
Mathematical foundations of
automatic differentiation

A tutorial - part 1

Matthijs Vákár

In a nutshell: some motivation

2/14

Example: regressions and derivatives

3

cost(w, b) = some program (* that computes e.g. Σ
i
(b + w * x

i
- y

i
)²

*)

Follow the derivative downhill

Best way to calculate derivatives of programs
=

Automatic Differentiation (AD)
(AKA backpropagation)

AD: many perspectives

5/14

Automatic differentiation: a long history

Robin Edwin Wengert
1964 (forward mode)

Bart Speelpenning
1980 (reverse mode)

Seppo Linnainmaa
1976 (reverse mode)

-> scientific computing community

-> machine learning community

-> programming languages community

and
many
many
more!

My perspective in this tutorial:
Combinatory Homomorphic Automatic Differentiation

● Programming languages as freely generated categories

 AD definition
● Universal property semantics

 correctness proof
as 3 canonical homomorphic functors

Fernando Lucatelli Nunes Tom Smeding

Mathieu HuotSam StatonGordon Plotkin

Some of my fantastic collaborators!

Gabriele Keller Trevor McDonell

CHAD for
expressive
languages

+
mathematical
foundations

efficiency and
complexity of

CHAD
+

(GPU)
implementation

supporting GPU
implementation

reverse CHAD for
recursion

crucial
initial ideas in
context of dual

numbers
forward AD

Some topics we'll cover
● In depth: why care?

● Basics of AD: different modes

● Programming languages as free categories

● Linear types for accumulation effect

● Categorical structure of Σ-type categories

● AD as a homomorphic functor

● Correctness via categorical logical relations

● Deriving dual numbers CHAD from regular CHAD

● Implementation challenges

● Generalizing CHAD beyond AD

In depth: why compute derivatives?

10

Why compute derivatives?

● optimization

argminx f(x) [gradient descent & its variants]

11

● Bayesian inference

p(θ| y) = p(θ, y) / ∫ p(θ, y) dθ [HMC, ADVI,
 Gibbs with Gradients]

● solving systems of non-linear equations

f(x) = 0 [Newton-Krylov methods]

Why compute derivatives?

● optimization

e.g. fitting neural nets, MLE in statistics

12

● Bayesian inference

e.g. applied statistics and probabilistic ML

● solving systems of non-linear equations

e.g. solve discretizations of PDEs arising in physics

Any more use cases for derivatives?

13

Computing derivatives?

14

What is a derivative? Various perspectives

● Analysis: limit of finite differences

15

● Algebra: symbolic transformation governed by certain rules
○ chain rule
○ rules giving derivative

for primitive operations
(e.g. product rule)

● Geometry: best linear approx. to a function
 (i.e. action of function on tangent vectors)

algorithm: finite differencing

algorithm: automatic differentiation

algorithm: ???

Want to compute derivatives: some desiderata

● low developer cost

17

● highly efficient in time and space

● parallelism exploiting (preserving)

● correct (proofs, tests)

● numerically stable (floating point arithmetic)

● extensible to new features / modular

● generally applicable

generate purely
functional code

reuse existing compiler
infrastructures

avoid interpreter overhead

no custom derivative code for
each application

local, well-typed code
transformation

c.f.
Wang, Zheng, Decker, Wu, Essertel, Rompf

Any more desiderata?

18

Finite differencing

19

Finite differencing

● differentiation as a higher-order function:

20

diff :: (Vect a, Vect b) =>
 (a -> b) -> a -> a -> b
diff f x v = (f (x + delta * v) - f x) / delta
 where delta = 0.00000001

● problems?

● numerical stability
○ adding small number to large number
○ subtracting two numbers that are almost the same

● time inefficiency for high dimensional input
○ O(n) time complexity overhead over for full derivative. Why?
○ same asymptotic space complexity as f (other than storing derivative values)

computes column

Automatic differentiation (AD)

21

Forward mode AD

22

Elliott
Vákár
Vákár, Smeding
Lucatelli Nunes, Vákár

○ chain rule: often need g as well as its Dg! -> pair g with Dg

AD - basic idea - forward mode

● differentiation as a metaprogram:

23

diff :: (Vect a, Vect b) =>
 Code (a -> b) -> Code (a -> a -o b)
diff (f . g) = \x v -> diff f (g x) (diff g x v)
diff sin = \x v -> cos x * v
diff (*) = \x v -> x_1 * v_2 + x_2 * v_1
diff (+) = \x v -> (+) v

 ⋮ ⋮ ⋮

● much more numerically stable!

● any problems?

○ common subcomputations in g and Dg -> share between g and Dg

computes column

AD - basic idea - forward mode
● sharing and pairing the primal and tangent

computations g and Dg

24

diff :: (Vect a, Vect b) =>
 Code (a -> b) -> Code (a -> b ✕ (a -o b)))

diff (f . g) = \x -> let (g1, g2) = diff g x
 (f1, f2) = diff f g1 in
 (f1, \v -> f2 (g2 v))

diff sin = \x -> (sin x, \v -> cos x * v)

diff (*) = \x -> ((*) x, \v -> x_1 * v_2 + x_2 * v_1)

diff (+) = \x -> ((+) x, \v -> (+) v)

 ⋮ ⋮ ⋮
 ● exercise: derivative of tuples & let-binding! preserve sharing!

computes column

diff :: (Vect a, Vect b) =>
 Code (a -> b) -> Code (a -> b ✕ (a -o b)))

diff x_i = \x -> (x_i, \v -> v_i)

diff s_i = \x -> let (s1, s2) = diff s x in
 (s1_i, \v -> (s2 v)_i)

diff (s, t) = \x -> let (s1, s2) = diff s x
 (t1, t2) = diff t x in
 ((s1, t1), \v -> (s2 v, t2 v))

diff (let x = s in t) = \x -> let (s1, s2) = diff s x
 (t1, t2) = diff t (x, s1) in
 (t1, \v -> t2 (v, s2 v))

● complexity:
○ O(n) time complexity overhead over for full derivative. Why?
○ space complexity overhead over f proportional to all intermediates of f. Why?
○ generates code of size O(size(f)). Why?

AD - basic idea - forward mode

computes column

we will improve
on this later

Forward AD example

x : real ⊦ t : real ✕ real ✕ real

let y = 2 * x
 z = x * y
 w = cos z
 v = (y , z ,w) in
 v

x : real ⊦ Dt : real ✕ real ✕ real ✕
 (real -o real ✕ real ✕ real)

let y = 2 * x
 z = x * y
 w = cos z
 v = (y , z , w) in
 (v, \x' ->
 let y' = 2 * x'
 z' = x' * y + x * y'
 w' = -sin z * z'
 v' = (y', z', w') in
 v')

primals

tangents

Original program Forward AD transformed program

Reverse mode AD

27

Elliott
Abadi, Wei, Plotkin, Vytiniotis, Belov
Vákár
Vákár, Smeding
Lucatelli Nunes, Vákár

diff :: (Vect a, Vect b) =>
 Code (a -> b) -> Code (a -> b ✕ (a -o b)))

diff (f . g) = \x -> let (g1, g2) = diff g x
 (f1, f2) = diff f g1 in
 (f1, \v -> f2 (g2 v))

diff sin = \x -> (sin x, \v -> cos x * v)

diff (*) = \x -> ((*) x, \v -> x_1 * v_2 + x_2 * v_1)

diff (+) = \x -> ((+) x, \v -> (+) v)

 ⋮ ⋮ ⋮

AD - recall - forward mode

● compute derivative for
computes column

transposed

diff :: (Vect a, Vect b) =>
 Code (a -> b) -> Code (a -> b ✕ (b -o a)))

diff (f . g) = \x -> let (g1, g2) = diff g x
 (f1, f2) = diff f g1 in
 (f1, \v -> g2 (f2 v))

diff sin = \x -> (sin x, \v -> cos x * v)

diff (*) = \x -> ((*) x, \v -> (x_1 * v, x_2 * v))

diff (+) = \x -> ((+) x, \v -> (v, v))

 ⋮ ⋮ ⋮

AD - basic idea - reverse mode

● compute derivative for
computes row

diff :: (Vect a, Vect b) =>
 Code (a -> b) -> Code (a -> b ✕ (b -o a)))

diff x_i = \x -> (x_i, \v -> v~i)

diff s_i = \x -> let (s1, s2) = diff s x in
 (s1_i, \v -> s2 (v~i))

diff (s, t) = \x -> let (s1, s2) = diff s x
 (t1, t2) = diff t x in
 ((s1, t1), \v -> s2 v_1 + t2 v_2))

diff (let x = s in t) = \x -> let (s1, s2) = diff s x
 (t1, t2) = diff t (x, s1) in
 (t1, \v -> let (t21, t22) = t2 v in
 t21 + s2 t22)

 where v~i = (0,...,0,v,0,...,0)

i-1

AD - basic idea - reverse mode

computes row

AD - basic idea - reverse mode

● complexity (assuming a sparse vector representation for cotangents):
○ O(m) time complexity overhead over for full derivative. Why?
○ space complexity overhead over f proportional to all intermediates of f. Why?
○ generates code of size O(size(f)). Why?

computes row

more about this
later

Reverse AD example

x : real ✕ real ✕ real ✕ real
 ⊦ t : real

let y = x1 * x4 + 2 * x2
 z = y * x3
 w = z + x4
 u1 = sin w
 u2 = cos w
 v = u1 + u2 in
 v

x : real ✕ real ✕ real ✕ real

 ⊦ t : real ✕ (real -o real ✕ real ✕ real ✕
real)

let y = x1 * x4 + 2 * x2
 z = y * x3
 w = z + x4
 u1 = sin w
 u2 = cos w
 v = u1 + u2 in
 (v , \v' ->
 let u2' = v'
 u1' = v'
 w' = cos w * u1' - sin w * u2'
 z' = w'
 y' = z' ∗ x3
 x1' = y' * x4
 x2' = 2 * y'
 x3' = y * z'
 x4' = x1 * y' + w' in
 (x1' , x2' , x3' , x4'))

primals

cotangents

Original program Reverse AD transformed program

duplication -> addition

Dual numbers forward mode AD

33

Kmett
Shaikhha, Fitzgibbon, Vytiniotis, Peyton Jones
Huot, Staton, Vákár

diff :: (Vect a, Vect b) =>
 Code (a -> b) -> Code ((a ✕ a) -> (b ✕ b))

diff (f . g) = diff f . diff g

diff sin = \(x, x') -> (sin x, x' * cos x)

diff (*) = \(x, x') -> ((*) x, x_1 * x'_2 + x_2 * x'_1)

diff (+) = \(x, x') -> ((+) x, (+) x')

 ⋮ ⋮ ⋮

AD - basic idea - fwd dual numbers

● compute derivative
computes column

diff :: (Vect a, Vect b) =>
 Code (a -> b) -> Code ((a ✕ a) -> (b ✕ b))

diff x_i = \(x, x') -> (x_i, x'_i)

diff s_i = \(x, x') -> let (s1, s2) = diff s (x, x') in
 (s1_i, s2_i)

diff (s, t) = \(x, x') -> let (s1, s2) = diff s (x, x')
 (t1, t2) = diff t (x, x') in
 ((s1, t1),(s2, t2))

diff (let x = s in t) = \(x, x') -> let (s1, s2) = diff s (x, x') in
 diff t ((x, s1), (x', s2))

 ● complexity:
○ O(n) time complexity overhead over for full derivative. Why?
○ O(1) space complexity overhead over f. Why?
○ generates code of size O(size(f)). Why?

AD - basic idea - fwd dual numbers

computes column

Dual numbers forward AD example

x : real ⊦ t : real ✕
 real ✕
 real

let y = 2 * x
 z = x * y
 w = cos z
 v = (y , z ,w) in
 v

(x, x') : real ✕ real ⊦ Dt : (real ✕ real)
✕
 (real ✕ real)
✕
 (real ✕ real)

let (y, y') = (2 * x, 2 * x')
 (z, z') = (x * y, x' * y + x * y')
 (w, w') = (cos z, -sin z * z')
 (v, v') = ((y , z ,w), (y', z', w')) in
 (v, v')

mixed
primals
and
tangents

Original program Dual numbers forward AD transformed program

Dual numbers reverse mode AD

37

Kmett
Abadi, Plotkin?
Mak, Ong?
Brunel, Mazza, Pagani
Huot, Staton, Vákár
Mazza, Pagani
Krawiec, Peyton Jones, Krishnaswami, Ellis, Eisenberg, Fitzgibbon

diff :: (Vect a, Vect b) =>
 Code (a -> b) -> Code ((a ✕ (a -o c)) -> (b ✕ (b -o c)))

diff (f . g) = diff f . diff g

diff sin = \(x, x') -> (sin x, \z -> x' (z * cos x))

diff (*) = \(x, x') -> ((*) x, \z -> x'(x_1 * z, x_2 * z))

diff (+) = \(x, x') -> ((+) x, \z -> x'(z, z))

 ⋮ ⋮ ⋮

AD - basic idea - rev dual numbers

● compute derivative
computes row

● complexity:
○ O(m) time complexity overhead over for full derivative.
○ space complexity overhead over f proportional to all intermediates of f.
○ generates code of size O(size(f)). Why?

but only with custom
operational semantics
for linear functions!

Michele Pagani's talk!!!

transposed

Dual numbers reverse AD example

x : real ✕ real ✕ real ✕ real
 ⊦ t : real

let y = x1 * x4 + 2 * x2
 z = y * x3
 w = z + x4
 u1 = sin w
 u2 = cos w
 v = u1 + u2 in
 v

x : real ✕ real ✕ real ✕ real

 ⊦ t : real ✕ (real -o

 real ✕ real ✕ real ✕ real)

let y = x1 * x4 + 2 * x2
 z = y * x3
 w = z + x4
 u1 = sin w
 u2 = cos w
 v = u1 + u2 in
(v, \v' -> let u1' = v'
 let u2' = v' in
 (let w' = cos w * u1'
 let z' = w'
 let y' = z' * x3 in
 (y' * x4, 2 * y', y * z', x1 * y' + w'))

 + (let w' = -sin w * u2'
 let z' = w'
 let y' = z' * x3 in
 (y' * x4, 2 * y', y * z', x1 * y' + w')))

primals

cotangents

Original program Dual numbers reverse AD transformed program

aargh! duplicate computation
from w' onwards, for both
contributions!

Brunel, Mazza, Pagani
solution: linear factoring rule
wk w' + wk w'' -> wk (w' + w'')
i.e. custom interpreter

