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The concept of (∞, 1)-category

(∞, 1)-categories: “categories weakly enriched in spaces”

weak composition of 1-morphisms: uniquely up to contractibility

•

• •

f g

cg,f

σg,f

Comp(g, f) = { composition data 〈cg,f , σg,f 〉}
!' 1

Introduced by Boardman–Vogt as quasi-categories in 1973, later considerably developed
by Joyal and Lurie

Relevant in derived/spectral algebraic geometry, stable homotopy theory, higher algebra,
topological field theories, . . .
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Synthetic (∞, 1)-categories in HoTT?

Many models in set-theoretic foundations. More synthetic way?

In HoTT, the types are understood as homotopy types aka spaces aka∞-groupoids A ∈ S

But (∞, 1)-categories are more general.

We have path types (a =A b), but what about directed hom types (a→A b)?

Approach due to Riehl–Shulman [RS17] and Joyal: Extend HoTT to reason about
simplicial homotopy types aka simplicial spaces X ∈ [

op
, S].

From those we can internally single out the (∞, 1)-categories and∞-groupoids, resp.

By [Shu19], we can replace S by an arbitrary Grothendieck–Rezk–Lurie (∞, 1)-topos E.
; synthetic internal (∞, 1)-category theory

Our setting: Fibered (∞, 1)-category theory in Riehl–Shulman’s simplicial HoTT,
oriented along Riehl–Verity’s∞-cosmos theory.

Take-home slogan: sHoTT as a convenient, native language (DSL) for Segal objects!
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Previous and related work

On directed type theory and directed univalence: Harper–Licata, Warren, Nuyts,
Riehl–Shulman, Cavallo–Riehl–Sattler, Weaver–Licata, Bardomiano Martinez.
Buchholtz–W, Kudasov, Annenkov–Capriotti–Kraus–Sattler, Finster–Rice–Vicary,
Cisinski–Nguyen, North, Altenkirch–Sestini . . .

On fibrations of (∞, 1)-categories: Joyal, Lurie, Ayala–Francis,
Barwick–Dotto–Glasman–Nardin–Shah, Rasekh, Riehl–Verity . . .

On Segal spaces and Segal objects/internal (∞, 1)-categories: Rezk, Joyal–Tierney,
Lurie, Kazhdan–Varshavsky, Boavida de Brito, Rasekh, Martini–Wolf . . .

Proof assistant for sHoTT: Check out rzk developed by Kudasov—prototype interactive
proof assistant with online live mode at: https://github.com/fizruk/rzk

https://github.com/fizruk/rzk
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sHoTT: Cubes, shapes, and topes

simplicial HoTT [RS17]: Multi-part contexts Ξ |Φ |Γ ` A with pre-type layers1

1 Abstract cubes (cube layer): Lawvere theory generated by directed interval 2

1, 2 cube Ξ ` ? : 1 Ξ ` 0, 1 : 2

I cube J cube

I × J cube

(t : I) ∈ Ξ

Ξ ` t : I
[. . .]

2 Subpolytopes (tope layer): Intuitionistic theory of formulas ϕ in cube contexts Ξ

ϕ ∈ Φ

Ξ | Φ ` ϕ Ξ ` ⊥,> tope

Ξ ` s : I Ξ ` t : I

Ξ ` (s ≡ t) tope

Ξ ` ϕ tope Ξ ` ψ tope

Ξ ` (ϕ ∧ ψ), (ϕ ∨ ψ) tope

x, y : 2 ` (x ≤ y) tope
[. . .]

1cf. Cubical Type Theory



Outline Introduction Simplicial HoTT Synthetic (∞, 1)-categories Cocartesian families Two-sided cartesian families Outlook

sHoTT: Examples of shapes

∆1 ∆2 〈1, 0〉 〈1, 1〉

0 1 〈0, 0〉 〈1, 0〉

∆1 ×∆1 〈1, 0〉 〈1, 1〉 Λ2
1 〈1, 0〉 〈1, 1〉

〈0, 0〉 〈1, 0〉 〈0, 0〉 〈1, 0〉

∆1 :≡ {t : 2 | >}, ∆2 :≡ {〈t, s〉 : 2× 2 | s ≤ t},
∆1 ×∆1 ≡ {〈t, s〉 : 2× 2 | >}, Λ2

1 :≡ {〈t, s〉 : 2× 2 | (s ≡ 0) ∨ (t ≡ 1)}
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sHoTT: Extension types

Idea: “Π-types with strict side conditions”. Originally due to Lumsdaine–Shulman.2

Input:
shape inclusion Φ ↪→ Ψ

family P : Ψ→ U

;

partial section a : Πt:ΦP (t)

P̃

Φ Ψ

a
b

Extension type
〈∏

Ψ P
∣∣Φ
a

〉
with terms b : ΠΨP such that b|Φ ≡ a.

Semantically:

〈∏
Ψ P

∣∣Φ
a

〉
P̃Ψ

1 P̃Φa

y

2cf. also path types in Cubical Type Theory
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Unique lifting properties

Extension types are homotopically well-behaved, assuming a certain axiom.

Observation

A square

Φ P̃

Ψ B

j

σ

π

κ

∃!

possesses a diagonal filler uniquely up to contractibility if and only if the following proposition holds:

isContr
(〈

Πt:ΨP (σ(s))
∣∣Φ
κ

〉)
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Hom types I

Definition (Hom types, [RS17])

Let B be a type. Fix terms a, b : B. The type of arrows in B from a to b is the extension type

homB(a, b) :≡ (a→B b) :≡
〈

∆1 → B
∣∣∣∂∆1

[a,b]

〉
.

Definition (Dependent hom types, [RS17])

Let P : B → U be family. Fix an arrow u : homB(a, b) in B and points d : P a, e : P b in the
fibers. The type of dependent arrows in P over u from d to e is the extension type

dhomP,u(d, e) :≡ (d→P
u e) :≡

〈∏
t:∆1 P (u(t))

∣∣∣∂∆1

[d,e]

〉
.
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Hom types II

We will also be considering types of 2-cells: For arrows u, v, w in B with f, g, h in P lying
above, with appropriate co-/domains, let

hom2
B(u, v;w) :≡

〈
∆2 → B

∣∣∣∂∆2

[u,v,w]

〉
, dhom2,P

σ (f, g;h) :≡
〈∏
〈t,s〉:∆2 P (σ(t, s))

∣∣∣∂∆2

[f,g,h]

〉
.

P̃ e′

e e′′

b′

B b b′′

u

w

v

h

gf

σ

τ
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Segal, Rezk, and discrete(=groupoidal) types

Can now define synthetic∞-categories3 using shapes and extension types:

Definition (Synthetic∞-categories, [RS17])

Synthetic pre-∞-category aka Segal type: types A with weak composition, i.e.:

ι : Λ2
1 ↪→ ∆2 ; Aι : A∆2 '−→ AΛ2

1 (Joyal).

Synthetic∞-category aka Rezk type: Segal types A satisfying Rezk
completeness/univalence, i.e.

idtoisoA : Πx,y:A(x =A y)
'−→ isoA(x, y).

Synthetic∞-groupoid aka discrete type: types A such that every arrow is
invertible, i.e.

idtoarrA : Πx,y:A(x =A y)
'−→ homA(x, y).

3Henceforth: short for (∞, 1)-categories
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Segal condition

Segal types have weak composition of morphisms:

isSegal(A) '
∏

κ:Λ2
1→A

isContr
(〈

∆2 → A
∣∣∣Λ2

1
κ

〉)
iff

b

Λ2
1 A A∆2

A a c

∆2 AΛ2
1

∀ f ∀ g

∃! g◦f

ι

∀ [f,g]

∃! [f,g,g◦f,compg,f ]

'Aιiff
∃! compg,f

iff
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Properties of Segal types

In [RS17] it is shown that:

Segal types have categorical structure: composition g ◦ f , identities idx, and
homotopies

h ◦ (g ◦ f) = (h ◦ g) ◦ f, idy ◦f = f, f ◦ idx = f.

Any map f : A→ B between Segal types is automatically a functor.

The hom-types of a Segal type are groupoidal (aka discrete).

Closure properties from orthogonality characterizations, cf. also [BW21]
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Cocartesian families: Motivation

Any type family P : B → U transforms covariantly in paths:

u : a =B b ; u! : P a→ P b

What about the directed analogue? We’d like:

u : a→B b ; u! : P a→ P b

Riehl–Shulman [RS17]: groupoidal case, where the fibers of P are discrete (covariant
families). Discrete two-sided case.
Buchholtz–W [BW21], W [W22]: generalization to categorical case, where the fibers of P
are Rezk (cocartesian families).
W [W22]: further extensions to include left exact, bivariant, fibered, and two-sided
(i.e. mixed-variance) families.
These are central notions of fibrations of synthetic (∞, 1)-categories. They have
important applications, and enjoy good properties such as directed arrow induction
aka type-theoretic Yoneda Lemmas (originally due to [RS17], also in [RV22]).
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Cocartesian arrows: Intuition

Intuitively: An arrow f : e→P
u e
′ over u : b→B b′ is cocartesian if it satisfies the following

universal property:

P̃

B

e e′

e′′

⇑

f

∃! g
∀h

∃! τ : f, g ⇒σ h

b b′

b′′

⇑
u

∀ v
∀w

∀σ : u, v ⇒ w

Thanks to Ulrik Buchholtz for the TikZ figures
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Cocartesian arrows: Definition

Definition (Cocartesian arrows ([BW21], cf. [RV22]))

Let B be a type and P : B → U be an inner family. Let b, b′ : B, u : homB(b, b′), and e : P b,
e′ : P b′. An arrow f : homP u(e, e′) is a (P -)cocartesian morphism or (P -)cocartesian arrow iff

isCocartArrP f :≡
∏

σ:

〈
∆2→B

∣∣∣∣∆1
0

u

〉
∏

h:
∏
t:∆1 P σ(t,t)

isContr
(〈∏

〈t,s〉:∆2 Pσ(t, s)
∣∣∣Λ2

0

[f,h]

〉)
.

Notice that being a cocartesian arrow is a proposition. Over a Segal base, this amounts to:

isCocartArrP f '
∏
b′′:B

∏
v:homB(b′,b′′)

∏
w:homB(b,b′′)

∏
σ:hom2

B(u,v;w)

∏
e′′:P b′′

∏
h:dhomP w(e,e′′)

isContr
( ∑
g:dhomP v(e′,e′′)

dhom2
P σ(f, g;h)

)
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Cocartesian families: Definition

Definition (Cocartesian family ([BW21], cf. [RV22]))

Let B be a Rezk type and P : B → U be a family such that P̃ is a Rezk type. Then P is a
cocartesian family if:

hasCocartLiftsP :≡
∏
b,b′:B

∏
u:b→b′

∏
e:P b

∑
e′:P b′

∑
f :e→ue′

isCocartArrP f

A map π : E � B is a cocartesian fibration iff P :≡ StB(π) is a cocartesian family.

E ∀ e

uP! e

B a b
∀u

∃(!)π!(u,e)

π

; (−)P! :
∏
a,b:B

(a→B b)→ P (a)→ P (b)
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Cocartesian families: Functoriality

Hence, any u : a→B b induces a functor u! : P a→ P b acting on arrows as follows:

E e

u! e

e′

u! e
′

B a b
u

P!(u,e
′)

g

P!(u,e)

u! g

Externally, this corresponds to a Cat-valued∞-functor B → Cat, where Cat is the
(∞, 1)-category of small (∞, 1)-categories.
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Cocartesian families: Examples

1 For g : C → A← B : f , the comma projection ∂C : f ↓ g � C.4 (Hence, in particular the
codomain projections ∂1 : A∆1

� A.)

2 The domain projection ∂0 : A∆1

� A, provided A has all pushouts.
3 For any map π : E → B between Rezk types, the free cocartesian fibration:

π ↓ B E

B∆1

B

B

∂0

∂1

π

L(π):≡∂1

y

In particular, the desired UMP holds: − ◦ ι : CocartFunB(L(π), ξ)
'−→ FunB(π, ξ) for any

cocartesian fibration ξ : F → B.

4f ↓ g ' Σb:B,c:C(f b →A g c)
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Cocartesian families: Characterization

Theorem (Chevalley criterion: Cocartesian families via lifting ([BW21, W22], cf. [RV22]))

Let B be a Rezk type. A given isoinner family P : B → U is cocartesian if and only if the
Leibniz cotensor map i0t̂π : E∆1

→ π ↓B has a left adjoint right inverse:

i0 : 1 ↪→ ∆1 ;

E∆1

π ↓ B

E

B∆1

B
∂0

π
y

∂0

χ

i0t̂π

π∆1

a
The idea is that χ : π ↓B → E∆1

is the lifting map χ(u, e) = P!(u, e). Chevalley criterion
implies a lot of closure properties (cf.∞-cosmoses)!
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Cocartesian families: Characterization
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Yoneda Lemma for cocartesian families

Theorem (Dependent and absolute Yoneda Lemma ([BW21], cf. [RS17, RV22]))
1 Dependent Yoneda Lemma: Let B be a Rezk type, b : B any term, and Q : b ↓ B → U a

cocartesian family. Then evaluation at idb is an equivalence:

evidb :

cocart∏
b↓B

Q
'→ Q(idb)

2 Yoneda Lemma: Let B be a Rezk type, b : B any term, and P : B → U a cocartesian
family. Then evaluation at idb as in

evidb :

cocart∏
b↓B

∂∗1P
'→ P b

is an equivalence, where ∂1 : b ↓ B → B.
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Fibered Yoneda map

Dep. YL is directed arrow induction. Its proof uses the following proposition:

Proposition ([BW21], cf. [RS17, RV22])

Let B be a Rezk type, b : B an initial object, and P : B → U a cocartesian family. Then
evaluation at b given by is an equivalence:

evb :

cocart∏
B

P
'→ P b

As a quasi-inverse, we take:

cocart∏
B

P P b E d y(d)(x)

y(d) :≡ λx.(∅x)! d B b x

evb

y

∅x

P!(∅x,d)
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Fibered Yoneda map: valuedness in cocartesian sections

Proposition

The map y : P b→
∏
B

P is valued in cocartesian sections, i.e. :

∏
u:B

isCocartArrP ((yd)u)

Proof.

See [BW21].
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Proof of P b ' Πcocart
B P

Proof.
1 1st roundtrip: evb(yd) = yd(b) = (idb)!d = d

2 2nd roundtrip: Want to define ε :
(
y ◦ evb ⇒ idT

)
' Πσ:T

x:B

(
y(σb)(x)→ σ(x)

)
, and show

that it’s invertible. Since σ is a cocartesian section, we obtain:

σ(x)

σ(b) y(σ(b), x)

b x

σ(∅x)

P!(∅x,σ(b))

εσ,x

∅x

By right cancelation, εσ,x is cocartesian, too. But then it is an identity.
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Sliced cocartesian families

For ξ : F � B, π : E � B, a fibered functor

F E

B

ϕ

ξ π

is a sliced cocartesian family ([W22], cf. [RV22]) over B if:

F ∀x f! x

E e e′

B ∀ b

∀ f

∃(!)ϕ!(b,f,x)

ϕ

π

ξ

Externally, corresponds to cocartesian fibrations internal to Cat/B (“fibered fibration”).
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Two-sided cartesian families

A span

A E B ! E A×Bξ π 〈ξ,π〉

is a two-sided cartesian fibration ([W22], cf. [RV22]) if

E v∗ e ∀ e u! e

A×B a a a′

b′ b b

∃(!) ξ!(u,e)

∀u

〈ξ,π〉

∀ v

∃(!)π∗(v,e)

and the lifts commute, i.e. canonically

u! v
∗ e =P (a,b) v

∗ u! e.

Externally, corresponds to∞-functors Bop ×A→ Cat (“(∞, 1)-categorical distributors”, a kind
of higher relation).
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Properties of two-sided cartesian families

∞-Cosmological closure properties: By considering two-sided cart. families
P : A→ B → U as certain “fibered” fibrations, and again using a Chevalley criterion.

E A×B

B

ϕ

π q

(Dependent) Yoneda Lemma for two-sided families: Let Q : a ↓A×B ↓ b→ U be a
two-sided family. For a : A, b : B, evaluation is an equiv.:

evid〈a,b〉 :
( 2sCart∏
a↓A×B↓b

Q
)
'−→ Q(ida, idb)



Outline Introduction Simplicial HoTT Synthetic (∞, 1)-categories Cocartesian families Two-sided cartesian families Outlook

Outline

1 Introduction

2 Simplicial HoTT

3 Synthetic (∞, 1)-categories

4 Cocartesian families

5 Two-sided cartesian families

6 Outlook



Outline Introduction Simplicial HoTT Synthetic (∞, 1)-categories Cocartesian families Two-sided cartesian families Outlook

Some WIP

1 Rezk universes and flat aka (∞, 1)-Conduché fibrations (needs cohesion)

2 Opposites and twisted arrow types ((multi-)modal framework à la
Licata–Riley–Shulman/Gratzer–Kavvos–Nuyts–Birkedal)

3 Synthetic higher algebra
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Thank you for your attention!
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