that for any K > 0 we have

lim
λ→0+

sup
|x |≤K

∣∣∣∣V ′(λx)

λ1+α
− C0|x |1+αsgn(x)

∣∣∣∣ = 0,

where sgn(x) := x/|x | for x 6= 0 and sgn(0) := 0.
(2) Growth condition at infinity: there exist c0,R0 ∈ (0,∞), and
β ∈ (−1,∞) such that

V ′(x) ≥ c0x
1+β for all x ≥ R0. (G)
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Main result

Theorem (Degenerate case)

Consider the unique strong solution of the SDE{
dX ε

t = −V ′(X ε
t )dt +

√
εdBt for t > 0,

X ε
0 = x0,

where x0 is an initial condition, (Bt)t≥0 is a standard Brownian motion.
Then for t > 0 it follows that

lim
ε→0+

∥∥X ε
aεt(x0)− µε

∥∥
TV = ‖Yt(x0)− ν‖TV ∈ (0, 1),

where aε = ε−
α

2+α , (Yt(x0))t≥0 is the unique solution of the SDE{
dYt = −C0|Yt |1+αsgn(Yt)dt + dWt for t > 0,
Y0 = sgn(x0)∞, (1)

and ν is the unique invariant probability measure for (1).
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No cutoff phenomenon

Corollary (No cutoff phenomenon)

With the assumptions and notations of the previous theorem, for any
x0 ∈ R, the family of processes (X ε(x0))ε∈(0,1] does not exhibit cutoff in
the total variation distance as ε→ 0. In other words, there is no time scale
(tε)ε∈(0,1] with tε →∞ as ε→ 0 and

lim
ε→0+

∥∥X ε
δtε(x)− µε

∥∥
TV = 1(0,1)(δ) for any δ > 0, δ 6= 1.
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Proof of the previous corollary

Let Aε →∞ as ε→ 0+.
i) Assume that Aε ≤ Caε for some positive constant C and for all ε� 1.
Then for all t ≥ 0 we have∥∥X ε

Caεt(x0)− µε
∥∥
TV ≤

∥∥X ε
Aεt(x0)− µε

∥∥
TV

and consequently the main theorem for all t > 0 yields

0 < ‖YCt(x0)− ν‖TV = lim inf
ε→0+

∥∥X ε
Caεt(x0)− µε

∥∥
TV

≤ lim inf
ε→0+

∥∥X ε
Aεt(x0)− µε

∥∥
TV .

In particular, for t > 1 we have

lim inf
ε→0+

∥∥X ε
Aεt(x0)− µε

∥∥
TV > 0.

ii) The case aε ≤ CAε for all ε� 1 is completely analogous using that the
limiting profile ‖Yt(x0)− ν‖TV < 1 for all t > 0.
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No cutoff phenomenon via scaling procedure
By the Chapman–Kolmogorov equation, for any x0 ∈ R and ε ∈ (0, 1] it
follows that the map

t 7→ d εt (x0) := ‖X ε
t (x0)− µε‖TV is non-increasing.

Lemma (Scaling argument)

Let x0 ∈ R and assume that there is a sequence (aε(x0))ε∈(0,1] for which
the following conditions hold true:

i) lim
ε→0

aε(x0) =∞.

ii) For any t > 0

0 < lim inf
ε→0+

d εaε(x0)t(x0) ≤ lim sup
ε→0+

d εaε(x0)t(x0) < 1.

Then there is no cutoff for the family (X ε(x0))ε∈(0,1] in total variation
distance as ε tends to zero.
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Mixing times asymptotics

Lemma (Scaling argument)

If in addition, the function

t 7→ d εt (x0) := ‖X ε
t (x0)− µε‖TV is continuous and striclty decreasing,

and for all t > 0 the limit

lim
ε→0

d εaε(x0)t(x0) = Gx0(t) ∈ (0, 1)

then for any η ∈ (0, 1) it follows that

lim
ε→0

τ ε,x0mix (η)

aε(x0)
= inf{t ≥ 0 : Gx0(t) ≤ η}.
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Asymptotics

Corollary (Mixing time asymptotics)

Suppose that all assumptions and notation made in previous theorem hold
true. For any x0 ∈ R and η ∈ (0, 1), the η-mixing time

τ ε,x0mix (η) := inf{t ≥ 0 : ‖X ε
t (x0)− µε‖TV ≤ η}

satisfies the limiting behavior

lim
ε→0

τ ε,x0mix (η)

aε
= inf{t ≥ 0 : ‖Yt(sgn(x0)∞)− ν‖TV ≤ η}.

That is,

τ ε,x0mix (η) ≈ aε · inf{t ≥ 0 : ‖Yt(sgn(x0)∞)− ν‖TV ≤ η} for ε ≈ 0,

where aε = ε−
α

2+α .
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Regularization: exponential convergence

By the growth condition we have that there exist c > 0, R > 1 and
β > −1 such that

xV ′(x) ≥ c |x |2+β for |x | ≥ R.

Hence, one can prove that for any ε > 0 and a > 0 there exists positive
constants C1(ε, a) and C2(ε, a) such that for all x0 ∈ R it follows

‖X ε
t (x0)− µε‖TV ≤ C1(ε, a)

(
ea|x0| +

∫
R
ea|z|µε(dz)

)
e−C2(ε,a)t

for all t ≥ 0. Note that C1(ε, a) and C2(ε, a) also depend on β.
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Coming down from infinity: ODE

For simplicity, let us assume that V (x) = x4/4 for all x ∈ R.
In the sequel, we define the solution of

ϕ̇t = −(ϕt)
3 with ϕ0 =∞. (2)

Consider the Cauchy problem

ϕ̇`t = −(ϕ`t)
3 with ϕ`0 = ` > 0.

• Its explicit solution is given by ϕ`t =
√

1
2t+`−2 for all t ≥ 0.

• Hence, ϕ∞t =
√

1
2t , t ≥ 0 solves the differential equation (2).

• ϕ∞t ∈ R for any t > 0.
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Coming down from infinity: SDE

In the sequel, we present the main steps for proving that the following
SDE is well-posed:

dYt = −(Yt)
3dt + dWt for Y0 =∞.

Let (Yt(`), t ≥ 0) is the unique strong solution of the SDE

dYt(`) = −(Yt(`))3dt + dWt with Y0(`) = `.

• Monotonicity: Set Y ∗t = lim
`↑∞

Yt(`) for t ≥ 0. Note that Y ∗0 =∞.

• Tightness w.r.t. the i. c.: E[(Yt(`))2] ≤ ψt <∞ for `, t > 0
=⇒︸︷︷︸

Fatou’s Lemma

Y ∗t ∈ R for t > 0 =⇒ Continuous extension.

• Markovianity: (P`(·))`∈[−∞,∞].
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Scale analysis and limiting shape for a toy model

V (x) = x4/4, aε = ε−1/2, bε = ε1/4, Y ε
t (x0) := (1/bε)X ε

aεt(x0).

Goal: analyze

d εaεt(x0) :=
∥∥X ε

aεt(x0)− µε
∥∥
TV =

∥∥Y ε
t (x0)− µ1

∥∥
TV .{

dY ε
t = −(Y ε

t )3dt + dWt ,
Y ε
0 = x0/bε,

{
dYt = −Y 3

t dt + dWt ,
Y0 = sgn(x0)∞.

(Y ε
t (x0))t≥0 converges, as ε→ 0+, to (Yt(x0))t≥0.

Hence, for t > 0 we deduce

lim
ε→0+

d εaεt(x0) =
∥∥Yt(x0)− µ1

∥∥
TV ∈ (0, 1).
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Scheme of the proof

∥∥X ε
aεt(x0)− µε

∥∥
TV

ε→ 0+

‖Yt(x0)− µ1‖TV ∈ (0, 1) No cutoff at scale aε →∞

Asymptotics for mixing and no cutoff for any scale Aε
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General degenerate potential: main ideas
Let aε > 0 and bε > 0 be scaling parameters to be properly fixed. Define

Y ε
t (x0) := (1/bε)X ε

aεt(x0) for t ≥ 0.

By the Itô formula we see that{
dY ε

t (x0) = − aε
bε
V ′(bεY

ε
t (x0))dt +

√
εaε
bε

dWt for t ≥ 0,

Y ε
0 (x0) = x0/bε,

Define aε and bε as the unique solution to the system{ √
εaε
bε

= 1,

aεb
α
ε = 1.

i.e. aε = ε−
α

2+α and bε = ε
1

2+α .

Hypothesis (1) Local behavior at zero: there exist constants C0 > 0 and
α > 0 such that for any K > 0 we have

lim
λ→0+

sup
|x |≤K

∣∣∣∣V ′(λx)

λ1+α
− C0|x |1+αsgn(x)

∣∣∣∣ = 0,

where sgn(x) := x/|x | for x 6= 0 and sgn(0) := 0.
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General degenerate potential: main ideas

Since the total variation distance is invariant by scaling, we deduce

d εaεt(x0) =
∥∥X ε

aεt(x0)− µε
∥∥
TV = ‖Y ε

t (x0)− bεµ
ε(bεdz)‖TV .

By the triangle inequality we have∣∣∣ d εaεt(x0)︸ ︷︷ ︸
Objective

−‖Yt(x0)− ν‖TV︸ ︷︷ ︸
Limiting profile

∣∣∣ ≤ ‖Y ε
t (x0)− Yt(x0)‖TV︸ ︷︷ ︸

Coupling SDEs

+ ‖ν − bεµ
ε(bεdz)‖TV︸ ︷︷ ︸

Laplace method

,

where (Yt(x0))t≥0 is the solution of the following SDE{
dYt(x0) = −C0|Yt(x0)|1+αsgn(Yt)dt + dWt for t ≥ 0,
Y0(x0) = sgn(x0)∞,

where C0 and α are the positive constants that appears in local
assumption, and ν represents the unique invariant probability measure for
the preceding random dynamics.
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Coupling around the origin
Hypothesis (2) Growth condition at infinity: there exist c0,R0 ∈ (0,∞),
and β ∈ (−1,∞) such that

V ′(x) ≥ c0x
1+β for all x ≥ R0. (G)

Observe that ‖Y ε
t (x0)− Yt(x0)‖TV is a complicated term. However,

‖Y ε
t (x0)− Yt(x0)‖TV ≤

∥∥∥Y ε
t (x0)− Ỹ ε

t (x0)
∥∥∥
TV︸ ︷︷ ︸

Synchronous coupling and maximal inequalities

+
∥∥∥Ỹ ε

t (x0)− Yt(x0)
∥∥∥
TV︸ ︷︷ ︸

Girsanov coupling or Kabanov’s coupling

.

Gaussian-setting: Cameron–Martin–Girsanov’s Theorem, Fokker–Planck
estimates, Kabanov, Y. et alt. estimates. For instance, it is known that

‖Xt(z)− Yt(z)‖2TV ≤ 16

∫ t

0
E[|F (Xs(z))− G (Ys(z))|2]ds,

where F and G are the fields for (Xt(z))t≥0 and (Yt(z))t≥0, respectively.
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G. Barrera, J. C. Pardo & M. Högele: The cutoff phenomenon in Wasserstein

distance for nonlinear stable Langevin systems with small Lévy noise. Journal
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