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Why subshifts?

▸ Subshifts are symbolic encodings of discrete dynamical systems

▸ SFT (on Z2): computation models
▸ Space time diagrams of cellular automata on G ≈ G × Z SFTs

▸ Examples of SFTs: Ice-model, vertex models, . . . in statistical physics
▸ . . .
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Aperiodic subshifts

The shift σ is the natural action of G on AG by translation:

σg
(x)h = xg−1 ⋅h for all x ∈ AG .

For x ∈ AG , its stabilizer is

Stab(x) ∶= {g ∈ G ∣ Sg(x) = x} .

A subshift X is strongly aperiodic if all its configurations have trivial stabilizer.

Example on Z2 :
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Examples and aperiodicity

Ex.0 Nothing particular. . .

Ex.1 All configurations have finite orbit: periodic SFT
Ex.2 All configurations have trivial stabilizer: strongly aperiodic SFT
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What if we don’t know the forbidden patterns?
Prove that a coloring exists from information on the sizes of forbidden patterns

Theorem (Miller, 2009) on Z

Let F be a set of forbidden patterns for AZ. If there exists c ∈ ( 1
∣A∣
,1) s.t.

∑
f ∈F

c ∣f ∣ ≤ c ⋅ ∣A∣ − 1

then XF is non-empty.

Theorem (Rosenfeld, 2021) on Z2

Let F be a set of forbidden patterns for AZ2
. If there exists c > 0 s.t.

x +∑
f ∈F

∣f ∣ ⋅ x1−∣f ∣
≤ 2

then XF is non-empty.

No hope for a necessary and sufficient condition!
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Lovász Local Lemma for subshifts



Lovász Local Lemma
(Ai)i=1...n mutually independent

Each Ai can be avoided

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

⇒ A1, . . . ,An can be avoided.

Proposition
If events A1, . . . ,An are mutually independent, then

Pr (
n

⋂
i=1

Ai) =
n

∏
i=1
(1 − Pr(Ai)) .

What about the dependent case ?
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Lovász Local Lemma
(Ai)i=1...n not very dependent

Each Ai can be avoided

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

⇒ A1, . . . ,An can be avoided.

Lovász Local Lemma (1975)

Let E = {A1,A2, . . . ,An}. For Ai ∈ E , let Γ(Ai) be the smallest subset of E such that Ai

is independent of the collection E ∖ ({Ai} ∪ Γ(Ai)). Suppose there are xi , . . . , xn such
that 0 ≤ xi < 1 and:

∀Ai ∈ E ∶ Pr(Ai) ≤ xi ∏
Aj ∈Γ(A)

(1 − xj)

then the probability of avoiding A1,A2, . . . ,An is positive.

Pr (
n

⋂
i=1

Ai) ≥ ∏
Ai ∈E

(1 − xi) > 0.
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Lovász Local Lemma in Symbolic Dynamics (I)

How to use LLL in Symbolic Dynamics?

Suppose you want to prove that the subshift X is non-empty.

▸ Uniform Bernoulli measure on configurations space.

▸ Bad events ≈ forbidden patterns.

▸ Compactness + LLL (if applicable) show the non-emptiness of the subshift.
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Lovász Local Lemma in Symbolic Dynamics (II)

Let G be a group, A a finite alphabet and µ the uniform Bernoulli probability measure
on AG .

A sufficient condition for being non-empty

Let X ⊂ AG be a subshift defined by F = ⋃n≥1 Fn, where Fn ⊂ ASn . Suppose that there
exists a function x ∶ N ×G → (0,1) such that:

∀n ∈ N,g ∈ G , µ(An,g) ≤ x(n,g) ∏
gSn∩hSk≠∅
(k,h)≠(n,g)

(1 − x(k,h)),

where An,g = {x ∈ A
G
∶ x ∣gSn ∈ Fn}. Then the subshift X is non-empty.
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Application: strong aperiodicity



Aperiodic SFTs (I)
Examples of strongly aperiodic SFTs on Z2 (Robinson, Kari-Culik,. . . )

Question
Which groups admit strongly aperiodic SFTs?

▸ Free groups Fn do not!

▸ Generalization of Kari’s construction to some G × Z (Jeandel, 2015).

▸ Zn, Heisenberg group (Sahin, Schraudner & Ugarcovici, 2015).

▸ Surface groups (Cohen & Goodman-Strauss, 2015).

▸ Groups Z2
⋊H where H has decidable WP (Barbieri & Sablik, 2016).

▸ Hyperbolic groups with at most one end (Cohen, Goodman-Strauss & Rieck, 2017).

▸ Grigorchuk’s group (Barbieri, 2017).

▸ Amenable Baumslag-Solitar groups (Esnay & Moutot 2022, A. & Kari 2013, A. &
Schraudner, 2020).

▸ Unimodular Generalized Baumslag-Solitar groups (A., Bitar & Huriot, 2022+).

Conjecture (Cohen + Jeandel)

Every one-ended group with decidable Word Problem admits strongly aperiodic SFTs.
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Aperiodic SFTs (II)

Conjecture (Cohen + Jeandel)

Every one-ended group with decidable Word Problem admits strongly aperiodic SFTs.

Difficult problem!!

Two ways to make the question easier:

▸ characterize groups which admit a weakly aperiodic SFT?

▸ characterize groups which admit a strongly aperiodic subshift?

Idea: express aperiodicity in some relevant way w.r.t. LLL
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The distinct neighborhood property

A subshift X ⊂ AG is strongly aperiodic if all its configurations have trivial stabilizer

∀x ∈ X ,∀g ∈ G , σg
(x) = x ⇒ g = 1G .

Fix A = {0,1}.

A configuration x ∈ {0,1}G has the distinct neighborhood property if for every
h ∈ G ∖ {1G}, there exists a finite T ⊂ G s.t.

∀g ∈ G , x∣ghT ≠ x∣gT .

Proposition (Gao, Jackson & Seward, 2009)

If x ∈ {0,1}G has the distinct neighborhood property, then the subshift Orbσ(x) is
strongly aperiodic.
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Distinct neighborhood property with LLL

Proposition

Every infinite group G has a configuration x ∈ {0,1}G with the distinct neighborhood
property.

Proof:
▸ Take (si)i∈N an enumeration of G with s0 = 1G .

▸ Choose (Ti)i∈N a sequence of finite sets of G s.t.

Ti ∩ siTi = ∅ and ∣Ti ∣ = Ci for some constant C .

▸ An,g = {x ∈ {0,1}G ∣ x∣gTn = x∣gsnTn
}.

▸ Apply LLL with x(n,g) = 2−
Cn
2 .

Theorem (A. Barbieri & Thomassé 2019)

Every group G has a strongly aperiodic subshift on alphabet {0,1}.

Already proven in (Gao, Jackson & Seward, 2009), but with many pages of descriptive
set theory. . .
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A more concrete construction (I)

A subshift is effective if it can be defined by a set of forbidden patterns recognizable by a
Turing machine with oracle WP(G).

Theorem (Alon, Grytczuk, Haluszczak & Riordan, 2002)

Every finite graph with degree ≤∆ has a square-free coloring with 2e16∆2 colors.

Proposition
Let G a f.g. group and S a generating set. Then Γ(G ,S) has a square-free coloring with
219
∣S ∣2 colors.
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A more concrete construction (II)

Theorem (A. Barbieri & Thomassé, 2019)

Every group G has an effective strongly aperiodic subshift.

Sketch of the proof:
Fix S and take X ⊂ AG be the subshift such that every square in Γ(G ,S) is
forbidden.

Let g ∈ G such that σg
(x) = x for some x ∈ X .

Factorize g as uwv with u = v−1 and ∣w ∣ minimal (as a word on (S ∪ S−1
)
∗
). If

∣w ∣ = 0, then g = 1G .

If not, let w = w1 . . .wn and consider the odd length walk π = v0v1 . . . v2n−1 on
Γ(G ,S) defined by:

vi =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1G if i = 0
w1 . . .wi if i ∈ {1, . . . ,n}
ww1 . . .wi−n if i ∈ {n + 1, . . . ,2n − 1}

π is a path, and xvi = xvi+n ⇒ g = 1G .
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To go further

Other results using LLL in symbolic dynamics to prove the existence of:

▸ Aperiodic subshift with (any) positive entropy, G amenable/sofic (Bernshteyn, 2019)

▸ Counting argument ⇒ better bounds on the sizes of forbidden patterns (Rosenfeld,
2022+)

▸ . . .
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Conclusion

▸ LLL in symbolic dynamics: short and elegant proofs

▸ Proofs valid for arbitrary groups!

▸ But bounds provided are not optimal. . .

Thank you for your attention :-)
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