Mathematical foundations of
automatic differentiation

A tutorial - part1

Matthijs Vakar
776 \
(©) A
:— VS -.: Utrecht University

N

In a nutshell: some motivation

Example: regressions and derivatives

COSt(W, b) = some program (* that computes e.g. Z. (b +w * x, - y.)? *)

Follow the derivative downhill

Best way to calculate derivatives of programs

Automatic Differentiation (AD)
(AKA backpropagation)

By Rocket Baby Club

AD: many perspectives

Automatic differentiation: a long history

&

and
many
many
more!
Robin Edwin Wengert Seppo Linnainmaa Bart Speelpenning
1964 (forward mode) 1976 (reverse mode) 1980 (reverse mode)

-> scientific computing community

-> machine learning community

-> programming languages community

My perspective in this tutorial:
Combinatory Homomorphic Automatic Differentiation

=

\

e Programming languages as freely generated categories

AD definition _ _
e Universal property » semantics as 3 canonical homomorphic functors
correctness proof

Some of my fantastic collaborators! supporting GPU

implementation
CHAD for
expressive
languages
+
> mathematical
foundations
Fernar}do Lucatelli Nunes Tom Smeding Gabriele Keller Trevor McDonell
reverse CHAD for
recursion a\ efficiency and
complexity of
CHAD
+
_ (GPU) . crucial
implementation initial ideas in

context of dual
numbers T—
forward AD

Gordon Plotkin Sam Staton Mathieu Huot

Some topics we'll cover

SR

-
......

e Indepth: why care? R

e Basics of AD: different modes N
e Programming languages as free categories & /7

e Linear types for accumulation effect - 2B = o

e Categorical structure of X-type categories

et 5
~ - - o'-
e Cum”

e AD as ahomomorphic functor
e Correctness via categorical logical relations

e Deriving dual numbers CHAD from regular CHAD
e Implementation challenges

e Generalizing CHAD beyond AD

In depth: why compute derivatives?

Why compute derivatives?

e optimization

argmin_f(x) [gradient descent & its variants]

Posterior Beliefs

Evidence

e Bayesian inference

p(0ly) =p(6,y)/ §p(6,y)d6 [HMC, ADVI,
Gibbs with Gradients]

Prior Beliefs

e solving systems of non-linear equations

2(m)

f(x)=0 [Newton-Krylov methods]

Why compute derivatives?

Zexlele
B OO
Roedhedned\
RSN

Etc.

O

e optimization

Input layer Hidden Output
The image layers layer

e.g. fitting neural nets, MLE in statistics

UK

400,000
300,000

e Bayesian inference

200,000

100,000 \
S S-S
v

Daily number of infections

e.g. applied statistics and probabilistic ML

e solving systems of non-linear equations

e.g. solve discretizations of PDEs arising in physics

Any more use cases for derivatives?

13

Computing derivatives?

What is a derivative? Various perspectives

e Geometry: best linear approx. Df : R” — R” — R™to a function
f:R" — R™ (i.e. action of function on tangent vectors)

N

algorithm: ?7¢?

e Analysis: limit of finite differences Df(z)(v) = lim flz+9d-v) — flz)

\ d—0)

algorithm: finite differencing
e Algebra: symbolic transformation governed by certain rules
o chainrule
o rules giving derivative \

for primitive operations algorithm: automatic differentiation
(e.g. product rule)

15

DIFFERENTIATION

(RD

CHAIN POUER
RULE RULE

QUOTIENT PRODUCT
RULE RULE
Er

Kkcd

INTEGRATION

Want to compute derivatives: some desiderata

no custom derivative code for

e low developer cost each application
\reuse existing compiler

e highly efficient in time and space infrastructures

e parallelism exploiting (preserving)
cf.
Wang, Zheng, Decker, Wu, Essertel, Rompf \ generate purely

e correct (proofs, tests) ~—___functional code

e numerically stable (floating point arithmetic) local, well-typed code

transformation

e extensible to new features / modular -
e generally applicable

17

Any more desiderata?

18

Finite differencing

[8u1 ce aul |
Finite differencing 0y o,
5ﬁm ou,,

| Oz, oz, |

e differentiation as a higher-order function:
computes column

diff :: (Vect a, Vect b) =>

(a ->b) ->a->a->b
diff f X v = (f (x + delta * v) - f x) / delta
where delta = 0.00000001

e problems?

e numerical stability
o adding small number to large number

o subtracting two numbers that are almost the same

time inefficiency for high dimensional input
O(n) time complexity overhead over f :R™ — R™ for full derivative. Why?
same asymptotic space complexity asf (other than storing derivative values) 20

L
o

@)

Automatic differentiation (AD)

Forward mode AD

Elliott

Vakar

Vakar, Smeding
Lucatelli Nunes, Vakar

Bul]
ox,

o,

Oz, |

computes column

[(9’11,1
AD - basic idea - forward mode oo
. o . 6um
e differentiation as a metaprogram: | Bz,
diff :: (Vect a, Vect b) =>
Code (a -> b) -> Code (a -> a -0 b)
diff (f . g) = \Xx v -> diff f (g x) (diff g x v)
diff sin = \ X V -> COS X * v
diff (*) = \ X Vv ->x1*v2+x2%*vl1
(+) = \ X vV -> (+) v

diff

¢ much more numerically stable!

e any problems?

o chain rule: often need g as well asits Dg! -> pair g with Dg

o common subcomputationsingandDg -> share between g and Dg

23

i 8’&1 o Bul]
AD - basic idea - forward mode I
e sharing and pairing the primal and tangent 6;% | b,
computations g and Dg | 02y L] 0a, |

computes column
diff :: (Vect a, Vect b) => p

Code (a -> b) -> Code (a -> b X (a -ob)))

diff (f . g) = \x -> let (gl, g2) = diff g x
(f1, f2) = diff f gl in
(f1, \v -> f2 (g2 v))
diff sin = \X -> (sin x, \v -> cos x * v)
diff (*) = A X => ((*) x, \v -> x1*v2+x2*v]1)

diff (+) = \X -> ((+) x, \v -> (+) v)

e exercise: derivative of tuples & let-binding! preserve sharing! 5

[(9’11,1
[] [} 6_
AD - basic idea - forward mode o
diff :: (Vect a, Vect b) => 8;
Code (a -> b) -> Code (a -> b X (a -0 b))) =
| Oz
diff x_1i = \x -> (x_i, \v ->v i)
diff s i = \x -> let (sl1l, s2) = diff s x in
(s1 i, \v -> (s2 v)_1i)
diff (s, t) = \x -> let (s1, s2) = diff s x
(tl, t2) = diff t x in
((s1, t1), \v -> (s2 v, t2 v))
diff (let x = s in t) = \x -> let (s1, s2) = diff s x
(t1, t2) = diff t (x, s1) in
. (t1, \v -> t2 (v, s2 v))
e complexity:

Bul]
ox,

o,

Oz, |

computes column

we will improve
on this later

o 0(n) time complexity overhead over f :R" — R™ for full derivative. Why?
o space complexity overhead over f proportional to all intermediates of f. Why?
o generates code of size O(size(f)). Why?

Forward AD example

Original program Forward AD transformed program

X : real + t : real X real X real X : real + Dt : real X real X real X
(real -o real X real X real)

let y =2 * x let y =2 * x M
z =X*y z=X*y)
W = COS Z W = COS Z >~ primals
v=o(y, z,win v=o(y,z,win _J
v (v, \x' ->
let y' = 2 * x' ™
z' =x"*y+x *y'
w' = -sin z * z' > tangents
vl = (y', z', w') in
v') /

Reverse mode AD

Elliott

Abadi, Wei, Plotkin, Vytiniotis, Belov
Vakar

Vakar, Smeding

Lucatelli Nunes, Vakar

i 8U1 8’&1 i
AD - recall - forward mode o] e
e compute derivative Df: R* — R* -oR™ for f:R" = R™ | 831? gﬁf]

computes column

diff :: (Vect a, Vect b) =>
Code (a -> b) -> Code (a -> b X (a -0ob)))

diff (f . g) = \x -> let (gl, g2) = diff g x
(f1, f2) = diff f gl in
(f1, \v -> f2 (g2 v))
diff sin = \X -> (sin x, \v -> cos x * v)
diff (*) = A X => ((*) x, \v -> x1*v2+x2*v]1)

v

diff (+) - \X => ((+#) X, \v -> (+) V)

AD - basic idea - reverse mode

diff ::

diff

diff

diff

diff

transposed

compute derivative D'f : R" - R™ —oR" for f:R" — R"™

(Vect a, Vect b) =>
Code (a -> b) -> Code (a

(f . g) = \ X
sin = \ X
(*) = \ X

(+) = \ X

1
v

1
v

b X (b -0 a)))

let (g1, g2) = diff g x
(f1, f2) = diff f gl in
(f1, \v -> g2 (f2 v))

(sin x, \v -> cos x * v)
((*) x, \v -> (x 1 *v, x2 *v))

((+) X, \v -> (VJ V))

[Ju Ous |
8$1 awn
Ou, Oou,,

| Oz oz, |

computes row

Cow o ow]
3 3 or oz,
AD - basic idea - reverse mode 1
diff :: (Vect a, Vect b) =>
Ou, Oou,,
Code (a -> b) -> Code (a -> b X (b -0 a)))
| Oz Oxy
diff x_i = \x -> (x_i, \v -> v~i) computes row
diff s i = \x -> let (sl1l, s2) = diff s x in
(s1 i, \v -> s2 (v~i))
diff (s, t) = \x -> let (s1, s2) = diff s x
(t1, t2) = diff t x in
((s1, t1), \v -> s2 v.1 + t2 v_2))
diff (let x = s in t) = \x -> let (s1, s2) = diff s x
(t1, t2) = diff t (x, s1) in
(t1, \v -> let (t21, t22) = t2 v in
t21 + s2 t22)

i-1

where v~i = (0,..

.,0,v,0,..

.,0)

[Ouy Ouy |
AD - basic idea - reverse mode SR
87.;,” Oum,

more about this | 0z, ox, |

later

computes row

[Complexity (assuming a sparse vector representation for cotangents):

0(m) time complexity overhead over f : R” — R™ for full derivative. Why?
space complexity overhead over f proportional to all intermediates of f. Why?

generates code of size O(size(f)). Why?

@)
@)

@)

Reverse AD example

Original program Reverse AD transformed program
x : real X real X real X real x : real X real X real X real
Ht @ real tt : real X (real -o real X real X real X
real)
lety =x1* x4 +2 * x2
z =y *x3 let y =x1 * x4 + 2 * x2 ~
w =2z + x4 z =y * %3
ul = sin w W =2 + x4 .
u2 = cos w ul = sin w > prlmals
v = ul + u2 in u2 = Ccos w
v v = ul + u2 in -
(v , \v' -> N
let u2' = v'
ul' = v'
w' = cosw*ul' - sinw * u2'
duplication -> addition)Z/' _ "Z"I %3 > cotangents
x1' = y' * x4
x2' =2 *y'
x3' =y * z'
x4' = x1 *y' + w' in
/

(x1' . x2'" . x3' . x4"))

Dual numbers forward mode AD

Kmett
Shaikhha, Fitzgibbon, Vytiniotis, Peyton Jones
Huot, Staton, Vakar

[Ouq — Ooup |
AD - basic idea - fwd dual numbers o] e
ou,, | ou,,

e compute derivative | 0z, || B, |

computes column

diff :: (Vect a, Vect b) =>
Code (a -> b) -> Code ((a X a) -> (b X b))

diff (f . g) = diff £ . diff g
diff sin = \(x, x") -> (sin x, x' * cos x)
diff (*) = \(x, x") => ((*) x, x 1 *x" 2+ x2%*x"1)

diff (+) = \(x, x") -> ((+) x, (+) x")

Bul]
ox,

o,

Oz, |

computes column

[(9’11,1
AD - basic idea - fwd dual numbers oo
diff :: (Vect a, Vect b) => 8;
Code (a -> b) -> Code ((a X a) -> (b X b)) =
| Oz
diff x_1i = \(x, x") -> (x_i, x'_1i)
diff s i = \(x, x") -> let (s1, s2) = diff s (x, x') in
(s1 i, s2_1i)
diff (s, t) = \(x, x") -> let (s1, s2) = diff s (x, x")
(t1, t2) = diff t (x, x") in
((s1, t1),(s2, t2))
diff (let x = s in t) = \(x, x") -> let (s1, s2) = diff s (x, x') in
diff t ((x, sl1), (x', s2))
e complexity:

o 0(n) time complexity overhead over f :R" — R™ for full derivative. Why?

o 0(1) space complexity overhead over f. Why?
o generates code of size O(size(f)). Why?

Dual numbers forward AD example

Original program Dual numbers forward AD transformed program
X : real + t : real X (X, Xx') : real X real r Dt : (real X real)
real X X
real (real X real)
X
(real X real)
let y = 2 * x mixed
z=x%*y primals
W = COS Z let (y, y') = (2 * x, 2 * x") and
v=o(y, z,win (z, 2') = (x *y, x" ¥y +x *y'") tangents
v (w, w') = (cos z, -sin z * z')
(v, v') = ((y , z ,w), (y', z', w")) in
(v, v")

Dual numbers reverse mode AD

Kmett

Abadi, Plotkin?

Mak, Ong?

Brunel, Mazza, Pagani

Huot, Staton, Vakar

Mazza, Pagani

Krawiec, Peyton Jones, Krishnaswami, Ellis, Eisenberg, Fitzgibbon

i Bul 811.1 i
AD - basic idea - rev dual numbers i il
transposec.1 . o G
e compute derivative | oz, oz, |
diff :: (Vect a, Vect b) => ogigutes row
Code (a -> b) -> Code ((a X (a -0c)) -> (b X (b -0 ¢))) “ ‘)‘
o ®
diff (f . g = diff £ . diff g S ta-\‘ °

diff sin

o\
\(x, x") "‘EP%E‘%ESEE‘![‘Q‘L(Z * cos X))
diff (*) o “&g> ((*) x, \z -> x"(x_1* 2z, x2*2z))
N1e

diff (+) \(x, x") -> ((+) x, \z -> x"(z, z))

but only with custom

o CompleXity: operational semantics
o 0(m) time complexity overhead over f : R" — R™ for full derivative./ for linear functions!
o space complexity overhead over f proportional to all intermediates of f.
o generates code of size O(size(f)). Why?

Dual numbers reverse AD example

Original program Dual numbers reverse AD transformed program

x : real X real X real X real x : real X real X real X real
Ht @ real Ft : real X (real -o
real X real X real X real)

let y

X1 * x4 + 2 * x2 let y = x1 * x4 + 2 * x2 ~N
zZ =y *x3 z =y * x3
W=z + x4 W=z+x4 > primals
ul = sin w ul = sin w
uz = cosw u2 = cos w Y,
v o=ul+u2an v = ul + u2 in ~
v (v, \v' -> let ul' = v'
let u2' = v' in
(let w' = cos w * ul'
aargh! duplicate computation let z' = w'
from w' onwards, for both let y' = z' * x3 in
contributions! (v Fxd, 2%y, yt 2, xLty o+ w')) > cotangents
+ (let w' = -sin w * u2'
Brunel, Mazza, Pagani let z' = w'
solution: linear factoring rule let y' = z' * x3 in
wk w' + wk w''" -> wk (w" +w'") '

i.e. custom interpreter (y' * x4, 2% y', y*z', x1*y' +w)))

