

(CNRS, Univ. Paris-Saclay, LISN)

ALEA'22 - CIRM, Marseille

Tuesday March 22nd 2022

・ロト・四ト・ヨト・ヨトー

Colorings and subshifts

A finite alphabet, G a group, colorings $x \in A^G$ that avoid some patterns F

Colorings and subshifts

A finite alphabet, G a group, colorings $x \in A^G$ that avoid some patterns F

$$X_F \coloneqq \left\{ x \in A^G \mid \text{ no pattern from } F \text{ appears in } x \right\}$$

Why subshifts?

- Subshifts are symbolic encodings of discrete dynamical systems
- SFT (on \mathbb{Z}^2): computation models
- ▶ Space time diagrams of **cellular automata** on $G \approx G \times \mathbb{Z}$ SFTs
- Examples of SFTs: Ice-model, vertex models, ... in statistical physics

<u>۲</u>

◆□▶◆□▶◆臣▶◆臣▶ 臣 のへで

・ロト・日本・日本・日本・日本・日本

◆□▶◆□▶◆臣▶◆臣▶ 臣 の々で

C

C

The **shift** σ is the natural action of *G* on A^G by translation:

$$\sigma^g(x)_h = x_{g^{-1} \cdot h}$$
 for all $x \in A^G$.

The **shift** σ is the natural action of *G* on A^G by translation:

$$\sigma^{g}(x)_{h} = x_{g^{-1} \cdot h}$$
 for all $x \in A^{G}$.

For $x \in A^G$, its **stabilizer** is

$$Stab(x) \coloneqq \{g \in G \mid \mathfrak{S}_g(x) = x\}.$$

The **shift** σ is the natural action of *G* on A^G by translation:

$$\sigma^g(x)_h = x_{g^{-1} \cdot h}$$
 for all $x \in A^G$.

For $x \in A^G$, its **stabilizer** is

$$Stab(x) \coloneqq \{g \in G \mid \mathfrak{S}_g(x) = x\}.$$

A subshift X is strongly aperiodic if all its configurations have trivial stabilizer.

Example on \mathbb{Z}^2 :

The **shift** σ is the natural action of *G* on A^G by translation:

$$\sigma^g(x)_h = x_{g^{-1} \cdot h}$$
 for all $x \in A^G$.

For $x \in A^G$, its **stabilizer** is

$$Stab(x) \coloneqq \{g \in G \mid \mathfrak{S}_g(x) = x\}.$$

A subshift X is strongly aperiodic if all its configurations have trivial stabilizer.

Example on \mathbb{Z}^2 :

The **shift** σ is the natural action of *G* on A^G by translation:

$$\sigma^g(x)_h = x_{g^{-1} \cdot h}$$
 for all $x \in A^G$.

For $x \in A^G$, its **stabilizer** is

$$Stab(x) \coloneqq \{g \in G \mid \mathfrak{S}_g(x) = x\}.$$

A subshift X is strongly aperiodic if all its configurations have trivial stabilizer.

Example on \mathbb{Z}^2 :

Examples and aperiodicity

Ex.0 Nothing particular...

- Ex.1 All configurations have finite orbit: periodic SFT
- Ex.2 All configurations have trivial stabilizer: strongly aperiodic SFT

What if we don't know the forbidden patterns?

Prove that a coloring exists from information on the sizes of forbidden patterns

Theorem (Miller, 2009) on \mathbb{Z}

Let F be a set of forbidden patterns for $A^{\mathbb{Z}}$. If there exists $c \in (\frac{1}{|A|}, 1)$ s.t.

$$\sum_{f\in F} c^{|f|} \le c \cdot |A| - 1$$

then X_F is non-empty.

What if we don't know the forbidden patterns?

Prove that a coloring exists from information on the sizes of forbidden patterns

Theorem (Miller, 2009) on \mathbb{Z}

Let F be a set of forbidden patterns for $A^{\mathbb{Z}}$. If there exists $c \in (\frac{1}{|A|}, 1)$ s.t.

$$\sum_{f\in F} c^{|f|} \le c \cdot |A| - 1$$

then X_F is non-empty.

Theorem (Rosenfeld, 2021) on \mathbb{Z}^2

Let *F* be a set of forbidden patterns for $A^{\mathbb{Z}^2}$. If there exists c > 0 s.t.

$$x + \sum_{f \in F} |f| \cdot x^{1 - |f|} \le 2$$

then X_F is non-empty.

What if we don't know the forbidden patterns?

Prove that a coloring exists from information on the sizes of forbidden patterns

Theorem (Miller, 2009) on \mathbb{Z}

Let F be a set of forbidden patterns for $A^{\mathbb{Z}}$. If there exists $c \in (\frac{1}{|A|}, 1)$ s.t.

$$\sum_{f\in F} c^{|f|} \le c \cdot |A| - 1$$

then X_F is non-empty.

Theorem (Rosenfeld, 2021) on \mathbb{Z}^2

Let *F* be a set of forbidden patterns for $A^{\mathbb{Z}^2}$. If there exists c > 0 s.t.

$$x + \sum_{f \in F} |f| \cdot x^{1 - |f|} \le 2$$

・ロット 御マネ ボマン・ロット

then X_F is non-empty.

No hope for a necessary and sufficient condition!

Lovász Local Lemma

 $(A_i)_{i=1...n} \text{ mutually independent}$ Each A_i can be avoided $\Rightarrow A_1$

$$\Rightarrow A_1, \ldots, A_n$$
 can be avoided.

Proposition

If events A_1, \ldots, A_n are mutually independent, then

$$Pr\left(\bigcap_{i=1}^{n}\overline{A_{i}}\right)=\prod_{i=1}^{n}\left(1-Pr(A_{i})\right).$$

What about the dependent case ?

Lovász Local Lemma

 $(A_i)_{i=1...n}$ not very dependent Each A_i can be avoided

$$\Rightarrow A_1, \ldots, A_n$$
 can be avoided.

Lovász Local Lemma (1975)

Let $E = \{A_1, A_2, ..., A_n\}$. For $A_i \in E$, let $\Gamma(A_i)$ be the smallest subset of E such that A_i is independent of the collection $E \setminus (\{A_i\} \cup \Gamma(A_i))$. Suppose there are $x_i, ..., x_n$ such that $0 \le x_i < 1$ and:

$$\forall A_i \in E : Pr(A_i) \leq x_i \prod_{A_j \in \Gamma(A)} (1-x_j)$$

then the probability of avoiding A_1, A_2, \ldots, A_n is positive.

$$Pr\left(\bigcap_{i=1}^{n}\overline{A_{i}}\right) \geq \prod_{A_{i}\in E}(1-x_{i}) > 0.$$

Lovász Local Lemma in Symbolic Dynamics (I)

How to use LLL in Symbolic Dynamics?

Suppose you want to prove that the subshift X is non-empty.

- Uniform Bernoulli measure on configurations space.
- \blacktriangleright Bad events \approx forbidden patterns.
- ▶ Compactness + LLL (if applicable) show the non-emptiness of the subshift.

Lovász Local Lemma in Symbolic Dynamics (II)

Let G be a group, A a finite alphabet and μ the uniform Bernoulli probability measure on A^{G} .

A sufficient condition for being non-empty

Let $X \subset A^G$ be a subshift defined by $F = \bigcup_{n \ge 1} F_n$, where $F_n \subset A^{S_n}$. Suppose that there exists a function $x : \mathbb{N} \times G \to (0, 1)$ such that:

$$\forall n \in \mathbb{N}, g \in G, \ \mu(A_{n,g}) \le x(n,g) \prod_{\substack{g \in g_n \cap hS_k \neq \emptyset \\ (k,h) \ne (n,g)}} (1 - x(k,h)),$$

where $A_{n,g} = \{x \in A^G : x|_{gS_n} \in F_n\}$. Then the subshift X is non-empty.

Aperiodic SFTs (I)

Examples of strongly aperiodic SFTs on \mathbb{Z}^2 (Robinson, Kari-Culik,...)

Question

Which groups admit strongly aperiodic SFTs?

Aperiodic SFTs (I)

Examples of strongly aperiodic SFTs on \mathbb{Z}^2 (Robinson, Kari-Culik,...)

Question

Which groups admit strongly aperiodic SFTs?

- Free groups \mathbb{F}_n do not!
- Generalization of Kari's construction to some $G \times \mathbb{Z}$ (Jeandel, 2015).
- ▶ \mathbb{Z}^n , Heisenberg group (Sahin, Schraudner & Ugarcovici, 2015).
- Surface groups (Cohen & Goodman-Strauss, 2015).
- Groups $\mathbb{Z}^2 \rtimes H$ where H has decidable **WP** (Barbieri & Sablik, 2016).
- Hyperbolic groups with at most one end (Cohen, Goodman-Strauss & Rieck, 2017).
- Grigorchuk's group (Barbieri, 2017).
- Amenable Baumslag-Solitar groups (Esnay & Moutot 2022, A. & Kari 2013, A. & Schraudner, 2020).
- Unimodular Generalized Baumslag-Solitar groups (A., Bitar & Huriot, 2022+).

Aperiodic SFTs (I)

Examples of strongly aperiodic SFTs on \mathbb{Z}^2 (Robinson, Kari-Culik,...)

Question

Which groups admit strongly aperiodic SFTs?

- Free groups \mathbb{F}_n do not!
- Generalization of Kari's construction to some $G \times \mathbb{Z}$ (Jeandel, 2015).
- ▶ \mathbb{Z}^n , Heisenberg group (Sahin, Schraudner & Ugarcovici, 2015).
- Surface groups (Cohen & Goodman-Strauss, 2015).
- Groups $\mathbb{Z}^2 \rtimes H$ where H has decidable **WP** (Barbieri & Sablik, 2016).
- Hyperbolic groups with at most one end (Cohen, Goodman-Strauss & Rieck, 2017).
- Grigorchuk's group (Barbieri, 2017).
- Amenable Baumslag-Solitar groups (Esnay & Moutot 2022, A. & Kari 2013, A. & Schraudner, 2020).
- Unimodular Generalized Baumslag-Solitar groups (A., Bitar & Huriot, 2022+).

Conjecture (Cohen + Jeandel)

Every one-ended group with decidable Word Problem admits strongly aperiodic SFTs.

Aperiodic SFTs (II)

Conjecture (Cohen + Jeandel)

Every one-ended group with decidable Word Problem admits strongly aperiodic SFTs.

Difficult problem!!

Two ways to make the question easier:

- characterize groups which admit a *weakly* aperiodic SFT?
- characterize groups which admit a strongly aperiodic subshift?

Aperiodic SFTs (II)

Conjecture (Cohen + Jeandel)

Every one-ended group with decidable Word Problem admits strongly aperiodic SFTs.

Difficult problem!!

Two ways to make the question easier:

- characterize groups which admit a *weakly* aperiodic SFT?
- characterize groups which admit a strongly aperiodic subshift?

Idea: express aperiodicity in some relevant way w.r.t. LLL

The distinct neighborhood property

A subshift $X \subset A^G$ is strongly aperiodic if all its configurations have trivial stabilizer

$$\forall x \in X, \forall g \in G, \ \sigma^g(x) = x \Rightarrow g = 1_G.$$

The distinct neighborhood property

A subshift $X \subset A^G$ is strongly aperiodic if all its configurations have trivial stabilizer

$$\forall x \in X, \forall g \in G, \ \sigma^g(x) = x \Rightarrow g = 1_G.$$

Fix $A = \{0, 1\}$.

A configuration $x \in \{0, 1\}^G$ has the **distinct neighborhood property** if for every $h \in G \setminus \{1_G\}$, there exists a finite $T \subset G$ s.t.

$$\forall g \in G, x_{|ghT} \neq x_{|gT}.$$

(ロ)、(同)、(E)、(E)、(E)、(O)へ(C)

The distinct neighborhood property

A subshift $X \subset A^G$ is strongly aperiodic if all its configurations have trivial stabilizer

$$\forall x \in X, \forall g \in G, \ \sigma^g(x) = x \Rightarrow g = 1_G.$$

Fix $A = \{0, 1\}$.

A configuration $x \in \{0, 1\}^G$ has the **distinct neighborhood property** if for every $h \in G \setminus \{1_G\}$, there exists a finite $T \subset G$ s.t.

$$\forall g \in G, x_{|ghT} \neq x_{|gT}.$$

Proposition (Gao, Jackson & Seward, 2009)

If $x \in \{0,1\}^G$ has the distinct neighborhood property, then the subshift $\overline{Orb_{\sigma}(x)}$ is strongly aperiodic.

Distinct neighborhood property with LLL

Proposition

Every infinite group G has a configuration $x \in \{0,1\}^G$ with the distinct neighborhood property.

Proof:

- ▶ Take $(s_i)_{i \in \mathbb{N}}$ an enumeration of *G* with $s_0 = 1_G$.
- Choose $(T_i)_{i \in \mathbb{N}}$ a sequence of finite sets of G s.t.

 $T_i \cap s_i T_i = \emptyset$ and $|T_i| = Ci$ for some constant C.

•
$$A_{n,g} = \{x \in \{0,1\}^G \mid x_{|gT_n} = x_{|gs_nT_n}\}.$$

• Apply LLL with $x(n,g) = 2^{-\frac{Cn}{2}}$.

Distinct neighborhood property with LLL

Proposition

Every infinite group G has a configuration $x \in \{0,1\}^G$ with the distinct neighborhood property.

Proof:

- ▶ Take $(s_i)_{i \in \mathbb{N}}$ an enumeration of *G* with $s_0 = 1_G$.
- Choose $(T_i)_{i \in \mathbb{N}}$ a sequence of finite sets of G s.t.

 $T_i \cap s_i T_i = \emptyset$ and $|T_i| = Ci$ for some constant C.

•
$$A_{n,g} = \{x \in \{0,1\}^G \mid x_{|gT_n} = x_{|gs_nT_n}\}.$$

• Apply LLL with $x(n,g) = 2^{-\frac{Cn}{2}}$.

Theorem (A. Barbieri & Thomassé 2019)

Every group G has a strongly aperiodic subshift on alphabet $\{0,1\}$.

Distinct neighborhood property with LLL

Proposition

Every infinite group G has a configuration $x \in \{0,1\}^G$ with the distinct neighborhood property.

Proof:

- ▶ Take $(s_i)_{i \in \mathbb{N}}$ an enumeration of *G* with $s_0 = 1_G$.
- Choose $(T_i)_{i \in \mathbb{N}}$ a sequence of finite sets of G s.t.

 $T_i \cap s_i T_i = \emptyset$ and $|T_i| = Ci$ for some constant C.

•
$$A_{n,g} = \{x \in \{0,1\}^G \mid x_{|gT_n} = x_{|gs_nT_n}\}.$$

• Apply LLL with $x(n,g) = 2^{-\frac{Cn}{2}}$.

Theorem (A. Barbieri & Thomassé 2019)

Every group G has a strongly aperiodic subshift on alphabet $\{0, 1\}$.

Already proven in (Gao, Jackson & Seward, 2009), but with many pages of descriptive set theory. . .

A more concrete construction (I)

A subshift is **effective** if it can be defined by a set of forbidden patterns recognizable by a Turing machine with oracle WP(G).

A more concrete construction (I)

A subshift is **effective** if it can be defined by a set of forbidden patterns recognizable by a Turing machine with oracle WP(G).

Theorem (Alon, Grytczuk, Haluszczak & Riordan, 2002)

Every finite graph with degree $\leq \Delta$ has a square-free coloring with $2e^{16}\Delta^2$ colors.

A more concrete construction (I)

A subshift is **effective** if it can be defined by a set of forbidden patterns recognizable by a Turing machine with oracle WP(G).

Theorem (Alon, Grytczuk, Haluszczak & Riordan, 2002)

Every finite graph with degree $\leq \Delta$ has a square-free coloring with $2e^{16}\Delta^2$ colors.

Proposition

Let G a f.g. group and S a generating set. Then $\Gamma(G, S)$ has a square-free coloring with $2^{19}|S|^2$ colors.

A more concrete construction (II)

Theorem (A. Barbieri & Thomassé, 2019)

Every group G has an effective strongly aperiodic subshift.

Sketch of the proof:

- Fix S and take $X \subset A^G$ be the subshift such that every square in $\Gamma(G, S)$ is forbidden.
- Let $g \in G$ such that $\sigma^g(x) = x$ for some $x \in X$.
- Factorize g as uwv with $u = v^{-1}$ and |w| minimal (as a word on $(S \cup S^{-1})^*$). If |w| = 0, then $g = 1_G$.

A more concrete construction (II)

Theorem (A. Barbieri & Thomassé, 2019)

Every group G has an effective strongly aperiodic subshift.

Sketch of the proof:

- Fix S and take $X \subset A^G$ be the subshift such that every square in $\Gamma(G, S)$ is forbidden.
- Let $g \in G$ such that $\sigma^g(x) = x$ for some $x \in X$.
- Factorize g as uwv with $u = v^{-1}$ and |w| minimal (as a word on $(S \cup S^{-1})^*$). If |w| = 0, then $g = 1_G$.
- If not, let $w = w_1 \dots w_n$ and consider the odd length walk $\pi = v_0 v_1 \dots v_{2n-1}$ on $\Gamma(G, S)$ defined by:

$$v_i = \begin{cases} 1_G & \text{if } i = 0 \\ w_1 \dots w_i & \text{if } i \in \{1, \dots, n\} \\ ww_1 \dots w_{i-n} & \text{if } i \in \{n+1, \dots, 2n-1\} \end{cases}$$

A more concrete construction (II)

Theorem (A. Barbieri & Thomassé, 2019)

Every group G has an effective strongly aperiodic subshift.

Sketch of the proof:

- Fix S and take $X \subset A^G$ be the subshift such that every square in $\Gamma(G, S)$ is forbidden.
- Let $g \in G$ such that $\sigma^g(x) = x$ for some $x \in X$.
- Factorize g as uwv with $u = v^{-1}$ and |w| minimal (as a word on $(S \cup S^{-1})^*$). If |w| = 0, then $g = 1_G$.
- If not, let $w = w_1 \dots w_n$ and consider the odd length walk $\pi = v_0 v_1 \dots v_{2n-1}$ on $\Gamma(G, S)$ defined by:

$$v_i = \begin{cases} 1_G & \text{if } i = 0 \\ w_1 \dots w_i & \text{if } i \in \{1, \dots, n\} \\ ww_1 \dots w_{i-n} & \text{if } i \in \{n+1, \dots, 2n-1\} \end{cases}$$

•
$$\pi$$
 is a path, and $x_{v_i} = x_{v_{i+n}} \Rightarrow g = 1_G$.

To go further

Other results using LLL in symbolic dynamics to prove the existence of:

- Aperiodic subshift with (any) positive entropy, G amenable/sofic (Bernshteyn, 2019)
- \blacktriangleright Counting argument \Rightarrow better bounds on the sizes of forbidden patterns (Rosenfeld, 2022+)

<u>۲</u>

Conclusion

- LLL in symbolic dynamics: short and elegant proofs
- Proofs valid for arbitrary groups!
- But bounds provided are not optimal...

Conclusion

- LLL in symbolic dynamics: short and elegant proofs
- Proofs valid for arbitrary groups!
- But bounds provided are not optimal...

Thank you for your attention :-)