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Software everywhere
• Users expect: predictability & high integrity in presence of 

− component failure, environmental uncertainty, communication delays, …

• Safety, security, reliability, robustness, … can be expressed probabilistically
− “the probability of an airbag failing to deploy within 0.02s is less than 0.001” 2
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Tool support: PRISM

• First algorithms proposed in 1980s
− algorithms [Vardi, Courcoubetis, Yannakakis, Hansson, Jonsson, 

de Alfaro…]
− & first implementations

• 2001: general purpose tools released
− PRISM: efficient extensions of symbolic model checking [Kwiatkowska, Norman, Parker, 

and many more …]

• Now mature area, of industrial relevance, new model checkers, tool competition
− PRISM successfully used by non-experts in many domains

• distributed algorithms, communication protocols, security protocols, biological systems, 
quantum cryptography, planning, robotics, …

− genuine flaws found and corrected in real-world systems
− www.prismmodelchecker.org
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http://www.prismmodelchecker.org/


But which modelling abstraction?

• Complex decisions!
− human and artificial agents
− distinct goals
− autonomy
− competitive/collaborative

behaviour
− context

• Natural to adopt a 
game-theoretic view
− need to account for the uncontrollable behaviour of agents or components, possibly 

with differing/opposing goals
− in addition to controllable events

• Many occurrences in practice
− e.g. decision making in economics, security, energy management, …
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Why games?

• Games serve as abstractions for negotiation, strategic game playing and 
incentives to achieve more effective behaviour
− virtual vs human agents, turn-based vs concurrent, zerosum vs non-

zerosum, rational vs non-rational behaviours, individual vs social gain, …

• Relevant for a multitude of autonomous and AI scenarios
− e.g. automated decisions, resource sharing, distributed coordination 

protocols, virtual assistants, etc
− even autonomous driving…
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Driving as a game-theoretic problem 
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• Merging into traffic
difficult for autonomous 
cars

• Human drivers are not 
behaving rationally!

• Here dynamic games, 
and interplay between
long-horizon strategic 
game playing with 
short-horizon tactical
moves, plus incentives



This mini-lecture course…

• Overview of stochastic multi-player games 
− modelling abstraction for competitive/cooperative behaviour, in adversarial 

environments
− stochasticity to model e.g. failure, sensor uncertainty
− turn-based and concurrent games 

• Property specification: rPATL (based on PCTL and ATL)
− zerosum and equilibria
− model checking and strategy synthesis
− case studies

• Tool support: PRISM-games 3.0
• Challenges and future directions

• Part 1 will cover zerosum games, Part 2 equilibria

8PRISM-games 3.0: Stochastic Game Verification with Concurrency, Equilibria and Time, Kwiatkowska et al., In Proc 
CAV 2020

http://qav.comlab.ox.ac.uk/bibitem.php?key=KNPS20


Stochastic multi-player games (SMGs)

• A stochastic game involves
− multiple players (competitive or collaborative behaviour)
− nondeterminism (decisions, control, environment)
− probability (failures, noisy sensors, randomisation)

• Game variants
− turn-based vs concurrent, zero sum vs distinct goals
− here, complete information games

• Widely studied, esp. algorithmic complexity, many applications
− autonomous traffic (risk averse vs risk taking)
− distributed coordination (selfish agents vs unselfish)
− controller synthesis (system vs. environment)
− security (defender vs. attacker)
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Stochastic multi-player games
• Stochastic multi-player game (SMGs)

− multiple players + nondeterminism + probability
− generalisation of MDPs: each state controlled by unique player

• A (turn-based) SMG is a tuple (Π, S, ⟨Si⟩i∈Π, A, Δ, L):
− Π is a set of n players
− S is a (finite) set of states
− ⟨Si⟩i∈Π is a partition of S
− A is a set of action labels
− Δ : S × A → Dist(S) is a (partial)

transition probability function
− L : S → 2AP is a labelling with

atomic propositions from AP

• NB also called TSGs, concurrent games (CSGs) coming later

b
a ¼

¼
¼

½

¼

✓

1

1
½

1 a
b

1
a
b

10



Rewards

• Annotate SMGs with rewards (or costs) 
− real-valued quantities assigned to states and/or transitions

• Wide range of possible uses:
− elapsed time, power consumption, number of messages successfully delivered, net 

profit, …

• We work with:
− state rewards: r : S → ℝ!"

− action rewards: r : A → ℝ!"
• Form basis for a variety of quantitative objectives

− expected cumulative (total) reward (denoted C)
− mean-payoff (limit-average) reward (denoted S)
− ratio reward
− (and many more not considered here)
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Paths, strategies + probabilities

• A path is an (infinite) sequence of connected states in SMG
− i.e. s0a0s1a1… such that ai∈A(si) and Δ(si,ai)(si+1)>0 for all i
− represents a system execution (i.e. one possible behaviour)
− to reason formally, need a probability space over paths

• A strategy for player i ∈ Π resolves choices in Si states
− based on history of execution so far
− i.e. a function σi : (SA)*Si → Dist(A)
− Σi denotes the set of all strategies for player i
− deterministic if σi always gives a Dirac distribution
− memoryless if σi (s0a0…sk) depends only on sk

− also finite-memory, infinite memory, …
− history based or explicit memory representation

• A strategy profile is tuple σ=(σ1,…,σn) 
− combining strategies for all n players 15



Paths, strategies + probabilities…

• For a strategy profile σ:
− the game’s behaviour is fully probabilistic
− essentially an (infinite-state) Markov chain
− yields a probability measure Prs

σ

over set of all paths Paths from s

• Allows us to reason about the probability of events
− under a specific strategy profile σ
− e.g. any (ω-)regular property over states/actions

• Also allows us to define expectation of random variables
− i.e. measurable functions X : Paths → ℝ≥0

− Es
σ [X] = ∫Paths X dPrs

σ

− used to define expected costs/rewards…

s1 s2s
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Property specification: rPATL

• Temporal logic rPATL:
− reward probabilistic alternating temporal logic

• CTL, extended with:
− coalition operator ⟨⟨C⟩⟩ of ATL (Alternating Temporal Logic)
− probabilistic operator P of PCTL, where P⋈q[ψ] means “the probability of ensuring 
ψ satisfies ⋈ q”

− reward operator R of PRISM, where R⋈q [ρ] means “the expected value of 
ρ satisfies ⋈ q”

• Example:
− ⟨⟨{1,2}⟩⟩ P<0.01 [ F≤10 error ]
− “players 1 and 2 have a strategy to ensure that the probability of an error occurring 

within 10 steps is less than 0.1, regardless of the strategies of other players”
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rPATL properties

• Syntax (fragment):
φ ::= ⟨⟨C⟩⟩P⋈q[ψ] | ⟨⟨C⟩⟩Rr⋈q[ρ] | ⟨⟨C⟩⟩Rr/c⋈q[ρ]
ψ ::= F a
ρ ::= C | S

• where:
− a∈AP is an atomic proposition, C⊆Π is a coalition of players,⋈∈{≤,<,>,≥}, 

q∈ ℝ≥0, r and c are reward structures

• ⟨⟨C⟩⟩P≥1[F “end”]
− “players in coalition C have a collective strategy to ensure that the game reaches an 

“end”-state almost surely, regardless of the strategies of other players” 

“ratio”

“cumulative”

“longrun average”

“reachability”
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rPATL properties

• Syntax (fragment):
φ ::= ⟨⟨C⟩⟩P⋈q[ψ] | ⟨⟨C⟩⟩Rr⋈q[ρ] | ⟨⟨C⟩⟩Rr/c⋈q[ρ]
ψ ::= F a
ρ ::= C | S

• ⟨⟨C⟩⟩Rfuel<q [C]
− “players in coalition C have a strategy to ensure that the expected  total fuel 

consumption is less than q, regardless of the strategies of other players”
• ⟨⟨C⟩⟩Rfuel/time≤q [S]

− “players in coalition C have a strategy to ensure that the expected longrun fuel 
consumption per time unit is at most q, regardless of the strategies of other players”

“ratio”

“cumulative”

“longrun average”

“reachability”
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rPATL semantics

• Semantics for most operators is standard
• Just focus on P and R operators…

− use reduction to a stochastic 2-player game

• Coalition game GC for SMG G and coalition C⊆Π
− 2-player SMG where C and Π\C collapse to players 1 and 2

• ⟨⟨C⟩⟩P⋈q[ψ] is true in state s of G iff:
− in coalition game GC:
− ∃σ1∈Σ1 such that ∀σ2∈Σ2 . Prs

σ1,σ2 (ψ) ⋈ q

• Semantics for R operator defined similarly…
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Examples
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Verification and strategy synthesis

• The verification problem is:
− Given a game G and rPATL property φ, does G satisfy φ? 

• e.g. ⟨⟨C⟩⟩P⋈q[ψ] is true in state s of G iff:
− in coalition game GC:
− ∃σ1∈Σ1 such that ∀σ2∈Σ2 . Prs

σ1,σ2 (ψ) ⋈ q

• The synthesis problem is:
− Given a game G and a coalition property φ, find, if it exists, a coalition strategy σ that 

is a witness to G satisfying φ

• Reduce to computing optimal values and winning strategies in 2-player games
− e.g. ⟨⟨C⟩⟩P≥q[ψ]  ⇔  supσ1∈Σ1 infσ2∈Σ2 Prs

σ1,σ2 (ψ) ≥q
− complexity NP ∩ coNP (this fragment), cf P for MDPs

Automatic Verification of Competitive Stochastic Systems, Chen et al., In Proc TACAS 2012 24



Verification and strategy synthesis

• The verification problem is:
− Given a game G and rPATL property φ, does G satisfy φ? 

• The synthesis problem is:
− Given a game G and a coalition property φ, find, if it exists, a coalition strategy σ that 

is a witness to G satisfying φ

• Reduce to computing optimal values and winning strategies in 2-player games 
− typically employ value iteration to specified convergence
− both players have optimal strategies
− memoryless deterministic strategies suffice 
− (epsilon-optimal) strategies can be typically extracted from optimal values in linear 

time
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Example: Probabilistic reachability

• E.g. ⟨⟨C⟩⟩P≥q[ F φ ] : max/min reachability probabilities
− compute supσ1∈Σ1 infσ2∈Σ2 Prs

σ1,σ2 (F φ) for all states s
− deterministic memoryless strategies suffice

• Value p(s) for state s is least fixed point of:

• Computation (value iteration):
− start from zero, propagate probabilities backwards
− guaranteed convergence wrt “usual” termination criteria

p(s) = 
1 if s∈Sat(φ)

maxa∈A(s) Σs’∈S δ(s,a)(s’)·p(s’) if s∈S1\Sat(φ)
mina∈A(s) Σs’∈S δ(s,a)(s’)·p(s’) if s∈S2\Sat(φ)

26



Multi-objective properties

• May need to explore trade-offs
− e.g. between performance and resource usage: maximise probability of success and

minimise energy usage

• Consider conjunctions of objectives (for stopping games), also known as 
multidimensional
− expected total rewards, mean-payoffs or ratios
− almost sure mean-payoffs/ratios

• Example
− “the expected longrun average fuel consumption and

profit are simultaneously at least v1and v2, respectively ”
⟨⟨C⟩⟩ ( Rfuel

≥v1 [S] & Rprofit
≥v2 [S] )

• NB Boolean combinations may be needed for implication
⟨⟨C⟩⟩ ( Rfuel/time

≥v1 [S] ⇒ Rprofit
≥v2 [S] )

27Compositional Strategy Synthesis for Stochastic Games with Multiple Objectives, Basset et al., Info&Comp 2018
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Multi-objective properties

• For MDPs, optimal strategies exist but randomised strategies may be needed 
• For stochastic games:

− optimal strategies may not exist
− infinite memory may be required

• Therefore
− work with restricted games (e.g. stopping)
− use stochastic memory update representation [Brazdil et al, 2014]

• exponentially more succinct than deterministic update
• equivalent power if infinite memory allowed

• Decision procedure
− complexity is NP ∩ coNP
− compute epsilon-approximations of Pareto sets and epsilon-optimal strategies, fixed 

point reached in finitely many steps
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Case study: Energy management

• Energy management protocol for Microgrid
− Microgrid: local energy management
− randomised demand management protocol

[Hildmann/Saffre'11]
− probability: randomisation, demand model, …

• Existing analysis
− simulation-based
− assumes all clients are unselfish

• Our analysis
− stochastic multi-player game
− clients can cheat (and cooperate)
− exposes protocol weakness
− propose/verify simple fix

All follow alg.

No use of alg.

Deviations of
varying size

Automatic Verification of Competitive Stochastic Systems, Chen et al., In Proc TACAS 2012 30



Case study: Dynamic power management

• Synthesis of dynamic power management schemes
− for an IBM TravelStar VP disk drive
− 5 different power modes: active, idle, idlelp, stby, sleep
− power manager controller bases decisions on current power mode, disk request 

queue, etc.

• Build controllers that
− minimise energy

consumption, subject to
constraints on e.g.

− probability that a request
waits more than K steps

− expected number of
lost disk requests

Quantitative Multi-Objective Verification for Probabilistic Systems. Forejt et al, In (TACAS'11), 
volume 6605 of LNCS, pages 112-127, Springer. March 2011.

http://qav.comlab.ox.ac.uk/bibitem.php?key=FKN+11


Case study: Aircraft power distribution

• Consider Honeywell high-voltage AC (HVAC) subsystem
− power routed from generators to 

buses through switches
− represent as a stochastic game, 

modelling competition for buses, 
with stochasticity used to model 
failures

− specify control objectives in LTL 
using longrun average

− e.g. “maximise uptime of the buses
and minimise failure rate”

• Solution (PRISM-games 2.0)
− compositional strategy synthesis
− enable the exploration of trade-offs between uptime of buses and failure 

rate

Compositional Controller Synthesis for Stochastic Games, Basset et al., In Proc 
CONCUR 2014

http://www.veriware.org/bibitem.php?key=BKW14


Case study: UAV path planning

• Human operator
− sensor tasks
− high-level commands for piloting

• UAV autonomy
− low-level piloting function

• Quantitative mission objectives
− road network surveillance with the minimal

time, fuel, or restricted operating zone 
visits

• Analysis of trade-offs
− consider operator fatigue and workload
− multi-objective, MDP and SMG models

Controller Synthesis for Autonomous Systems Interacting with Human Operators. L. Feng 
et al, In Proc. ICCPS 2015, ACM

http://www.veriware.org/bibitem.php?key=FWHT15


Concurrent stochastic games

• Concurrent stochastic games (CSGs)
− players choose actions concurrently
− jointly determines (probabilistic) successor state
− generalises turn-based stochastic games

• Key motivation:
− more realistic model of components operating concurrently, making action choices 

without knowledge of others

• Formally
− set of n players N, state space S, actions Ai for player i
− transition probability function δ : S×A → Dist(S)
− where A = (A1∪{⊥}) × … × (An∪{⊥})
− strategies σi : FPath → Dist(Ai), strategy profiles σ=(σ1,…,σn)
− probability measure Prs

σ, expectations Es
σ(X)

41



Example CSG: rock-paper-scissors

• Rock-paper-scissors game
− 2 players repeatedly draw

rock (r), paper (p), scissors (s),
then restart the game (t)

− rock > scissors, paper > rock,
scissors > paper, 

− otherwise draw

• Example CSG
− 2 players: N={1,2}
− A1 = A2 = {r,p,s,t}
− NB: no probabilities here

s0

s1

s3

(t,t)
(r,r), 
(p,p), 
(s,s)

s2

(s,r), (p,s), 
(r,p)

(r,s), (p,r), 
(s,p)

{draw}

{win2}{win1}
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Matrix games

• Matrix games
− finite, one-shot, 2-player, zero-sum games
− utility function ui : A1×A2 → ℝ for each player i
− represented by matrix Z where zij = u1(ai,bj) = -u2(ai,bj)

• Example:
− one round of rock-paper-scissors

• Optimal (player 1) strategy via LP solution (minimax):
− compute value val(Z): maximise value v subject to:
− v ≤ xp-xs

v ≤ xs-xr,
v ≤ xs-xp
xr+xp+xs=1
xr≥0, xp≥0, xs≥0

r p s

Z =
r
p
s

0 −1 1
1 0 −1
−1 1 0

Optimal strategy (randomised):
(xr,xp,xs) = (⅓,⅓,⅓)

43



rPATL for CSGs

• We use the same logic rPATL as for SMGs

• Examples for rock-paper-scissors game:
− ⟨⟨1⟩⟩ P≥1 [ F win1 ] - player 1 can ensure

it eventually wins a round of the game
with probability 1 

− ⟨⟨2⟩⟩ Pmax=? [ ¬win1 U win2 ] - the maximum
probability with which player 2 can ensure
it wins before player 1

− ⟨⟨1⟩⟩ Rmax=? [ C≤2K ] - the maximum
expected utility player 1 can ensure
over K rounds (utility = 1/0/−1
for win/draw/lose)

utility1

45
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(t,t)
(r,r), 
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s2

(s,r), (p,s), 
(r,p)

(r,s), (p,r), 
(s,p)

{draw}

{win2}{win1}



rPATL model checking for CSGs

• Extends model checking algorithm for SMGs
− key ingredients are solution of (zero-sum) 2-player CSGs

• E.g. ⟨⟨C⟩⟩P≥q[ F φ ] : max/min reachability probabilities
− compute supσ1∈Σ1 infσ2∈Σ2 Prs

σ1,σ2 (F φ) for all states s
− note that optimal strategies are now randomised
− solution of the 2-player CSG is in PSPACE
− we use a value iteration approach

• Value p(s) for state s is least fixed point of:
− p(s) = 1 if s∈Sat(φ) and otherwise p(s) = val(Z) where:
− Z is the matrix game with zij = Σs’∈S δ(s,(ai,bj))(s’)·p(s’)
− so each iteration requires solution of a matrix game for each state (LP problem of size 

|A|, where A = action set)
46Automatic Verification of Concurrent Stochastic Games, Kwiatkowska et al., FMSD 2021



CSGs in PRISM-games

• CSG model checking implemented in PRISM-games

• Extension of PRISM modelling language
− player specification via partition of modules
− unlike SMGs, all modules move simultaneously
− concurrent updates modelled with multi-action commands, e.g. [r1,r2] m1=0 → … 

and chained updates, e.g. (m2’=m1’)

• Explicit engine implementation
− use off-the-shelf LP solver for minimax LP solution
− apply precomputation algorithms to filter out trivial states, remove states with infinite 

rewards
− experiments with CSGs up to ~3 million states

47PRISM-games 3.0: Stochastic Game Verification with Concurrency, Equilibria and Time, Kwiatkowska et al., In Proc 
CAV 2020

http://qav.comlab.ox.ac.uk/bibitem.php?key=KNPS20


CSGs in PRISM (rock-paper-scissors)
csg

player player1 M1 endplayer
player player2 M2 endplayer

module M1
m1 : [0..3];
[r1] m1=0 → (m1’=1); // rock
[p1] m1=0 → (m1’=2); // paper
[s1] m1=0 → (m1’=3); // scissors
[t1] m1>0 → (m1’=0); // restart

endmodule
module M2 = M1 [ m1=m2, r1=r2 , p1=p2, s1=s2, t1=t2 ] 
endmodule
label "win1" = (m1=1&m2=3) | (m1=2&m2=1) | (m1=3&m2=2); // 
player 1 wins round
rewards “utility1” // utility for player 1

[t1] (m1=1 & m2=3) | (m1=2 & m2=1) | (m1=3 & m2=2) : 1; 
// player 1 wins

[t1] (m1=1 & m2=2) | (m1=2 & m2=3) | (m1=3 & m2=1) : -1; 
// player 2 wins
endrewards

s0

s1

s3

(t,t)
(r,r), 
(p,p), 
(s,s)

s2

(s,r), (p,s), 
(r,p)

(r,s), (p,r), 
(s,p)

{draw}

{win2}{win1}
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Case study: Future markets investor

• Model of interactions between:
− stock market, evolves stochastically
− two investors i1, i2 decide when to invest
− market decides whether to bar investors

• Modelled as a 3-player CSG
− extends simpler model originally from [McIver/Morgan’07]
− investing/barring decisions are simultaneous
− profit reduced for simultaneous investments
− market cannot observe investors’ decisions

• Analysed with rPATL model checking & strategy synthesis
− distinct profit models considered: ‘normal market’, ‘later cash-ins’ and ‘later cash-

ins with fluctuation’
− comparison between turn-based and concurrent game models 49



Case study: Future markets investor

• Example rPATL queries:
− ⟨⟨investor1⟩⟩ Rmax=? [ F finished1 ]
− ⟨⟨investor1,investor2⟩⟩ Rmax=? [ F finished1,2 ]
− i.e. maximising individual/joint profit

• Results (joint profit) – cooperation pays off in a concurrent game model 
− optimal (randomised) investment strategies synthesised

with fluctuations                                                  without

profit1

profit1,2

50



Case studies (selected)

• Turn-based games
− futures market investor model [McIver & Morgan]
− energy management in microgrids [TACAS’12]
− DNS bandwidth amplification attack [Deshpande et al]
− self-adaptive software architectures [Camara, Garlan et al]
− attack-defence scenarios in RFID goods managament [Aslanyan et al]

• Multi-objective turn-based games
− UAV path planning with operator (multi-objective) [ICCPS’15]
− aircraft electric power control (compositional) [TACAS’15]

• Concurrent games
− public good game [CAV 2020]
− intrusion detection policies [QEST 2018]
− Aloha protocol [QEST 2020]

https://www.prismmodelchecker.org/games/casestudies.php 51

https://www.prismmodelchecker.org/games/casestudies.php


Summary Part 1

• Overview of stochastic multiplayer games
− turn-based and concurrent 
− zerosum properties
− logic rPATL (probability, rewards, coalitions)
− model checking algorithms for zerosum
− strategy synthesis

• Covered theory and tool implementation
− PRISM-games 3.0
− combination of value iteration, matrix games and LP solving
− wide variety of case studies analysed

• Part 2: multiple objectives, hence equilibria
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