Mathematical foundations of automatic differentiation

A tutorial - part 1

Matthijs Vákár

(e)

In a nutshell: some motivation

Example: regressions and derivatives

```
cost(w, b) = some program (* that computes e.g. \Sigma (b + w * x ( 
```

Follow the derivative downhill

> Best way to calculate derivatives of programs $=$
> Automatic Differentiation (AD)
> (AKA backpropagation)

Eric is Thirsty
Machine Learning For Kids: Gradient Descent

AD: many perspectives

Automatic differentiation: a long history

Robin Edwin Wengert 1964 (forward mode)

Seppo Linnainmaa 1976 (reverse mode)

Bart Speelpenning 1980 (reverse mode)
and
many many more!
-> scientific computing community
-> machine learning community
-> programming languages community

My perspective in this tutorial:
 Combinatory Homomorphic Automatic Differentiation

- Programming languages as freely generated categories
- Universal property $\left.\longmapsto \begin{array}{l}\text { AD definition } \\ \text { semantics } \\ \text { correctness proof }\end{array}\right\}$ as 3 canonical homomorphic functors

Some of my fantastic collaborators!

supporting GPU implementation

Some topics we'll cover

- In depth: why care?
- Basics of AD: different modes
- Programming languages as free categories
- Linear types for accumulation effect
- Categorical structure of Σ-type categories
- AD as a homomorphic functor
- Correctness via categorical logical relations
- Deriving dual numbers CHAD from regular CHAD
- Implementation challenges
- Generalizing CHAD beyond AD

In depth: why compute derivatives?

Why compute derivatives?

- optimization

$$
\operatorname{argmin}_{x} f(x) \quad \text { [gradient descent \& its variants] }
$$

- Bayesian inference

$$
\mathrm{p}(\theta \mid y)=\mathrm{p}(\theta, y) / \mathrm{S}(\theta, y) \mathrm{d} \theta \quad[\mathrm{HMC}, \mathrm{ADVI},
$$

Gibbs with Gradients]

- solving systems of non-linear equations

$$
f(x)=o
$$

[Newton-Krylov methods]

Why compute derivatives?

- optimization
e.g. fitting neural nets, MLE in statistics
- Bayesian inference
e.g. applied statistics and probabilistic ML
- solving systems of non-linear equations
e.g. solve discretizations of PDEs arising in physics

Any more use cases for derivatives?

Computing derivatives?

What is a derivative? Various perspectives

- Geometry: best linear approx. Df: $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ to a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ (i.e. action of function on tangent vectors)
algorithm: ???
- Analysis: limit of finite differences $D f(x)(v)=\lim _{\delta \rightarrow 0} \frac{f(x+\delta \cdot v)-f(x)}{\delta}$ algorithm: finite differencing
- Algebra: symbolic transformation governed by certain rules
- chain rule
- rules giving derivative for primitive operations (e.g. product rule)
algorithm: automatic differentiation

Want to compute derivatives: some desiderata

no custom derivative code for

- low developer cost \quad each application
- highly efficient in time and space
- parallelism exploiting (preserving)
$\substack{\text { c.f. } \\ \text { Wang, Zheng, Decker, Wu, Essertel, Rompf }}$
- generate purely
functional code
- correct (proofs, tests)
 reuse existing compiler
\square infrastructures avoid interpreter overhead

- numerically stable (floating point arithmetic)
- extensible to new features / modular \qquad
- generally applicable

Any more desiderata?

Finite differencing

Finite differencing

- differentiation as a higher-order function:

$$
\left[\begin{array}{c|c|c}
\frac{\partial u_{1}}{\partial x_{1}} & \cdots & \frac{\partial u_{1}}{\partial x_{n}} \\
\vdots & \ddots & \vdots \\
\frac{\partial u_{m}}{\partial x_{1}} & \cdots & \frac{\partial u_{m}}{\partial x_{n}}
\end{array}\right]
$$

```
diff :: (Vect a, Vect b) =>
```

diff :: (Vect a, Vect b) =>
(a -> b) -> a -> a -> b
(a -> b) -> a -> a -> b
diff f x v = (f (x + delta * v) - f x) / delta
diff f x v = (f (x + delta * v) - f x) / delta
where delta = 0.00000001

```
                                    where delta = 0.00000001
```

- problems?
- numerical stability
- adding small number to large number
- subtracting two numbers that are almost the same
- time inefficiency for high dimensional input
- $O(n)$ time complexity overhead over $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ for full derivative. Why?
- same asymptotic space complexity as f (other than storing derivative values)

Automatic differentiation (AD)

Forward mode AD

AD - basic idea - forward mode

- differentiation as a metaprogram:

$$
\left[\begin{array}{c|c|c}
\frac{\partial u_{1}}{\partial x_{1}} & \cdots & \frac{\partial u_{1}}{\partial x_{n}} \\
\vdots & \ddots & \vdots \\
\frac{\partial u_{m}}{\partial x_{1}} & \cdots & \frac{\partial u_{m}}{\partial x_{n}}
\end{array}\right]
$$

```
```

diff :: (Vect a, Vect b) =>

```
```

diff :: (Vect a, Vect b) =>
Code (a -> b) -> Code (a -> a -o b)
Code (a -> b) -> Code (a -> a -o b)
diff (f . g) = \x v -> diff f (g x) (diff g x v)
diff (f . g) = \x v -> diff f (g x) (diff g x v)
diff sin = \x v -> cos x * v
diff sin = \x v -> cos x * v
diff (*) = \x v -> x_1 * v_2 + x_2 * v_1
diff (*) = \x v -> x_1 * v_2 + x_2 * v_1
diff (+) = \x v -> (+) v

```
```

diff (+) = \x v -> (+) v

```
```

- much more numerically stable!
- any problems?
- chain rule: often need g as well as its $D g!$-> pair g with $D g$
- common subcomputations in g and $D g \quad$-> share between g and $D g$

AD - basic idea - forward mode

- sharing and pairing the primal and tangent computations g and $D g$

```
diff :: (Vect a, Vect b) =>
    Code (a -> b) -> Code (a -> b X (a -o b)))
diff (f . g) = \x -> let (g1, g2) = diff g x
    (f1, \v -> f2 (g2 v))
diff sin = \x -> ( sin x, \v -> cos x * v)
diff (*) = \x -> ((*) x, \v -> x_1 * v_2 + x_2 * v_1)
diff (+) = \x -> ((+) x, \v -> (+) v)
```

- exercise: derivative of tuples \& let-binding! preserve sharing!

```
AD - basic idea - forward mode
diff :: (Vect a, Vect b) =>
    Code (a -> b) -> Code (a -> b X (a -o b)))
diff x_i = \x -> (x_i, \v -> v_i)
diff s_i = \x -> let (s1, s2) = diff s x in
    (s1_i, \v -> (s2 v)_i)
diff (s, t) = \x -> let (s1, s2) = diff s x
    (t1, t2) = diff t x in
    ((s1, t1), \v -> (s2 v, t2 v))
diff (let x = s in t) = \x -> let (s1, s2) = diff s x
    (t1, t2) = diff t (x, s1) in
    (t1, \v -> t2 (v, s2 v))
- complexity:
```

$\left[\begin{array}{c|c|c}\frac{\partial u_{1}}{\partial x_{1}} & \cdots & \frac{\partial u_{1}}{\partial x_{n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial u_{m}}{\partial x_{1}} & \cdots & \frac{\partial u_{m}}{\partial x_{n}}\end{array}\right]$

- $O(n)$ time complexity overhead over $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ for full derivative. Why?
- space complexity overhead over f proportional to all intermediates of f. Why?
- generates code of size $O($ size (f)). Why?

Forward AD example

Original program

```
x : real + t : real }X\mathrm{ real }\times\mathrm{ real
```

```
let y = 2 * x
    z = x * y
    w = cos z
    v = (y , z ,w) in
    v
```

Forward AD transformed program

```
x : real + Dt : real }X\mathrm{ real }\times\mathrm{ real }
                                    (real -o real }\times\mathrm{ real }\times\mathrm{ real)
```

let $y=2 * x$
$z=x * y$
$\mathrm{w}=\cos \mathrm{z}$
$v=(y, z, w) i n$
(v, \x' ->

$$
\text { let } \left.\begin{array}{rl}
y^{\prime} & =2 * x^{\prime} \\
z^{\prime} & =x^{\prime} * y+x^{*} y^{\prime} \\
w^{\prime} & =-\sin z * z^{\prime} \\
v^{\prime} & =\left(y^{\prime}, z^{\prime}, w^{\prime}\right) \text { in } \\
\left.v^{\prime}\right)
\end{array}\right\} \text { tangents }
$$

Reverse mode AD

Elliott
Abadi, Wei, Plotkin, Vytiniotis, Belov
Vákár
Vákár, Smeding
Lucatelli Nunes, Vákár

AD - recall - forward mode

- compute derivative $D f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}-o \mathbb{R}^{m}$ for $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}\left[\frac{\partial u_{m}}{\partial x_{1}} \cdots \frac{\partial u_{m}}{\partial x_{n}}\right]$
computes column

```
diff :: (Vect a, Vect b) =>
    Code (a -> b) -> Code (a -> b X (a -o b)))
diff (f . g) = \x -> let (g1, g2) = diff g x
                                (f1, f2) = diff f g1 in
    (f1, \v -> f2 (g2 v))
diff sin = \x -> ( sin x, \v -> cos x * v)
diff (*) = \x -> ((*) x, \v -> x_1 * v_2 + x_2 * v_1)
diff (+) = \x -> ((+) x, \v -> (+) v)
```


AD - basic idea - reverse mode

transposed

- computederivative $D^{t} f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}-o \mathbb{R}^{n}$ for $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$

$$
\left[\begin{array}{ccc}
\frac{\partial u_{1}}{\partial x_{1}} & \cdots & \frac{\partial u_{1}}{\partial x_{n}} \\
\vdots & \ddots & \vdots \\
\frac{\partial u_{m}}{\partial x_{1}} & \cdots & \frac{\partial u_{m}}{\partial x_{n}}
\end{array}\right]
$$

computes row

```
diff :: (Vect a, Vect b) =>
    Code (a -> b) -> Code (a -> b X (b -o a)))
\(\operatorname{diff}(f . g) \quad=\quad \backslash x->\operatorname{let}(g 1, g 2)=\operatorname{diff} g x\)
    (f1, \v -> g2 (f2 v))
diff \(\sin \quad=\quad \backslash x->(\sin x, \backslash v->\cos x * v)\)
diff (*) \(=\quad \backslash x->\left((*) x, \backslash v->\left(x \_1 * v, x \_2 * v\right)\right)\)
diff (+) \(=\quad \backslash x->((+) x, \backslash v->(v, v))\)
```


AD - basic idea - reverse mode

```
diff :: (Vect a, Vect b) =>
    Code (a -> b) -> Code (a -> b X (b -o a)))
```

$$
\left[\begin{array}{ccc}
\frac{\partial u_{1}}{\partial x_{1}} & \cdots & \frac{\partial u_{1}}{\partial x_{n}} \\
\vdots \vdots & \ddots & \vdots \\
\frac{\partial u_{m}}{\partial x_{1}} & \cdots & \frac{\partial u_{m}}{\partial x_{n}}
\end{array}\right]
$$

computes row
diff s_i
$=\quad|x-\rangle$ let $(s 1, s 2)=\operatorname{diff} s x$ in ($s 1 _i, \quad \backslash v->s 2$ (v~i))
diff (s, t)
$=\quad \backslash x->$ let $(s 1, s 2)=\operatorname{diff} s x$ (t1, t2) $=$ diff $t x$ in ((s1, t1), \v -> s2 v_1 + t2 v_2))
diff (let $x=s$ in $t)=$

$$
\begin{aligned}
\langle x-\rangle \operatorname{let}(s 1, s 2) & =\operatorname{diff} s x \\
(t 1, t 2) & =\operatorname{diff} t(x, s 1) \text { in }
\end{aligned}
$$

(t1,

$$
\begin{aligned}
\backslash v \rightarrow & \text { let }(\mathrm{t} 21, \mathrm{t} 22)=\mathrm{t} 2 \mathrm{v} \text { in } \\
& \mathrm{t} 21
\end{aligned}+\mathrm{s} 2 \mathrm{t} 22 \mathrm{t}
$$

where $v \sim i=(\overbrace{0, \ldots, 0}^{i-1}, v, 0, \ldots, 0)$

AD - basic idea - reverse mode

more about this later

computes row

- complexity (assuming a sparse vector representation for cotangents):
- $O(m)$ time complexity overhead over $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ for full derivative. Why?
- space complexity overhead over f proportional to all intermediates of f. Why?
- generates code of size $O(\operatorname{size}(f))$. Why?

Reverse AD example

Original program

```
x : real X real X real X real
        f t : real
let y = x1 * x4 + 2 * x2
    z = y * x3
    w = z + x4
    u1 = sin w
    u2 = cos w
    v = u1 + u2 in
    v
```


Reverse AD transformed program

```
x : real }X\mathrm{ real }X\mathrm{ real }X\mathrm{ real
    f t : real }X\mathrm{ (real -o real }X\mathrm{ real }X\mathrm{ real }
real)
```

```
let y = x1 * x4 + 2 * x2
    z = y * x3
    w = z + x4
    u1 = sin w
    u2 = cos w
    v = u1 + u2 in
    (v, \v' -> 
                u1' = v'
                w' = cos w * u1' - sin w * u2'
    z' = w
    y' = z' * x3
    x1' = y' * x4
    x2' = 2 * y'
    x3' = y * z'
    x4' = x1 * y' + w' in
    (x1', x2', x3', x4'))
```


Dual numbers forward mode AD

Huot, Staton, Vákár

AD - basic idea - fwd dual numbers

- compute derivative

$$
\left[\begin{array}{cc|c}
\frac{\partial u_{1}}{\partial x_{1}} & \cdots & \frac{\partial u_{1}}{\partial x_{n}} \\
\vdots & \ddots & \vdots \\
\frac{\partial u_{m}}{\partial x_{1}} & \cdots & \frac{\partial u_{m}}{\partial x_{n}}
\end{array}\right]
$$

computes column

```
diff :: (Vect a, Vect b) =>
    Code (a -> b) -> Code ((a X a) -> (b X b))
diff (f . g) = diff f . diff g
diff sin = \(x, x') -> ( sin x, x' * cos x)
diff (*) = \(x, x') -> ((*) x, x_1 * x'_2 + x_2 * x'_1)
diff (+) = \(x, x') -> ((+) x, (+) x')
```

```
AD - basic idea - fwd dual numbers
diff :: (Vect a, Vect b) =>
    Code (a -> b) -> Code ((a X a) -> (b × b))
diff x_i = \(x, x') -> (x_i, x'_i)
    [\begin{array}{cll:c}{\frac{\partial\mp@subsup{u}{1}{}}{\partial\mp@subsup{x}{1}{}}}&{\cdots}&{\frac{\partial\mp@subsup{u}{1}{}}{\partial\mp@subsup{x}{n}{}}}\\{\vdots}&{\ddots}&{\vdots}\\{\frac{\partial\mp@subsup{u}{m}{}}{\partial\mp@subsup{x}{1}{}}}&{\cdots}&{\frac{\partial\mp@subsup{u}{m}{}}{\partial\mp@subsup{x}{n}{}}}\end{array}]
    computes column
diff s_i = \(x, x') -> let (s1, s2) = diff s (x, x') in
    (s1_i, s2_i)
diff (s, t) = \(x, x') -> let (s1, s2) = diff s (x, x')
                                    (t1, t2) = diff t (x, x') in
    ((s1, t1),(s2, t2))
diff (let x = s in t) = \(x, x') -> let (s1, s2) = diff s (x, x') in
                                diff t ((x, s1), (x', s2))
```

- complexity:
- $O(n)$ time complexity overhead over $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ for full derivative. Why?
- $O(1)$ space complexity overhead over f. Why?
- generates code of size $O(\operatorname{size}(f))$. Why?

Dual numbers forward AD example

Original program

```
x : real + t : real }
        real }
        real
```

```
let \(y=2{ }^{*} x\)
    \(z=x{ }^{*} y\)
    w \(=\cos z\)
    v = (y , z ,w) in
    v
```

Dual numbers forward AD transformed program

```
(x, x') : real X real + Dt : (real X real)
                                    (real }\times real
```

\times (real \times real)

$$
\text { let } \begin{aligned}
&\left(y, y^{\prime}\right)=\left(2 * x, 2 * x^{\prime}\right) \\
&\left(z, z^{\prime}\right)=\left(x * y, x^{*} y+x * y^{\prime}\right) \\
&\left(w, w^{\prime}\right)=\left(\cos z,-\sin z * z^{\prime}\right) \\
&\left(v, v^{\prime}\right)=\left((y, z, w),\left(y^{\prime}, z^{\prime}, w^{\prime}\right)\right) \text { in } \\
&\left(v, v^{\prime}\right)
\end{aligned}
$$

Dual numbers reverse mode AD

```
Kmett
Abadi, Plotkin?
Mak, Ong?
Brunel, Mazza, Pagani
Huot, Staton, Vákár
Mazza, Pagani
Krawiec, Peyton Jones, Krishnaswami, Ellis, Eisenberg, Fitzgibbon
```


Dual numbers reverse AD example

Original program

```
x : real X real X real X real
        f t : real
```

```
let y = x1 * x4 + 2 * x2
    z = y * x3
    w = z + x4
    u1 = sin w
    u2 = cos w
    v = u1 + u2 in
    V
```

aargh! duplicate computation from w' onwards, for both contributions!

Brunel, Mazza, Pagani solution: linear factoring rule wk w' + wk w'' -> wk (w' + w'') i.e. custom interpreter

Dual numbers reverse AD transformed program

```
x : real X real }X\mathrm{ real }X\mathrm{ real
    f t : real X (real -o
    real }\times\mathrm{ real }\times\mathrm{ real }\times\mathrm{ real)
```

let $y=x 1$ * $x 4+2$ * $x 2$
$z=y$ * $x 3$
$\mathrm{w}=\mathrm{z}+\mathrm{x} 4$
$u 1=\sin w$
$u 2=\cos w$
$v=u 1+u 2$ in
(v, \v' -> let $u 1^{\prime}=v^{\prime}$
let $u 2^{\prime}=v^{\prime}$ in
(let $\mathrm{w}^{\prime}=\cos \mathrm{w}^{*} \mathrm{u} 1^{\prime}$
let $z^{\prime}=W^{\prime}$
let $y^{\prime}=z^{\prime} * x 3$ in
(y^{\prime} * $\mathrm{x} 4,2$ * $\mathrm{y}^{\prime}, \mathrm{y}$ * $\mathrm{z}^{\prime}, \quad \mathrm{x} 1$ * $\left.\mathrm{y}^{\prime}+\mathrm{w}^{\prime}\right)$)
+ (let $\mathrm{w}^{\prime}=-\sin \mathrm{w}^{*} \mathrm{u} 2^{\prime}$
let $z^{\prime}=W^{\prime}$
let $y^{\prime}=z^{\prime} * x 3$ in
(y' * x4, 2 * y', y * z', x1 * y' + w')))

