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The concept of (oo, 1)-category

o (o0, 1)-categories: “categories weakly enriched in spaces”
o weak composition of 1-morphisms: uniquely up to contractibility

Comp(g, f) = { composition data (c,, ¢, 04.7)} t1

o Introduced by Boardman—Vogt as quasi-categories in 1973, later considerably developed
by Joyal and Lurie
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The concept of (oo, 1)-category

o (o0, 1)-categories: “categories weakly enriched in spaces”
o weak composition of 1-morphisms: uniquely up to contractibility
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Comp(g, f) = { composition data (c,,¢,04,7)} A1

o Introduced by Boardman-Vogt as quasi-categories in 1973, later considerably developed

by Joyal and Lurie

o Relevant in derived/spectral algebraic geometry, stable homotopy theory, higher algebra,

topological field theories, . ..
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o In HoTT, the types are understood as homotopy types aka spaces aka oco-groupoids A € 8
o But (o0, 1)-categories are more general.

o We have path types (a =4 b), but what about directed hom types (a« — 4 b)?
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Synthetic (oo, 1)-categories in HoTT?

@ Many models in set-theoretic foundations. More synthetic way?

o In HoTT, the types are understood as homotopy types aka spaces aka oco-groupoids A € 8
o But (o0, 1)-categories are more general.

o We have path types (a =4 b), but what about directed hom types (@ — 4 b)?

o Approach due to Riehl-Shulman [RS17] and Joyal: Extergd HoTT to reason about
simplicial homotopy types aka simplicial spaces X € [A ° 8.
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Synthetic (oo, 1)-categories in HoTT?

Many models in set-theoretic foundations. More synthetic way?

In HoTT, the types are understood as homotopy types aka spaces aka oo-groupoids A € §
But (00, 1)-categories are more general.

We have path types (a =4 b), but what about directed hom types (a — 4 0)?

Approach due to Riehl-Shulman [RS17] and Joyal: Extergd HoTT to reason about
simplicial homotopy types aka simplicial spaces X € [A ° 8.

From those we can internally single out the (oo, 1)-categories and co-groupoids, resp.
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Synthetic (oo, 1)-categories in HoTT?
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Many models in set-theoretic foundations. More synthetic way?

In HoTT, the types are understood as homotopy types aka spaces aka oo-groupoids A € §
But (00, 1)-categories are more general.

We have path types (a =4 b), but what about directed hom types (a — 4 0)?

Approach due to Riehl-Shulman [RS17] and Joyal: Extergd HoTT to reason about
simplicial homotopy types aka simplicial spaces X € [A ° 8.

o From those we can internally single out the (co, 1)-categories and co-groupoids, resp.
o By [Shu19], we can replace 8 by an arbitrary Grothendieck—Rezk—Lurie (oo, 1)-topos €.

~> synthetic internal (co, 1)-category theory
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Synthetic (oo, 1)-categories in HoTT?

Many models in set-theoretic foundations. More synthetic way?

In HoTT, the types are understood as homotopy types aka spaces aka oo-groupoids A € §
But (00, 1)-categories are more general.

We have path types (a =4 b), but what about directed hom types (a — 4 0)?

Approach due to Riehl-Shulman [RS17] and Joyal: Extergd HoTT to reason about
simplicial homotopy types aka simplicial spaces X € [A ° 8.

o From those we can internally single out the (co, 1)-categories and co-groupoids, resp.
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o By [Shu19], we can replace 8 by an arbitrary Grothendieck—Rezk—Lurie (oo, 1)-topos €.
~> synthetic internal (co, 1)-category theory

o Our setting: Fibered (oo, 1)-category theory in Riehl~Shulman’s simplicial HoTT,
oriented along Riehl-Verity’s co-cosmos theory.
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Synthetic (oo, 1)-categories in HoTT?
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Many models in set-theoretic foundations. More synthetic way?

In HoTT, the types are understood as homotopy types aka spaces aka oo-groupoids A € §
But (00, 1)-categories are more general.

We have path types (a =4 b), but what about directed hom types (a — 4 0)?

Approach due to Riehl-Shulman [RS17] and Joyal: Extergd HoTT to reason about
simplicial homotopy types aka simplicial spaces X € [A ° 8.

o From those we can internally single out the (co, 1)-categories and co-groupoids, resp.
o By [Shu19], we can replace 8 by an arbitrary Grothendieck—Rezk—Lurie (oo, 1)-topos €.

~> synthetic internal (co, 1)-category theory

Our setting: Fibered (oo, 1)-category theory in Riehl-Shulman’s simplicial HOTT,
oriented along Riehl-Verity’s co-cosmos theory.

Take-home slogan: sHoTT as a convenient, native language (DSL) for Segal objects!
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Previous and related work

o On directed type theory and directed univalence: Harper—Licata, Warren, Nuyts,
Riehl-Shulman, Cavallo—Riehl-Sattler, Weaver—Licata, Bardomiano Martinez.
Buchholtz—W, Kudasov, Annenkov—Capriotti—-Kraus—Sattler, Finster—Rice—Vicary,
Cisinski-Nguyen, North, Altenkirch—Sestini . ..

o On fibrations of (oo, 1)-categories: Joyal, Lurie, Ayala—Francis,
Barwick—Dotto—Glasman—Nardin—Shah, Rasekh, Riehl-Verity ...

o On Segal spaces and Segal objects/internal (oo, 1)-categories: Rezk, Joyal-Tierney,
Lurie, Kazhdan—Varshavsky, Boavida de Brito, Rasekh, Martini-Wolf . ..

o Proof assistant for sHoTT: Check out rzk developed by Kudasov—prototype interactive
proof assistant with online live mode at: https://github.com/fizruk/rzk


https://github.com/fizruk/rzk
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sHoTT: Cubes, shapes, and topes

simplicial HoTT [RS17]: Multi-part contexts Z | ® | ' - A with pre-type layers'
@ Abstract cubes (cube layer): Lawvere theory generated by directed interval 2

I cube J cube (t:1)e=
1,2 cube Zkx:1 =F0,1:2 I x Jcube =kt

@ Subpolytopes (tope layer): Intuitionistic theory of formulas ¢ in cube contexts =

ped Eks: 1 =kt 1 =k ptope = 9 tope
ZldFk EF L, T tope EF (s =t)tope EF (@A), (e V) tope

z,y:2F (z <y)tope

'cf. Cubical Type Theory



Al A? (1,0) (1,1)
A

0 — 1 (0,0) —— (1,0)

Al x Al (1,0) —— (1,1) A2 (1,0) (1,1)
TN T |

(0,0) —— (1,0) (0,0) —— (1,0)

Al ={t:2| T, A?2:={({t,;s):2x2]|s<t},
AV x A'={(t,s):2x2| T}, A2:={(t,s):2x2|(s=0)V(t=1)}
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Input:
o shape inclusion ¢ — ¥
o family 7 : U — U
o partial section « : I1;.¢ P(t)

2¢f. also path types in Cubical Type Theory

Extension type ([, P|)
with terms 0 : TTy P such that 0| = «.



Idea: “TI-types with strict side conditions”. Originally due to Lumsdaine—Shulman.?

Input:
o shape inclusion ¢ — ¥
o family 7 : U — U
o partial section « : I1;.¢ P(t)

2¢f. also path types in Cubical Type Theory

Extension type ([, P|)
with terms 0 : TTy P such that 0| = «.
Semantically:

(ML PIE) s B
Lo

1 —r P



Extension types are homotopically well-behaved, assuming a certain axiom.
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Unique lifting properties

Extension types are homotopically well-behaved, assuming a certain axiom.

Observation

A square

K
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possesses a diagonal filler uniquely up to contractibility if and only if the following proposition holds:
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Extension types are homotopically well-behaved, assuming a certain axiom.

Observation

A square

U:J((T'"Ul

Lo

possesses a diagonal filler uniquely up to contractibility if and only if the following proposition holds:

—)
SN




Unique lifting properties

Extension types are homotopically well-behaved, assuming a certain axiom.

Observation

A square

=

Ua«—“uz

Lo

possesses a diagonal filler uniquely up to contractibility if and only if the following proposition holds:

—)
SN

isContr ((I;:w P(o(s)) ’f»
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Hom types |

Definition (Hom types, [RS17])
Let B be a type. Fix terms «, 0 : B. The type of arrows in B from « to /) is the extension type

hompg(a,b) := (a —p b) := <A1 — B ﬁﬁ)w.

Definition (Dependent hom types, [RS17])

Let /7 : B — U be family. Fix an arrow « : hompg(a,b) in B and points  : P a, ¢ : Pbin the
fibers. The type of dependent arrows in P over «. from d to ¢ is the extension type

dhomp, (d,¢) = (d ~7 ) = (TTar P(®) |2 )-




We will also be considering types of 2-cells: For arrows «, v, w in B with [, ¢,/ in P lying
above, with appropriate co-/domains, let

2 2
a%v,w]>’ dhom?;P(fv g; h) = <H(t,s):A2 P(U(t7 8)) [afég,h]>

hom? (u, v; w) := <A2 — B

P e
Y 1"
—_—
e n (&
b/
B b L) b’
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Segal, Rezk, and discrete(=groupoidal) types

Can now define synthetic co-categories® using shapes and extension types:
yp

Definition (Synthetic co-categories, [RS17])
o Synthetic pre-co-category aka Segal type: types A with weak composition, i.e.:

PA2 5 A2~ A AN S AN (Joyal).

8 Henceforth: short for (00, 1)-categories
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Segal, Rezk, and discrete(=groupoidal) types

Can now define synthetic co-categories® using shapes and extension types:
yp

Definition (Synthetic co-categories, [RS17])
o Synthetic pre-co-category aka Segal type: types A with weak composition, i.e.:

PA2 5 A2~ A AN S AN (Joyal).

o Synthetic co-category aka Rezk type: Segal types A satisfying Rezk
completeness/univalence, i.e.

: n.’l:.;/::'l(l‘ =A !/) i iso;—l(l‘t y)

8 Henceforth: short for (0o, 1)-categories
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Segal, Rezk, and discrete(=groupoidal) types

Can now define synthetic co-categories® using shapes and extension types:
yp

Definition (Synthetic co-categories, [RS17])
o Synthetic pre-co-category aka Segal type: types A with weak composition, i.e.:

PA2 5 A2~ A AN S AN (Joyal).

o Synthetic co-category aka Rezk type: Segal types A satisfying Rezk
completeness/univalence, i.e.

: n.’l:.y::’l(l‘ —A !/) i iSOA((l,'., /U)

o Synthetic co-groupoid aka discrete type: types A such that every arrow is
invertible, i.e.
10, ya(x =4 y) — homa(z,y).

3 Henceforth: short for (oo, 1)-categories
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Segal types have weak composition of morphisms:

isSegal(A) ~ H isContr ( <A2 — A

kA=A

)

iff

2

A «a c
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isSegal(A) ~ H isContr ( <A2 — A

kA=A
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Segal types have weak composition of morphisms:

isSegal(A) ~ H isContr ( <A2 — A

kA=A

Af> )
K
iff

A2
1 ’/>r
LI 7 iff A'lz

-~7 3Af.g9,90f,comp, ]

A? AM



In [RS17] it is shown that:

o Segal types have categorical structure: composition ¢ o /, identities id,, and
homotopies

ho(gof)=(hog)of, idyof=f, foid,=f.
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Properties of Segal types

In [RS17] it is shown that:

o Segal types have categorical structure: composition ¢ o /, identities id,, and
homotopies

ho(gof)=(hog)of, idyof=f, foid,=f.
o Anymap / : A — B between Segal types is automatically a functor.
o The hom-types of a Segal type are groupoidal (aka discrete).
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Properties of Segal types

In [RS17] it is shown that:
o Segal types have categorical structure: composition , identities id ., and
homotopies

ho(gof)=(hog)of, idyof=f, foid,=].
o Any map |/ : A — B between Segal types is automatically a functor.
o The hom-types of a Segal type are groupoidal (aka discrete).
o Closure properties from orthogonality characterizations, cf. also [BW21]

Outlook
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o Any type family /” : B — U transforms covariantly in paths:

uw:a=gpb ~ w:Pa—Pb



o Any type family /” : B — U transforms covariantly in paths:

uw:a=gpb ~ w:Pa—Pb
o What about the directed analogue? We'd like:

w:a—+gb ~ w:Pa—Pb



B et
Cocartesian families: Motivation

o Any type family /” : B — U transforms covariantly in paths:
uw:a=gpb ~ w:Pa—Pb
o What about the directed analogue? We'd like:
w:a—pgb ~ w:Pa—Pb

o Riehl-Shulman [RS17]: groupoidal case, where the fibers of /” are discrete (covariant
families). Discrete two-sided case.




Outline Introduction Simplicial HoTT Synthetic (oo, 1)-categories Cocartesian families
o 0000 00000 000000 0®0000000000

Cocartesian families: Motivation

o Any type family /” : B — U transforms covariantly in paths:
ta=pb ~ :Pa— Pb
o What about the directed analogue? We'd like:
ta—pb ~ :Pa— Pb

o Riehl-Shulman [RS17]: groupoidal case, where the fibers of
families). Discrete two-sided case.

o Buchholtz—W [BW21], W [W22]: generalization to categorical case, where the fibers of

are Rezk (cocartesian families).

Two-sided cartesian families
0000

are discrete (covariant
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Cocartesian families: Motivation

o Any type family /” : B — U transforms covariantly in paths:
ta=pb ~ :Pa— Pb
o What about the directed analogue? We'd like:
ta—pb ~ :Pa— Pb

o Riehl-Shulman [RS17]: groupoidal case, where the fibers of / are discrete (covariant
families). Discrete two-sided case.

o Buchholtz—W [BW21], W [W22]: generalization to categorical case, where the fibers of
are Rezk (cocartesian families).

o W [W22]: further extensions to include left exact, bivariant, fibered, and two-sided
(i.e. mixed-variance) families.
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Cocartesian families: Motivation

o Any type family /” : B — U transforms covariantly in paths:
ta=pb ~ :Pa— Pb
o What about the directed analogue? We'd like:
ta—pb ~ :Pa— Pb

o Riehl-Shulman [RS17]: groupoidal case, where the fibers of / are discrete (covariant
families). Discrete two-sided case.

o Buchholtz—W [BW21], W [W22]: generalization to categorical case, where the fibers of
are Rezk (cocartesian families).

o W [W22]: further extensions to include left exact, bivariant, fibered, and two-sided
(i.e. mixed-variance) families.

o These are central notions of fibrations of synthetic (0o, 1)-categories. They have
important applications, and enjoy good properties such as directed arrow induction
aka type-theoretic Yoneda Lemmas (originally due to [RS17], also in [RV22)).




Intuitively: An arrow | : e —>f ¢ overu : b —p b is cocartesian if it satisfies the following
universal property:

7 fig=sh

)
AN}

Vo:u,v=w

Thanks to Ulrik Buchholtz for the TikZ figures



Cocartesian arrows: Definition

Definition (Cocartesian arrows ([BW21], cf. [RV22]))

Let B be atype and /” : B — U/ be an inner family. Let /,, /' : B, v : homp(b,b'), and « : Pb,
PV, Anarrow | : homp (e, ¢") is a (I’-)cocartesian morphism or (I°-)cocartesian arrow iff

isCocartArrp f := H H isContr ( <H<t’s>:A2 Po(t,s) ‘f}gh]> )

I\ h
a:<A2—>B $0> h:]T;. a1 Po(t;t)

Notice that being a cocartesian arrow is a proposition. Over a Segal base, this amounts to:
scocrearef =[] [T I I T I
b"":B v:homp (b/,b") w:homp (b,b") o:hom? (u,v;w) €”:P b h:dhomp 4 (e,e”)

1sContr ( Z dhom%a’(f’ g; h))

g:dhomp , (e’,e’’)



Cocartesian families: Definition

Definition (Cocartesian family ((BW21], cf. [RV22]))

Let B be a Rezk type and /” : B — U be a family such that P is a Rezk type. Then /s a
cocartesian family if:

hasCocartLifts P := H H H Z Z isCocartArrp f

b,b/:B u:b—b’ e:Pbe’:Pb fie—y e’

Amap 7 : E — B is a cocartesian fibration iff ’ := St () is a cocartesian family.




Cocartesian families: Definition

Definition (Cocartesian family ((BW21], cf. [RV22]))

Let B be a Rezk type and /” : B — U be a family such that P is a Rezk type. Then /s a
cocartesian family if:

hasCocartLifts P := H H H Z Z isCocartArrp f

b,b/:B u:b—b’ e:Pbe’:Pb fie—y e’

Amap 7 : E — B is a cocartesian fibration iff ’ := St () is a cocartesian family.
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Cocartesian families: Definition

Definition (Cocartesian family ((BW21], cf. [RV22]))

Let B be a Rezk type and /” : B — U be a family such that P is a Rezk type. Then /s a
cocartesian family if:

hasCocartLifts P := H H H Z Z isCocartArrp f

b,b/:B u:b—b’ e:Pbe’:Pb fie—y e’

Amap 7 : E — B is a cocartesian fibration iff ’ := St () is a cocartesian family.

) 7 (u,e)
E Ve ——=Zam---- u.’ e

”l ~ ()" [] (a—5b) = P(a) - P(b)

a,b:B



o Hence, any « : a —p binduces a functor «, : Pa — P b acting on arrows as follows:



o Hence, any « : a —p binduces a functor «, : Pa — P b acting on arrows as follows:

I

—



o Hence, any « : a —p binduces a functor «, : Pa — P b acting on arrows as follows:

E e %»—)P!(u’e) ure

gJ/
’
C > U c
Pi(ue’)

/

B e —



o Hence, any « : a —p binduces a functor «, : Pa — P b acting on arrows as follows:

E e %»—)P!(u’e) ure

1
gl furg
~

¢ ——
Pi(ue’)

B e —



o Hence, any « : a —p binduces a functor «, : Pa — P b acting on arrows as follows:

E e—P!(»If)Lu!e

1
gl furg
~

¢ ——
Pi(u,e’)

B e —

o Externally, this corresponds to a Cat-valued oco-functor B — Cat, where Cat is the
(00, 1)-category of small (oo, 1)-categories.



@ Forg:C — A+« B: f, the comma projection O : f | ¢ — C.* (Hence, in particular the
1
codomain projections ¢, : A® — A.)

4f~Lg =~ 2b:B,c:C(fb —A gC)



@ Forg:C — A+« B: f, the comma projection O : f | ¢ — C.* (Hence, in particular the
1
codomain projections ¢, : A® — A.)

@ The domain projection o) : AN, A, provided A has all pushouts.

4f~Lg =~ Z:b:B,c:C'(fb —A gC)



Cocartesian families: Examples

@ Forg:C — A+« B: f, the comma projection O : f | ¢ — C.* (Hence, in particular the
1
codomain projections ¢, : A® — A.)
@ The domain projection O, : AN S 4, provided A has all pushouts.
@ Forany map 7 : £ — B between Rezk types, the free cocartesian fibration:

B ——— FE
L
L(m):=0, | gA! — B

B

In particular, the desired UMP holds: — © / : CocartFunp(L(7), &) —» Fung(r, &) for any
cocartesian fibration £ : ' — B.

flg~Sppec(fb—ago)
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Cocartesian families: Characterization

Theorem (Chevalley criterion: Cocartesian families via lifting ([BW21, W22], cf. [RV22]))

Let B be a Rezk type. A given isoinner family I : B — U is cocartesian if and only if the
Leibniz cotensor map LEA S | B has a left adjoint right inverse:

:1‘%Al'\/>

Outlook
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Cocartesian families: Characterization

Theorem (Chevalley criterion: Cocartesian families via lifting ([BW21, W22], cf. [RV22]))

Let B be a Rezk type. A given isoinner family I : B — U is cocartesian if and only if the
Leibniz cotensor map : E% — 71| B has a left adjoint right inverse:

EA /\

Br —

:1‘%Al'\/>

i
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Leibniz cotensor map : E% — 71| B has a left adjoint right inverse:
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Cocartesian families: Characterization

Theorem (Chevalley criterion: Cocartesian families via lifting ([BW21, W22], cf. [RV22]))

Let B be a Rezk type. A given isoinner family I : B — U is cocartesian if and only if the
Leibniz cotensor map LEA S | B has a left adjoint right inverse:
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Theideaisthat v : 7| B — E2 s the lifting map y(u, ¢) = Pi(u, ¢). Chevalley criterion
implies a lot of closure properties (cf. co-cosmoses)!
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Yoneda Lemma for cocartesian families

Theorem (Dependent and absolute Yoneda Lemma ([BW21], cf. [RS17, RV22]))

@ Dependent Yoneda Lemma: Let B be a Rezk type, h : B any term,and () : b | B — U a
cocartesian family. Then evaluation at i<, is an equivalence:

cocart

[ @ = @ld)

blB

@ Yoneda Lemma: Let B be a Rezk type, /) : B any term, and I : B — U a cocartesian
family. Then evaluation at i, as in

cocart

: [[ orp > Pb

blB

is an equivalence, where 0, : b | B — B.




Fibered Yoneda map

Dep. YL is directed arrow induction. lts proof uses the following proposition:
Proposition ([BW21], cf. [RS17, RV22])

Let B be a Rezk type, b : B an initial object, and I’ : B — U a cocartesian family. Then
evaluation at b given by is an equivalence:

cocart
evy : H P = Pb
B




Fibered Yoneda map

Dep. YL is directed arrow induction. lts proof uses the following proposition:
Proposition ([BW21], cf. [RS17, RV22])

Let B be a Rezk type, b : B an initial object, and I’ : B — U a cocartesian family. Then
evaluation at b given by is an equivalence:

cocart
evy : H P=Pb
B
As a quasi-inverse, we take:
cocart y P(0,.d)
H P = Pb d ———— y(d)(x)
B evy

D« &

y(d) == Ax.(0,)1d



Themapy : Pb— H P is valued in cocartesian sections, i.e. :
B

H isCocartArrp((yd)u)
u:B

See [BW21]. d l




@ st roundtrip: evy(yd) = yd(b) = (idy)id = d




Proof of P b ~ [13°" P

Proof.
@ 1st roundtrip: ev,(yd) = yd(b) = (idy)1d = d
@ 2nd roundtrip: Want to define - : (y o ev;, = idy ) ~ Hg% (y(ob)(z) = o(x)), and show
that it’s invertible. Since o is a cocartesian section, we obtain:




Proof of P b ~ [13°" P

Proof.
@ 1st roundtrip: ev,(yd) = yd(b) = (idy)1d = d
@ 2nd roundtrip: Want to define - : (y o ev;, = idy ) ~ Hg% (y(ob)(z) = o(x)), and show
that it’s invertible. Since o is a cocartesian section, we obtain:

o(x)

W Teo

ey Ye®) )

a(b)

0
b ———— 2




Proof of P b ~ [13°" P

Proof.
@ 1st roundtrip: ev,(yd) = yd(b) = (idy)1d = d
@ 2nd roundtrip: Want to define - : (y o ev;, = idy ) ~ Hgf£ (y(ob)(z) = o(x)), and show
that it’s invertible. Since o is a cocartesian section, we obtain:

o(x)
o(0.) r
a(b) O y(o(b), )

0
b ———— 2

By right cancelation, - . , is cocartesian, too. But then it is an identity.
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For¢: F'— B, n: E — B, afibered functor

F—— L E

NS

is a sliced cocartesian family ((W22], cf. [RV22]) over B if:

3 (b, frx)
F Vo -----=opi--o-o > fix
a 1
/lw h n
" il
& v
3 E e —f) 6/
RN L
l‘ﬂ' \‘K\ /,;/
B Vb

Externally, corresponds to cocartesian fibrations internal to Cat/B (“fibered fibration”).



A span

A« E—4B - % AxB
is a two-sided cartesian fibration ([W22], cf. [RV22)) if
E fU* e _El_(_')_ﬂ‘ E’Li_ez v _§|£'2§ (u_f)_> u' e
<£m>l
A X B |G ———— L} a,/
Yo

and the lifts commute, i.e. canonically
u v e =prap v U e.

Externally, corresponds to co-functors B°? x A — Cat (“(co, 1)-categorical distributors”, a kind
of higher relation).



Properties of two-sided cartesian families

o oo-Cosmological closure properties: By considering two-sided cart. families
P’ A— B — U as certain “fibered” fibrations, and again using a Chevalley criterion.

E—— s AxB

N

o (Dependent) Yoneda Lemma for two-sided families: Let ) : « | A x B b — U be a
two-sided family. For « : A, b : B, evaluation is an equiv.:

2sCart

eVid,, 4 ° ( H Q) = Q(id,, idp)

alAxBlb
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@ Rezk universes and flat aka (oo, 1)-Conduché fibrations (needs cohesion)
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@ Opposites and twisted arrow types ((multi-)modal framework a la
Licata—Riley—Shulman/Gratzer—Kavvos—Nuyts—Birkedal)



@ Rezk universes and flat aka (oo, 1)-Conduché fibrations (needs cohesion)

@ Opposites and twisted arrow types ((multi-)modal framework a la
Licata—Riley—Shulman/Gratzer—Kavvos—Nuyts—Birkedal)

@ Synthetic higher algebra
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Thank you for your attention!
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