
Probabilistic model checking for strategic
equilibria-based decision making: Part 1

Prof. Marta Kwiatkowska

Department of Computer Science
University of Oxford

LI 2022, CIRM (virtual) 1-2 February, 2022

Software everywhere
• Users expect: predictability & high integrity in presence of

− component failure, environmental uncertainty, communication delays, …

• Safety, security, reliability, robustness, … can be expressed probabilistically
− “the probability of an airbag failing to deploy within 0.02s is less than 0.001” 2

Probabilistic model checking

Probabilistic model
e.g. Markov chain

Probabilistic temporal
logic specification
e.g. PCTL, CSL, LTL

Result

Quantitative
results

System

Strategy

System
require-
ments

P<0.01 [F≤t crash]

Probabilistic
model checker

e.g. PRISM

Automatic verification and strategy synthesis from temporal logic properties
for probabilistic models

0.5
0.1

0.4

3

Tool support: PRISM

• First algorithms proposed in 1980s
− algorithms [Vardi, Courcoubetis, Yannakakis, Hansson, Jonsson,

de Alfaro…]
− & first implementations

• 2001: general purpose tools released
− PRISM: efficient extensions of symbolic model checking [Kwiatkowska, Norman, Parker,

and many more …]

• Now mature area, of industrial relevance, new model checkers, tool competition
− PRISM successfully used by non-experts in many domains

• distributed algorithms, communication protocols, security protocols, biological systems,
quantum cryptography, planning, robotics, …

− genuine flaws found and corrected in real-world systems
− www.prismmodelchecker.org

4

http://www.prismmodelchecker.org/

But which modelling abstraction?

• Complex decisions!
− human and artificial agents
− distinct goals
− autonomy
− competitive/collaborative

behaviour
− context

• Natural to adopt a
game-theoretic view
− need to account for the uncontrollable behaviour of agents or components, possibly

with differing/opposing goals
− in addition to controllable events

• Many occurrences in practice
− e.g. decision making in economics, security, energy management, …

5

Why games?

• Games serve as abstractions for negotiation, strategic game playing and
incentives to achieve more effective behaviour
− virtual vs human agents, turn-based vs concurrent, zerosum vs non-

zerosum, rational vs non-rational behaviours, individual vs social gain, …

• Relevant for a multitude of autonomous and AI scenarios
− e.g. automated decisions, resource sharing, distributed coordination

protocols, virtual assistants, etc
− even autonomous driving…

6

Driving as a game-theoretic problem

7

• Merging into traffic
difficult for autonomous
cars

• Human drivers are not
behaving rationally!

• Here dynamic games,
and interplay between
long-horizon strategic
game playing with
short-horizon tactical
moves, plus incentives

This mini-lecture course…

• Overview of stochastic multi-player games
− modelling abstraction for competitive/cooperative behaviour, in adversarial

environments
− stochasticity to model e.g. failure, sensor uncertainty
− turn-based and concurrent games

• Property specification: rPATL (based on PCTL and ATL)
− zerosum and equilibria
− model checking and strategy synthesis
− case studies

• Tool support: PRISM-games 3.0
• Challenges and future directions

• Part 1 will cover zerosum games, Part 2 equilibria

8PRISM-games 3.0: Stochastic Game Verification with Concurrency, Equilibria and Time, Kwiatkowska et al., In Proc
CAV 2020

http://qav.comlab.ox.ac.uk/bibitem.php?key=KNPS20

Stochastic multi-player games (SMGs)

• A stochastic game involves
− multiple players (competitive or collaborative behaviour)
− nondeterminism (decisions, control, environment)
− probability (failures, noisy sensors, randomisation)

• Game variants
− turn-based vs concurrent, zero sum vs distinct goals
− here, complete information games

• Widely studied, esp. algorithmic complexity, many applications
− autonomous traffic (risk averse vs risk taking)
− distributed coordination (selfish agents vs unselfish)
− controller synthesis (system vs. environment)
− security (defender vs. attacker)

9

Stochastic multi-player games
• Stochastic multi-player game (SMGs)

− multiple players + nondeterminism + probability
− generalisation of MDPs: each state controlled by unique player

• A (turn-based) SMG is a tuple (Π, S, ⟨Si⟩i∈Π, A, Δ, L):
− Π is a set of n players
− S is a (finite) set of states
− ⟨Si⟩i∈Π is a partition of S
− A is a set of action labels
− Δ : S × A → Dist(S) is a (partial)

transition probability function
− L : S → 2AP is a labelling with

atomic propositions from AP

• NB also called TSGs, concurrent games (CSGs) coming later

b
a ¼

¼
¼

½

¼

✓

1

1
½

1 a
b

1
a
b

10

Rewards

• Annotate SMGs with rewards (or costs)
− real-valued quantities assigned to states and/or transitions

• Wide range of possible uses:
− elapsed time, power consumption, number of messages successfully delivered, net

profit, …

• We work with:
− state rewards: r : S → ℝ!"

− action rewards: r : A → ℝ!"
• Form basis for a variety of quantitative objectives

− expected cumulative (total) reward (denoted C)
− mean-payoff (limit-average) reward (denoted S)
− ratio reward
− (and many more not considered here)

14

Paths, strategies + probabilities

• A path is an (infinite) sequence of connected states in SMG
− i.e. s0a0s1a1… such that ai∈A(si) and Δ(si,ai)(si+1)>0 for all i
− represents a system execution (i.e. one possible behaviour)
− to reason formally, need a probability space over paths

• A strategy for player i ∈ Π resolves choices in Si states
− based on history of execution so far
− i.e. a function σi : (SA)*Si → Dist(A)
− Σi denotes the set of all strategies for player i
− deterministic if σi always gives a Dirac distribution
− memoryless if σi (s0a0…sk) depends only on sk

− also finite-memory, infinite memory, …
− history based or explicit memory representation

• A strategy profile is tuple σ=(σ1,…,σn)
− combining strategies for all n players 15

Paths, strategies + probabilities…

• For a strategy profile σ:
− the game’s behaviour is fully probabilistic
− essentially an (infinite-state) Markov chain
− yields a probability measure Prs

σ

over set of all paths Paths from s

• Allows us to reason about the probability of events
− under a specific strategy profile σ
− e.g. any (ω-)regular property over states/actions

• Also allows us to define expectation of random variables
− i.e. measurable functions X : Paths → ℝ≥0

− Es
σ [X] = ∫Paths X dPrs

σ

− used to define expected costs/rewards…

s1 s2s

16

Property specification: rPATL

• Temporal logic rPATL:
− reward probabilistic alternating temporal logic

• CTL, extended with:
− coalition operator ⟨⟨C⟩⟩ of ATL (Alternating Temporal Logic)
− probabilistic operator P of PCTL, where P⋈q[ψ] means “the probability of ensuring
ψ satisfies ⋈ q”

− reward operator R of PRISM, where R⋈q [ρ] means “the expected value of
ρ satisfies ⋈ q”

• Example:
− ⟨⟨{1,2}⟩⟩ P<0.01 [F≤10 error]
− “players 1 and 2 have a strategy to ensure that the probability of an error occurring

within 10 steps is less than 0.1, regardless of the strategies of other players”

17

rPATL properties

• Syntax (fragment):
φ ::= ⟨⟨C⟩⟩P⋈q[ψ] | ⟨⟨C⟩⟩Rr⋈q[ρ] | ⟨⟨C⟩⟩Rr/c⋈q[ρ]
ψ ::= F a
ρ ::= C | S

• where:
− a∈AP is an atomic proposition, C⊆Π is a coalition of players,⋈∈{≤,<,>,≥},

q∈ ℝ≥0, r and c are reward structures

• ⟨⟨C⟩⟩P≥1[F “end”]
− “players in coalition C have a collective strategy to ensure that the game reaches an

“end”-state almost surely, regardless of the strategies of other players”

“ratio”

“cumulative”

“longrun average”

“reachability”

18

rPATL properties

• Syntax (fragment):
φ ::= ⟨⟨C⟩⟩P⋈q[ψ] | ⟨⟨C⟩⟩Rr⋈q[ρ] | ⟨⟨C⟩⟩Rr/c⋈q[ρ]
ψ ::= F a
ρ ::= C | S

• ⟨⟨C⟩⟩Rfuel<q [C]
− “players in coalition C have a strategy to ensure that the expected total fuel

consumption is less than q, regardless of the strategies of other players”
• ⟨⟨C⟩⟩Rfuel/time≤q [S]

− “players in coalition C have a strategy to ensure that the expected longrun fuel
consumption per time unit is at most q, regardless of the strategies of other players”

“ratio”

“cumulative”

“longrun average”

“reachability”

19

rPATL semantics

• Semantics for most operators is standard
• Just focus on P and R operators…

− use reduction to a stochastic 2-player game

• Coalition game GC for SMG G and coalition C⊆Π
− 2-player SMG where C and Π\C collapse to players 1 and 2

• ⟨⟨C⟩⟩P⋈q[ψ] is true in state s of G iff:
− in coalition game GC:
− ∃σ1∈Σ1 such that ∀σ2∈Σ2 . Prs

σ1,σ2 (ψ) ⋈ q

• Semantics for R operator defined similarly…

20

Examples

b
a ¼

¼
¼

½

¼

✓

1

1
½

1 a
b

1
a
b

⟨⟨ ⟩⟩P≥¼[F ✓]
true in initial state

⟨⟨ ⟩⟩P≥⅓ [F ✓]

⟨⟨ , ⟩⟩P≥⅓ [F ✓]

21

Examples

b
a ¼

¼
¼

½

¼

✓

1

1
½

1 a
b

1
a
b

⟨⟨ ⟩⟩P≥¼[F ✓]
true in initial state

⟨⟨ ⟩⟩P≥⅓ [F ✓]

⟨⟨ , ⟩⟩P≥⅓ [F ✓]

false in initial state

22

Examples

b
a ¼

¼
¼

½

¼

✓

1

1
½

1 a
b

1
a
b

⟨⟨ ⟩⟩P≥¼[F ✓]
true in initial state

⟨⟨ ⟩⟩P≥⅓ [F ✓]
false in initial state

⟨⟨ , ⟩⟩P≥⅓ [F ✓]
true in initial state

23

Verification and strategy synthesis

• The verification problem is:
− Given a game G and rPATL property φ, does G satisfy φ?

• e.g. ⟨⟨C⟩⟩P⋈q[ψ] is true in state s of G iff:
− in coalition game GC:
− ∃σ1∈Σ1 such that ∀σ2∈Σ2 . Prs

σ1,σ2 (ψ) ⋈ q

• The synthesis problem is:
− Given a game G and a coalition property φ, find, if it exists, a coalition strategy σ that

is a witness to G satisfying φ

• Reduce to computing optimal values and winning strategies in 2-player games
− e.g. ⟨⟨C⟩⟩P≥q[ψ] ⇔ supσ1∈Σ1 infσ2∈Σ2 Prs

σ1,σ2 (ψ) ≥q
− complexity NP ∩ coNP (this fragment), cf P for MDPs

Automatic Verification of Competitive Stochastic Systems, Chen et al., In Proc TACAS 2012 24

Verification and strategy synthesis

• The verification problem is:
− Given a game G and rPATL property φ, does G satisfy φ?

• The synthesis problem is:
− Given a game G and a coalition property φ, find, if it exists, a coalition strategy σ that

is a witness to G satisfying φ

• Reduce to computing optimal values and winning strategies in 2-player games
− typically employ value iteration to specified convergence
− both players have optimal strategies
− memoryless deterministic strategies suffice
− (epsilon-optimal) strategies can be typically extracted from optimal values in linear

time

25

Example: Probabilistic reachability

• E.g. ⟨⟨C⟩⟩P≥q[F φ] : max/min reachability probabilities
− compute supσ1∈Σ1 infσ2∈Σ2 Prs

σ1,σ2 (F φ) for all states s
− deterministic memoryless strategies suffice

• Value p(s) for state s is least fixed point of:

• Computation (value iteration):
− start from zero, propagate probabilities backwards
− guaranteed convergence wrt “usual” termination criteria

p(s) =
1 if s∈Sat(φ)

maxa∈A(s) Σs’∈S δ(s,a)(s’)·p(s’) if s∈S1\Sat(φ)
mina∈A(s) Σs’∈S δ(s,a)(s’)·p(s’) if s∈S2\Sat(φ)

26

Multi-objective properties

• May need to explore trade-offs
− e.g. between performance and resource usage: maximise probability of success and

minimise energy usage

• Consider conjunctions of objectives (for stopping games), also known as
multidimensional
− expected total rewards, mean-payoffs or ratios
− almost sure mean-payoffs/ratios

• Example
− “the expected longrun average fuel consumption and

profit are simultaneously at least v1and v2, respectively ”
⟨⟨C⟩⟩ (Rfuel

≥v1 [S] & Rprofit
≥v2 [S])

• NB Boolean combinations may be needed for implication
⟨⟨C⟩⟩ (Rfuel/time

≥v1 [S] ⇒ Rprofit
≥v2 [S])

27Compositional Strategy Synthesis for Stochastic Games with Multiple Objectives, Basset et al., Info&Comp 2018

obj1

ob
j 2

Multi-objective properties

• For MDPs, optimal strategies exist but randomised strategies may be needed
• For stochastic games:

− optimal strategies may not exist
− infinite memory may be required

• Therefore
− work with restricted games (e.g. stopping)
− use stochastic memory update representation [Brazdil et al, 2014]

• exponentially more succinct than deterministic update
• equivalent power if infinite memory allowed

• Decision procedure
− complexity is NP ∩ coNP
− compute epsilon-approximations of Pareto sets and epsilon-optimal strategies, fixed

point reached in finitely many steps

29

Case study: Energy management

• Energy management protocol for Microgrid
− Microgrid: local energy management
− randomised demand management protocol

[Hildmann/Saffre'11]
− probability: randomisation, demand model, …

• Existing analysis
− simulation-based
− assumes all clients are unselfish

• Our analysis
− stochastic multi-player game
− clients can cheat (and cooperate)
− exposes protocol weakness
− propose/verify simple fix

All follow alg.

No use of alg.

Deviations of
varying size

Automatic Verification of Competitive Stochastic Systems, Chen et al., In Proc TACAS 2012 30

Case study: Dynamic power management

• Synthesis of dynamic power management schemes
− for an IBM TravelStar VP disk drive
− 5 different power modes: active, idle, idlelp, stby, sleep
− power manager controller bases decisions on current power mode, disk request

queue, etc.

• Build controllers that
− minimise energy

consumption, subject to
constraints on e.g.

− probability that a request
waits more than K steps

− expected number of
lost disk requests

Quantitative Multi-Objective Verification for Probabilistic Systems. Forejt et al, In (TACAS'11),
volume 6605 of LNCS, pages 112-127, Springer. March 2011.

http://qav.comlab.ox.ac.uk/bibitem.php?key=FKN+11

Case study: Aircraft power distribution

• Consider Honeywell high-voltage AC (HVAC) subsystem
− power routed from generators to

buses through switches
− represent as a stochastic game,

modelling competition for buses,
with stochasticity used to model
failures

− specify control objectives in LTL
using longrun average

− e.g. “maximise uptime of the buses
and minimise failure rate”

• Solution (PRISM-games 2.0)
− compositional strategy synthesis
− enable the exploration of trade-offs between uptime of buses and failure

rate

Compositional Controller Synthesis for Stochastic Games, Basset et al., In Proc
CONCUR 2014

http://www.veriware.org/bibitem.php?key=BKW14

Case study: UAV path planning

• Human operator
− sensor tasks
− high-level commands for piloting

• UAV autonomy
− low-level piloting function

• Quantitative mission objectives
− road network surveillance with the minimal

time, fuel, or restricted operating zone
visits

• Analysis of trade-offs
− consider operator fatigue and workload
− multi-objective, MDP and SMG models

Controller Synthesis for Autonomous Systems Interacting with Human Operators. L. Feng
et al, In Proc. ICCPS 2015, ACM

http://www.veriware.org/bibitem.php?key=FWHT15

Concurrent stochastic games

• Concurrent stochastic games (CSGs)
− players choose actions concurrently
− jointly determines (probabilistic) successor state
− generalises turn-based stochastic games

• Key motivation:
− more realistic model of components operating concurrently, making action choices

without knowledge of others

• Formally
− set of n players N, state space S, actions Ai for player i
− transition probability function δ : S×A → Dist(S)
− where A = (A1∪{⊥}) × … × (An∪{⊥})
− strategies σi : FPath → Dist(Ai), strategy profiles σ=(σ1,…,σn)
− probability measure Prs

σ, expectations Es
σ(X)

41

Example CSG: rock-paper-scissors

• Rock-paper-scissors game
− 2 players repeatedly draw

rock (r), paper (p), scissors (s),
then restart the game (t)

− rock > scissors, paper > rock,
scissors > paper,

− otherwise draw

• Example CSG
− 2 players: N={1,2}
− A1 = A2 = {r,p,s,t}
− NB: no probabilities here

s0

s1

s3

(t,t)
(r,r),
(p,p),
(s,s)

s2

(s,r), (p,s),
(r,p)

(r,s), (p,r),
(s,p)

{draw}

{win2}{win1}

42

Matrix games

• Matrix games
− finite, one-shot, 2-player, zero-sum games
− utility function ui : A1×A2 → ℝ for each player i
− represented by matrix Z where zij = u1(ai,bj) = -u2(ai,bj)

• Example:
− one round of rock-paper-scissors

• Optimal (player 1) strategy via LP solution (minimax):
− compute value val(Z): maximise value v subject to:
− v ≤ xp-xs

v ≤ xs-xr,
v ≤ xs-xp
xr+xp+xs=1
xr≥0, xp≥0, xs≥0

r p s

Z =
r
p
s

0 −1 1
1 0 −1
−1 1 0

Optimal strategy (randomised):
(xr,xp,xs) = (⅓,⅓,⅓)

43

rPATL for CSGs

• We use the same logic rPATL as for SMGs

• Examples for rock-paper-scissors game:
− ⟨⟨1⟩⟩ P≥1 [F win1] - player 1 can ensure

it eventually wins a round of the game
with probability 1

− ⟨⟨2⟩⟩ Pmax=? [¬win1 U win2] - the maximum
probability with which player 2 can ensure
it wins before player 1

− ⟨⟨1⟩⟩ Rmax=? [C≤2K] - the maximum
expected utility player 1 can ensure
over K rounds (utility = 1/0/−1
for win/draw/lose)

utility1

45

s0

s1

s3

(t,t)
(r,r),
(p,p),
(s,s)

s2

(s,r), (p,s),
(r,p)

(r,s), (p,r),
(s,p)

{draw}

{win2}{win1}

rPATL model checking for CSGs

• Extends model checking algorithm for SMGs
− key ingredients are solution of (zero-sum) 2-player CSGs

• E.g. ⟨⟨C⟩⟩P≥q[F φ] : max/min reachability probabilities
− compute supσ1∈Σ1 infσ2∈Σ2 Prs

σ1,σ2 (F φ) for all states s
− note that optimal strategies are now randomised
− solution of the 2-player CSG is in PSPACE
− we use a value iteration approach

• Value p(s) for state s is least fixed point of:
− p(s) = 1 if s∈Sat(φ) and otherwise p(s) = val(Z) where:
− Z is the matrix game with zij = Σs’∈S δ(s,(ai,bj))(s’)·p(s’)
− so each iteration requires solution of a matrix game for each state (LP problem of size

|A|, where A = action set)
46Automatic Verification of Concurrent Stochastic Games, Kwiatkowska et al., FMSD 2021

CSGs in PRISM-games

• CSG model checking implemented in PRISM-games

• Extension of PRISM modelling language
− player specification via partition of modules
− unlike SMGs, all modules move simultaneously
− concurrent updates modelled with multi-action commands, e.g. [r1,r2] m1=0 → …

and chained updates, e.g. (m2’=m1’)

• Explicit engine implementation
− use off-the-shelf LP solver for minimax LP solution
− apply precomputation algorithms to filter out trivial states, remove states with infinite

rewards
− experiments with CSGs up to ~3 million states

47PRISM-games 3.0: Stochastic Game Verification with Concurrency, Equilibria and Time, Kwiatkowska et al., In Proc
CAV 2020

http://qav.comlab.ox.ac.uk/bibitem.php?key=KNPS20

CSGs in PRISM (rock-paper-scissors)
csg

player player1 M1 endplayer
player player2 M2 endplayer

module M1
m1 : [0..3];
[r1] m1=0 → (m1’=1); // rock
[p1] m1=0 → (m1’=2); // paper
[s1] m1=0 → (m1’=3); // scissors
[t1] m1>0 → (m1’=0); // restart

endmodule
module M2 = M1 [m1=m2, r1=r2 , p1=p2, s1=s2, t1=t2]
endmodule
label "win1" = (m1=1&m2=3) | (m1=2&m2=1) | (m1=3&m2=2); //
player 1 wins round
rewards “utility1” // utility for player 1

[t1] (m1=1 & m2=3) | (m1=2 & m2=1) | (m1=3 & m2=2) : 1;
// player 1 wins

[t1] (m1=1 & m2=2) | (m1=2 & m2=3) | (m1=3 & m2=1) : -1;
// player 2 wins
endrewards

s0

s1

s3

(t,t)
(r,r),
(p,p),
(s,s)

s2

(s,r), (p,s),
(r,p)

(r,s), (p,r),
(s,p)

{draw}

{win2}{win1}

48

Case study: Future markets investor

• Model of interactions between:
− stock market, evolves stochastically
− two investors i1, i2 decide when to invest
− market decides whether to bar investors

• Modelled as a 3-player CSG
− extends simpler model originally from [McIver/Morgan’07]
− investing/barring decisions are simultaneous
− profit reduced for simultaneous investments
− market cannot observe investors’ decisions

• Analysed with rPATL model checking & strategy synthesis
− distinct profit models considered: ‘normal market’, ‘later cash-ins’ and ‘later cash-

ins with fluctuation’
− comparison between turn-based and concurrent game models 49

Case study: Future markets investor

• Example rPATL queries:
− ⟨⟨investor1⟩⟩ Rmax=? [F finished1]
− ⟨⟨investor1,investor2⟩⟩ Rmax=? [F finished1,2]
− i.e. maximising individual/joint profit

• Results (joint profit) – cooperation pays off in a concurrent game model
− optimal (randomised) investment strategies synthesised

with fluctuations without

profit1

profit1,2

50

Case studies (selected)

• Turn-based games
− futures market investor model [McIver & Morgan]
− energy management in microgrids [TACAS’12]
− DNS bandwidth amplification attack [Deshpande et al]
− self-adaptive software architectures [Camara, Garlan et al]
− attack-defence scenarios in RFID goods managament [Aslanyan et al]

• Multi-objective turn-based games
− UAV path planning with operator (multi-objective) [ICCPS’15]
− aircraft electric power control (compositional) [TACAS’15]

• Concurrent games
− public good game [CAV 2020]
− intrusion detection policies [QEST 2018]
− Aloha protocol [QEST 2020]

https://www.prismmodelchecker.org/games/casestudies.php 51

https://www.prismmodelchecker.org/games/casestudies.php

Summary Part 1

• Overview of stochastic multiplayer games
− turn-based and concurrent
− zerosum properties
− logic rPATL (probability, rewards, coalitions)
− model checking algorithms for zerosum
− strategy synthesis

• Covered theory and tool implementation
− PRISM-games 3.0
− combination of value iteration, matrix games and LP solving
− wide variety of case studies analysed

• Part 2: multiple objectives, hence equilibria

53

Acknowledgements

• My group and collaborators in this work
• Project funding

− ERC Advanced Grant
− EPSRC Mobile Autonomy Programme Grant

• See also
− PRISM www.prismmodelchecker.org

• ERC Advanced Grant
“From FUNction-based TO MOdel-based automated probabilistic reasoning
for DEep Learning”

http://www.prismmodelchecker.org/

