
Daily applications of the univalence axiom

Egbert Rijke
University of Ljubljana

egbert.rijke@fmf-uni-lj.si

Part 1: Introduction

Type theory is a language for all mathematics

Structural approach to mathematics
Convenient for expressing mathematical concepts

Can be used for classical and constructive mathematics

Homotopy type theory is the internal language
of ∞-toposes

Freudenthal suspension theorem
Van Kampen theorem

Blakers-Massey theorem
Serre spectral sequences

Hurewicz theorem
π4(S3) = Z/2

Type theory can be used to discover new
mathematics

Voevodsky famously discovered the univalence axiom by studying
the type theory of Coq.

Many new applications of the univalence axiom are waiting to be
discovered

Type theory is used in most big proof
assistants

Lean
Coq

Agda
...

Why formalizing mathematics?

It’s an enjoyable thing to do
Digitization of mathematics

Synthesis of computation and formal reasoning
The computer can help

Instant feedback
Teaching

Anyone can join in!

Libraries for homotopy type theory

Coq-HoTT
https://github.com/HoTT/HoTT

Cubical Agda
https://github.com/agda/cubical

Agda Unimath
https://github.com/UniMath/agda-unimath

Community chat
https://hott.zulipchat.com

https://github.com/HoTT/HoTT
https://github.com/agda/cubical
https://github.com/UniMath/agda-unimath
https://hott.zulipchat.com

The Agda Unimath library

I Univalent mathematics for a general mathematical audience

I Online version with clickable code

I Files have the structure of nlab pages

I We are currently working on group theory, from the univalent
perspective

Contributions are very welcome!

I 5 years behind Lean’s mathlib. But: In the grand scheme of
things that’s nothing.

I The webpage can improve (to make it actually look like the
nlab)

I We need much more algebra, analysis, topology, category
theory, combinatorics, number theory, ...

Part 2: The univalent foundations for
mathematics

Univalent foundation for mathematics

I Extension of Martin-Löf’s dependent type theory with
I Function extensionality
I Univalence axiom
I Propositional truncation

I Further extensions can be considered
I Propositional resizing. This is important for the construction

of the Dedekind reals.
I Higher inductive types. Those are important for synthetic

homotopy theory
I Modal extensions, such as cohesive homotopy type theory.

The univalent foundations take a structural approach to
mathematics, in a way that is compatible with both constructive
and classical mathematics.

Dependent types

1. Dependent type theory is a language for mathematical
structures and constructions.

2. The objects of type theory are types: A,B,C , . . .

3. Types can have elements: a, b, c, . . . : A

4. Types can depend on other types: A(x1, . . . , xn), where each
xi is a typed variable.

Constructions with types

I Given a type A and a family of types B(x) indexed by x : A,
we can form the dependent pair type∑

x :A

B(x).

This type consists of pairs (x , y) where x : A and y : B(x).

I Given a type A and a family of types B(x) indexed by x : A,
we can form the dependent function type∏

x :A

B(x).

The elements are functions λx .f (x) taking as input x : A and
giving an output f (x) : B(x).

The identity type

For any type A and any x , y : A, we can form the type of
identifications

x = y .

I The identity type is inductively generated by

refl : x = x .

I The induction principle asserts that for any family of types
P(y , e) indexed by y : A and e : x = y , we have a function

J : P(x , refl)→
∏
y :A

∏
e:x=y

P(y , e)

defined by J(p, x , refl) := p.

Groupoidal structure of types

I For each identification p : x = y we can construct an inverse
p−1 : y = x , because we have

J : (x = x)→
∏
y :A

∏
p:x=y

y = x .

Indeed, define (-)−1 by refl−1 := refl.

I For any two identifcations p : x = y and q : y = z we can
construct the concatenation p · q, because we have

J : ((x = z)→ (x = z))→
∏
y :A

∏
p:x=y

(y = z)→ (x = z)

This lets us define (-) · q by refl · q := q.

I Using the induction principle of identifications, we can prove
the groupoid laws, and higher coherences.

Homotopies and equivalences
I Given two functions f : A→ B, we define the type of

homotopies

f ∼ g :=
∏
x :A

f (x) = g(x).

I Give a map f : A→ B, we define the type of sections of f by

sec(f) :=
∑

g :B→A

f ◦ g ∼ id,

and we define the type of retractions of f by

retr(f) :=
∑

g :B→A

g ◦ f ∼ id.

I We define is-equiv(f) := sec(f)× retr(f), and we define

A ' B :=
∑

f :A→B

is-equiv(f)

Universes

In type theory, there are universes U that are closed under∏
,
∑

,=,×,+, 0, 1,N, . . .

Universes are useful to

I Define dependent types over A, as maps A→ U .
I Define types equipped with structure, such as

I Pointed types
I Groups
I Rings
I Categories
I Spectra
I . . .

The univalence axiom

By identification elimination, we can also show that there is a map

equiv-eq : (A = B)→ (A ' B)

for every A,B : U .

The univalence axiom asserts that equiv-eq is an equivalence,
for every A,B : U

Contractible types

A type A is said to be contractible if it comes equipped with an
element of type

is-contr(A) :=
∑
x :A

∏
y :A

x = y

Theorem
A map f : A→ B is an equivalence if and only if for each y : B the
type

fibf (b) :=
∑
x :A

f (x) = b

is contractible.

The fundamental theorem of identity types

Theorem
Consider a type A and an element a : A, and consider a type family
B over A and an element b : B(a). Then the following are
equivalent:

1. Any family of maps (in particular the canonical family of
maps) ∏

x :A

(a = x)→ B(x)

is a family of equivalences.

2. The total space ∑
x :A

B(x)

is contractible.

Propositions

A type A is said to be a proposition if it comes equipped with an
element

is-prop(A) :=
∏
x ,y :A

is-contr(x = y)

We also define
Prop :=

∑
X :U

is-prop(X).

1. is-equiv(f) is a proposition for any f : A→ B

2. is-contr(A) is a proposition for any type A.

3. is-prop(A) is a proposition for any type A.

Truncated types

Definition
A type A is said to be n-truncated, for n ≥ −2 if it comes
equipped with an element of type is-truncn(A), which is defined
recursively by

is-trunc−2(A) := is-contr(A)

is-truncn+1(A) :=
∏
x ,y :A

is-truncn(x = y).

We say that A is a set if it is 0-truncated, i.e., if its identity types
are propositions.

(Propositional) truncations

For any type A there is an n-truncated type ‖A‖n equipped with a
map η : A→ ‖A‖n, called the n-truncation of A, such that

(‖A‖n → X)→ (A→ X)

is an equivalence for every n-truncated type X .

A

‖A‖n X

η f

The propositional truncation of A is its (−1)-truncation. We
often write ‖A‖ for ‖A‖−1. The proposition ‖A‖ expresses that A
is inhabited.

Part 3: Univalent combinatorics

Finite types

Definition
The standard finite types Fin(n) are defined inductively on n : N
by

Fin(0) := ∅
Fin(n + 1) := Fin(n) + 1

However, the concept of finite types is defined differently:

Definition
A type A is said to be finite if

is-finite(A) :=
∑
n:N
‖Fin(n) ' A‖.

We define F :=
∑

X : U is-finite(X).

n-element types

A type A has n elements if it is merely equivalent to Fin(n), i.e., if

‖Fin(n) ' A‖.

We define BSn by

BSn :=
∑
X :U
‖Fin(n) ' X‖.

Theorem
For any n : N we have

ΩBSn ' (Fin(n) ' Fin(n)) =: Aut(Fin(n)).

Here ΩA := (a = a), for any pointed type A with a : A.

Proof.
If we prove that the type ∑

(X ,H):
∑

X :U ‖Fin(n)'X‖

Fin(n) ' X

is contractible, then we’re done by the fundamental theorem. This
type is equivalent to ∑

(X ,e):
∑

X :U Fin(n)'X

‖Fin(n) ' X‖

The type of pairs (X , e) is contractible by the univalence axiom,
and given e : Fin(n) ' X it follows that ‖Fin(n) ' X‖ is a true
proposition, hence a contractible type.

Pointed (n + 1)-element types

Theorem (Buchholtz)

There is an equivalence(∑
(X ,H):BSn+1

X

)
' BSn

Proof.
Let (X ,H) : BSn+1. For any x : X we have

{x}c :=
∑
y :X

x 6= y .

This is an n-element type. It follows that X is the unique pointed
type (pointed by x : X), equipped with a pointed equivalence
X ' {x}c + 1.

Corollary

We have an equivalence

F '
∑
X :F

X

In other words, the groupoid of finite sets is equivalent to the
groupoid of pointed finite sets.

Corollary

The type ∑
X :BS2

X

is contractible, so for any 2-element type X we have

(Fin(2) ' X) ' X .

Corollary

There is no dependent function∏
X :BS2

X .

Proof.
If we had such a function, then we would obtain∏

X :BS2

Fin(2) ' X .

By univalence, this would imply that BS2 is contractible. However,
identity types of contractible types are contractible, and the
identity types of BS2 are 2-element types.

The previous corollary implies that we have to be somewhat careful
about assuming the axiom of choice in univalent mathematics.

I Inconsistent attempt. For every family B of inhabited types
over any type A, the type of sections of B is inhabited:

∏
x :A

‖B(x)‖ →

∥∥∥∥∥∏
x :A

B(x)

∥∥∥∥∥
This formulation of the axiom of choice is inconsistent by the
example of BS2.

I Consistent formulation. Restrict the inconsistent
formulation to families of sets indexed by sets.

Decidable types
A type A is said to be decidable if it comes equipped with an
element

is-decidable(A) := A + (A→ ∅)

Theorem
There is no dependent function∏

(X :U)
X + (X → ∅)

Proof.
Consider X : BS2. Then the type X → ∅ is empty. Indeed, we have
the equivalences

(X → ∅) ' (‖X‖ → ∅) ' ∅.

It follows that (X + (X → ∅)) ' X , but there is no dependent
function

∏
(X :BS2)

X .

Isolated points

An element x : X is said to be isolated if it comes equipped with a
dependent function

is-isolated(x) :=
∏
y :X

(x = y) + (x 6= y).

Being isolated is a proposition, even if X is not a set. We write
bX c for the type of isolated points of X , i.e.,

bX c :=
∑
x :X

is-isolated(x)

Theorem
For any type A, we have an equivalence∑

X :UA+1

bX c ' UA.

Decidable embeddings
I A map f : A→ B is said to be an embedding if it induces an

equivalence
(x = y) ' (f (x) ' f (y))

for every x , y : A. We write A ↪→ B for the embeddings from
A to B.

I A map is an embedding iff its fibers are propositions. Indeed,
it is an embedding if and only if

fibf (f (y))
.

=
∑
x :A

f (x) = f (y)

is contractible for every y : A.

I A map f : A→ B is said to be decidable if its fibers are
decidable, i.e., if

fibf (y)

is decidable for every y : B. We write A ↪→d B for the
decidable embeddings from A to B.

The binomial types

Definition
For any type B : U , we define the connected component of U at
B by

UB :=
∑
X :U
‖B ' X‖.

Definition
For any two types A and B, we define the binomial type

(A
B

)
by(

A

B

)
:=
∑
X :UB

X ↪→d A

The recursive laws of binomial types

Theorem
For any two types A and B, we have equivalences(

∅
∅

)
' 1

(
A + 1

∅

)
' 1

(
∅

B + 1

)
' ∅

(
A + 1

B + 1

)
'
(
A

B

)
+

(
A

B + 1

)
.

Proof.
For any f : X ↪→d A + 1 the type fibf (∗) + ¬fibf (∗) is a true
decidable proposition, so it is contractible. Therefore, we have
equivalences(
A + 1

B + 1

)
'

∑
X :UB+1

∑
f :X ↪→dA+1

fibf (∗) + ¬fibf (∗)

'

 ∑
X :UB+1

∑
f :X ↪→dA+1

fibf (∗)

+

 ∑
X :UB+1

∑
f :X ↪→A+1

¬fibf (∗)

The right summand is

(A
B+1

)
. To compute the left summand, note

that any x : X such that f (x) = ∗ is an isolated point in X .
Therefore, the left summand is equivalent to∑

X :UB

∑
f :X+1↪→dA+1

f (∗) = ∗,

which is equivalent to
(A
B

)
.

Corollary

If A and B are finite types with n and m elements, then
(A
B

)
is a

finite type
(n
m

)
elements.

Proof.
By recursion on n and m.

Part 4: Synthetic homotopy theory

Another way to think about BS2 is as RP∞. The canonical family
(X ,H) 7→ X is the canonical line bundle over RP∞.

Definition
We construct RPn equipped with its line bundle γn : RPn → RP∞

inductively by RP0 := 1 and we define RPn+1 as a pushout:∑
(X :RPn) γ

n(X)
∑

(X :RP∞) X

RPn RPn+1

RP∞γn

γn+1

The descent theorem

Theorem
Consider a commuting cube

S ′

A′ S B ′

A X ′ B

X

in which the vertical squares in the back are pullback and the
bottom square is a pushout. Then the following are equivalent:

1. The top square is a pushout.

2. The vertical squares in the front are pullback.

Descent is false in the category of sets

Consider the commuting cube

2× 2

2 2 2

1 1 1

1

π1 µ π2

Where µ is the group operation on 2. Then the squares in the
back are pullback and the top and bottom squares are pushout,
but the squares in the front are not pullback.

Theorem
The type

∑
X :RPn γn(X) is equivalent to Sn. Consequently, we

obtain a fiber sequence

Fin(2) Sn RPn.

Proof.
RP0 = 1, so the base case follows. For the inductive step, consider
the commuting cube (∑

X :RPn γn(X)
)
× 2

∑
X :RPn γn(X)

∑
X :RPn γn(X) 2

RPn
∑

X :RPn+1 γn+1(X) 1

RPn+1

The bottom square is pushout and the front two squares are
pullback. The square on the back left is also pullback, so the
remaining square in the back is pullback. (The proof is continued
on the blackboard)

The construction of RPn is an instance of a more general
construction: For any two maps f : A→ X and g : B → X , we
can define a map f ∗ g : A ∗X B → X as a pushout of the pullback:

A×X B B

A A ∗X B

X
f ∗g

Theorem
For each x : X we have fibf ∗g (x) ' fibf (x) ∗ fibg (x).

The complex projective spaces

The infinite complex projective space CP∞ can be defined as

CP∞ := ‖S2‖2.

The type family x 7→ pt = x is a bundle of (oriented) circles over
CP∞. This is its tautological bundle.

Definition
We define CPn equipped with a map γn : CPn → CP∞ inductively
by taking CP0 := 1, and

CPn+1 := CPn ∗CP∞ 1

and γn+1 := γn ∗ pt.

We obtain a fiber sequence

S1 S2n+1 CPn

We don’t know how to define the quaternionic
projective spaces

Open problem: To deloop the 3-sphere in HoTT.

Part 5: Abstract and concrete groups

Concrete groups

We have seen that the type of all n-element sets encodes the
group of all symmetries of n-element sets via

ΩBSn ' Sn.

The idea is now that the group of symmetries of an object of kind
X is the type of all objects of kind X :

1. The dihedral groups are presented by the types of all polygons,

2. Hyperoctahedral groups are presented by the types of all
n-cubes,

3. The Rubik’s cube group is the type of all (valid configurations
of) Rubik’s cube,

4. ...and so on.

All of these describe pointed connected 1-types.

Definition
A type A is said to be connected if its set truncation ‖A‖0 is
contractible.

Definition

I A (concrete) ∞-group is a pointed connected type.

I A (concrete) n-group is a pointed connected n-type.

I A (concrete) group homomorphism is a pointed map.

Given an n-group/∞-group BG , we define G := ΩBG . This has
the structure of an (abstract) n-group/∞-group by the operations
on paths.

Our goal is to construct a concrete 1-group from an abstract
1-group, i.e., to construct the Eilenberg-Mac Lane space K (G , 1)

Concrete group actions

Given an ∞-group BG , a G -type is just a map

X : BG → U

The type being acted on is X (∗), and the action on X (∗) by an
element g : G := ΩBG is given by transport:

trX (g) : X (∗) ' X (∗).

We often abuse notation and write X for X (∗).

Example

For any type B recall that BAut(B) := UB , the connected
component of U at B. For any two types A and B, we saw the
Aut(B)-set

(X : UB) 7→ (X ↪→d A).

Given a G -type X : BG → U , we define

X//G :=
∑
g :G

X (g)

Note that for g : G := ΩBG and x : X (∗) we have an identification

(∗, x) = (∗, gx)

by the path lifting property. So we see that elements in the same
orbit of the G -action on X are identified in X//G .

Example

For the Aut(B)-set B ↪→d A we find that(
A

B

)
:= (B ↪→d A)//Aut(B).

Two embeddings B ↪→d A are identified in
(A
B

)
if they are the

same up to permutation of elements in B.

Stirling types of the second kind

Consider two types A and B, and consider the Aut(B)-type

X 7→ (A� X),

where A� X is the type of surjective maps from A to X . Then
we define the Stirling type of the second kind by{

A

B

}
:= (A� B)//Aut(B)

Theorem
If A and B are finite types with n and m elements, then the Stirling
type of the second kind

{A
B

}
is a finite type with

{n
m

}
elements.

Abstract group actions

Recall that for an abstract group G , a G -set consists of a set X
equipped with a group homomorphism

µ : Grp(G ,Aut(X)).

A morphism of G -sets from X to Y consists of a map f : X → Y
such that for every g : G the square

X Y

X Y

µG (g)

f

µY (g)

f

commutes. A morphism f : X → Y of G -sets is an equivalence if
the underlying map f : X → Y is an equivalence.

Univalence for abstract group actions

Theorem
For any two G -sets (X , µX) and (Y , µY), the map

(X , µX) = (Y , µY)
α−→ (X , µX) 'G (Y , µY)

is an equivalence. Furthermore, for any two identifications

(X , µX) (Y , µY) (Z , µZ)
p q

we have α(p · q) ∼ α(q) ◦ α(p).

Proof.
By the fundamental theorem, it suffices to show that∑

(Y ,µY):G -set

(X , µX) 'G (Y , µY)

is contractible. Note that
∑

Y :U X ' Y is contractible by
univalence, and the type∑

(µY :Grp(G ,AutX))

∏
(g :G)

id ◦ µG ∼ µY ◦ id

is contractible by function extensionality.

The last claim follows since α(refl) := (id, refl), and moreover we
have refl · q := q, and composition of equivalences satisfies the
right unit law.

Delooping abstract groups

Definition
The principal G -set PG on G is the left action of G on itself. We
define

BG := G -torsor :=
∑

X :G -set

‖PG 'G X‖.

Theorem
For any group G , we have a group isomorphism ΩBG ∼= G .

Proof.
By the previous theorem we already know that

ΩBG ∼= (PG 'G PG).

Therefore it suffices to show that (PG 'G PG) ∼= G .

Proof (Continued).

We claim that the map (PG 'G PG)→ G given by (e,H) 7→ e(1)
is an equivalence.

I The inverse G → (PB 'G PG) sends g to the equivalence
− · g , which preserves the G -action by associativity of G .

I Any (e,H) is of this form because

e(g) e(g · 1) g · e(1).
H(g ,1)

I Finally, composites are preserved because

(f ◦ e)(1) = f (e(1)) = f (e(1) · 1) = e(1) · f (1).

for any (e,H), (f ,K) : PG 'G PG .

We conclude that (PG 'G PG) ∼= G .

Delooping abstract group homomorphisms (1)

To figure out how to deloop abstract group homomorphisms, we
first look at the concrete case: For any pointed map
Bf : BG →∗ BH we have a map

Bf! : (BG → U)→ (BH → U)

given by

Bf!(X , y) :=
∑
x :BG

(Bf (x) = y)× X (x)

In the type Bf!(X , ∗), the identifications (∗, h, x) = (∗, h′, x ′) are
equivalently described as triples

(g , p, q)

consisting of g : G , p : f (g)h = h′ and q : gx = x ′.

Delooping abstract group homomorphisms (2)
Given a G -torsor X we therefore define the H-set

f!X := (H,X)/∼

where (h, x) ∼ (h′, x ′) if and only if there exists an element g : G
such that f (g)h = h′ and gx = x ′. Since X is a G -torsor, there is
a most one such g . The H-action is given by h[(y , x)] := [(hy , x)].

Theorem
The H-set f!X is an H-torsor.

Proof.
Being an H-torsor is the proposition ‖PH 'H f!X‖. By the
universal property of propositional truncation applied to the
assumption ‖PG 'G X‖, it suffices to show that f!PG is a principal
H-torsor. We claim that

f!PG 'H PH .

Proof (Continued).

To see that (H × G)/∼ ' H, note that the elements of the form
(h, 1) are canonical representatives of the ∼-equivalence classes.
Indeed, for each (h, g) we have

(h, g) ∼ (f (g−1)h, 1)

and H acts on f!PG simply by multiplication on the left.

We have therefore constructed a map

Bf : G -torsor→ H-torsor.

Take-away: The category of abstract groups is equivalent to
the category of concrete groups, i.e., the category of pointed
connected 1-types.

Part 6: The number of groups of order n,

the univalent way

I Up to isomorphism, there are only finitely many groups of
order n.

I However, those groups may have nontrivial automorphisms, so
the type of groups of order n is not expect to be finite. Finite
types are sets, and the type of groups of order n is a 1-type.

I How can univalence help us to count up to isomorphism?

I How can homotopy theory help?

Definition
A type A is said to be πn-finite if it comes equipped with an
element of type is-πn-finite(A), which is defined recursively by

is-π0-finite(A) := is-finite‖A‖0
is-πn+1-finite(A) := is-finite‖A‖0 ×

∏
x ,y :A

is-πn-finite(x = y)

In other words: a type is πn-finite if it has finitely many connected
components and all its homotopy groups πi (A, x) are finite, for
every i ≤ n and every x : A.

Theorem
Consider a family B of πn-finite types over a finite type A, then
the product ∏

x :A

B(x)

is πn-finite.

Lemma
Consider a family B of π0-finite types over a connected π1-finite
type A. Then the type ∑

(x :A) B(x)

is π0-finite.

Proof.

I We’re proving a property and we assumed that A is connected.
Therefore we may assume that A is pointed by a : A.

I Since A is assumed to be connected, the fiber inclusion

B(a)→
∑
x :A

B(x)

is surjective.

Proof.

I Set truncation preserves surjectiveness, so

‖B(a)‖0 → ‖
∑

(x :A) B(x)‖0

is surjective.

I This is a surjective map out of a finite type. Classically it
follows that the codomain is finite, and we would not need the
π1-finiteness of A. But for us it remains to show that the
codomain has decidable equality.

I Proof continues on the blackboard.

We now prove πn-finiteness and get rid of the connectedness
assumption.

Theorem
Consider a family B of πn-finite types indexed by a πn+1-finite type
A. Then the type ∑

x :A

B(x)

is πn-finite.

Note: Classically we would only need that A is πn-finite.

Proof.

I By induction on the number of connected components.

I By induction on n.

Theorem
The type of groups of order n is π0-finite.

Proof.

I The type of n-element types is π1-finite.

I The type of group structures on an n-element type is finite.

Therefore the previous theorem applies.

