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In a nutshell: some motivation

2/14



Example: regressions and derivatives
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cost(w, b) = some program (* that computes e.g. Σ
i
(b + w * x

i 
- y

i
)²

 
*)

Follow the derivative downhill

Best way to calculate derivatives of programs
=

Automatic Differentiation (AD)
(AKA backpropagation)





AD: many perspectives
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Automatic differentiation: a long history

Robin Edwin Wengert 
1964 (forward mode)

Bart Speelpenning
1980 (reverse mode)

Seppo Linnainmaa
1976 (reverse mode)

-> scientific computing community

-> machine learning community

-> programming languages community

and 
many 
many
more!



My perspective in this tutorial:
Combinatory Homomorphic Automatic Differentiation

● Programming languages as freely generated categories

                                                    AD definition
● Universal property             semantics

                                                    correctness proof 
as 3 canonical homomorphic functors
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Some topics we'll cover
● In depth: why care?

● Basics of AD: different modes

● Programming languages as free categories

● Linear types for accumulation effect

● Categorical structure of Σ-type categories

● AD as a homomorphic functor

● Correctness via categorical logical relations

● Deriving dual numbers CHAD from regular CHAD

● Implementation challenges

● Generalizing CHAD beyond AD



In depth: why compute derivatives?
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Why compute derivatives?

● optimization

argminx f(x)             [gradient descent & its variants]
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● Bayesian inference

p(θ| y) = p(θ, y) / ∫ p(θ, y) dθ    [HMC, ADVI, 
                                                                Gibbs with Gradients]

● solving systems of non-linear equations

f(x) = 0      [Newton-Krylov methods]



Why compute derivatives?

● optimization

e.g. fitting neural nets, MLE in statistics
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● Bayesian inference

e.g. applied statistics and probabilistic ML

● solving systems of non-linear equations

e.g. solve discretizations of PDEs arising in physics



Any more use cases for derivatives? 
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Computing derivatives?
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What is a derivative? Various perspectives

● Analysis: limit of finite differences 
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● Algebra: symbolic transformation governed by certain rules
○ chain rule
○ rules giving derivative 

for primitive operations
(e.g. product rule)

● Geometry: best linear approx.                                         to a function              
                          (i.e. action of function on tangent vectors)

algorithm: finite differencing 

algorithm: automatic differentiation

algorithm: ???





Want to compute derivatives: some desiderata

● low developer cost
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● highly efficient in time and space

● parallelism exploiting (preserving)

● correct (proofs, tests)

● numerically stable (floating point arithmetic)

● extensible to new features / modular

● generally applicable

generate purely 
functional code

reuse existing compiler 
infrastructures

avoid interpreter overhead

no custom derivative code for 
each application

local, well-typed code 
transformation

c.f.
Wang, Zheng, Decker, Wu, Essertel, Rompf



Any more desiderata? 
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Finite differencing

19



Finite differencing

● differentiation as a higher-order function:
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diff :: (Vect a, Vect b) =>
        (a -> b) -> a -> a -> b
diff    f           x    v =  (f (x + delta * v) - f x) / delta
                                       where delta = 0.00000001

● problems?

● numerical stability
○ adding small number to large number
○ subtracting two numbers that are almost the same

● time inefficiency for high dimensional input 
○ O(n) time complexity overhead over for full derivative. Why? 
○ same asymptotic space complexity as f     (other than storing derivative values)

computes column



Automatic differentiation (AD)
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Forward mode AD
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Elliott
Vákár
Vákár, Smeding
Lucatelli Nunes, Vákár



○ chain rule: often need g as well as its Dg!   ->       pair g with Dg

AD - basic idea - forward mode

● differentiation as a metaprogram:
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diff :: (Vect a, Vect b) =>
        Code (a -> b) -> Code (a -> a -o b)
diff    (f . g)       =       \x    v -> diff f (g x) (diff g x v) 
diff    sin           =       \x    v -> cos x * v
diff    (*)           =       \x    v -> x_1 * v_2 + x_2 * v_1
diff    (+)           =       \x    v -> (+) v

 ⋮                                ⋮             ⋮
                                  
● much more numerically stable!

● any problems?

○ common subcomputations in g and Dg       ->       share between g and Dg

computes column



AD - basic idea - forward mode
● sharing and pairing the primal and tangent

computations g and Dg
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diff :: (Vect a, Vect b) =>
        Code (a -> b) -> Code (a ->  b   ✕  (a -o b)))

diff    (f . g)       =       \x -> let (g1, g2) = diff g x  
                                        (f1, f2) = diff f g1 in
                                    (f1,    \v -> f2 (g2 v))

diff    sin           =       \x -> (sin x, \v -> cos x * v)

diff    (*)           =       \x -> ((*) x, \v -> x_1 * v_2 + x_2 * v_1)

diff    (+)           =       \x -> ((+) x, \v -> (+) v) 

 ⋮                                ⋮             ⋮
                                  ● exercise: derivative of tuples & let-binding! preserve sharing!

computes column



diff :: (Vect a, Vect b) =>
        Code (a -> b)    -> Code (a ->  b    ✕    (a  -o b)))

diff    x_i              =       \x -> (x_i,      \v  -> v_i)

diff    s_i              =       \x -> let (s1, s2) = diff s x in
                                       (s1_i,     \v -> (s2 v)_i)

diff    (s, t)           =       \x -> let (s1, s2) = diff s x 
                                           (t1, t2) = diff t x in 
                                       ((s1, t1), \v -> (s2 v, t2 v))

diff    (let x = s in t) =       \x -> let (s1, s2) = diff s x
                                           (t1, t2) = diff t (x, s1) in 
                                       (t1,       \v -> t2 (v, s2 v))

                                  

● complexity:
○ O(n) time complexity overhead over for full derivative. Why? 
○ space complexity overhead over f proportional to all intermediates of f. Why?
○ generates code of size O(size(f)). Why?

AD - basic idea - forward mode

computes column

we will improve 
on this later



Forward AD example

x : real ⊦ t : real ✕ real ✕ real

let y = 2 * x
    z = x * y
    w = cos z
    v = (y , z ,w) in
    v

x : real ⊦ Dt : real ✕ real ✕ real ✕ 
            (real -o real ✕ real ✕ real)

let y = 2 * x
    z = x * y
    w = cos z
    v = (y , z , w) in
    (v, \x' -> 
               let y' = 2 * x'
                   z' = x' * y + x * y' 
                   w' = -sin z * z'
                   v' = (y', z', w') in 
                   v')

primals

tangents

Original program Forward AD transformed program



Reverse mode AD
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diff :: (Vect a, Vect b) =>
        Code (a -> b) -> Code (a ->  b   ✕  (a -o b)))

diff    (f . g)       =       \x -> let (g1, g2) = diff g x  
                                        (f1, f2) = diff f g1 in
                                    (f1,    \v -> f2 (g2 v))

diff    sin           =       \x -> (sin x, \v -> cos x * v)

diff    (*)           =       \x -> ((*) x, \v -> x_1 * v_2 + x_2 * v_1)

diff    (+)           =       \x -> ((+) x, \v -> (+) v) 

 ⋮                                ⋮             ⋮
                                  

AD - recall - forward mode

● compute derivative for   
computes column



transposed

diff :: (Vect a, Vect b) =>
        Code (a -> b) -> Code (a ->  b   ✕  (b -o a)))

diff    (f . g)       =       \x -> let (g1, g2) = diff g x  
                                        (f1, f2) = diff f g1 in
                                    (f1,    \v -> g2 (f2 v))

diff    sin           =       \x -> (sin x, \v -> cos x * v)

diff    (*)           =       \x -> ((*) x, \v -> (x_1 * v, x_2 * v))

diff    (+)           =       \x -> ((+) x, \v -> (v, v)) 

 ⋮                                ⋮             ⋮
                                  

AD - basic idea - reverse mode

● compute derivative for   
computes row



diff :: (Vect a, Vect b) =>
        Code (a -> b)    -> Code (a ->  b    ✕    (b  -o a)))

diff    x_i              =       \x -> (x_i,      \v  -> v~i)   

diff    s_i              =       \x -> let (s1, s2) = diff s x in
                                       (s1_i,     \v -> s2 (v~i))

diff    (s, t)           =       \x -> let (s1, s2) = diff s x 
                                           (t1, t2) = diff t x in 
                                       ((s1, t1), \v -> s2 v_1 + t2 v_2))

diff    (let x = s in t) =       \x -> let (s1, s2) = diff s x
                                           (t1, t2) = diff t (x, s1) in 
                                       (t1,       \v -> let (t21, t22) = t2 v in 
                                                        t21 + s2 t22             )

    where v~i = (0,...,0,v,0,...,0)

                                  

i-1

AD - basic idea - reverse mode

computes row



AD - basic idea - reverse mode

● complexity (assuming a sparse vector representation for cotangents):
○ O(m) time complexity overhead over for full derivative. Why? 
○ space complexity overhead over f proportional to all intermediates of f. Why?
○ generates code of size O(size(f)). Why?

computes row

more about this 
later



Reverse AD example

x : real ✕ real ✕ real ✕ real 
         ⊦ t : real

let y  = x1 * x4 + 2 * x2
    z  = y * x3
    w  = z + x4
    u1 = sin w
    u2 = cos w
    v  = u1 + u2 in
    v

x : real ✕ real ✕ real ✕ real 

  ⊦ t : real ✕ (real -o real ✕ real ✕ real ✕ 
real)

let y  = x1 * x4 + 2 * x2
    z  = y * x3
    w  = z + x4
    u1 = sin w
    u2 = cos w 
    v = u1 + u2 in
    (v , \v' ->
           let u2' = v'
               u1' = v'
               w' = cos w * u1' - sin w * u2'
               z' = w'
               y' = z' ∗ x3
               x1' = y' * x4
               x2' = 2 * y'
               x3' = y * z'
               x4' = x1 * y' + w' in
               (x1' , x2' , x3' , x4'))

primals

cotangents

Original program Reverse AD transformed program

duplication -> addition



Dual numbers forward mode AD
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diff :: (Vect a, Vect b) =>
        Code (a -> b) -> Code ((a ✕ a) -> (b ✕ b))

diff    (f . g)       =       diff f . diff g

diff    sin           =       \(x, x') -> (sin x, x' * cos x)

diff    (*)           =       \(x, x') -> ((*) x, x_1 * x'_2 + x_2 * x'_1)

diff    (+)           =       \(x, x') -> ((+) x, (+) x')

 ⋮                                ⋮             ⋮
                                  

AD - basic idea - fwd dual numbers

● compute derivative   
computes column



diff :: (Vect a, Vect b) =>
        Code (a -> b) -> Code ((a ✕ a) -> (b ✕ b))

diff    x_i              =    \(x, x') -> (x_i, x'_i)

diff    s_i              =    \(x, x') -> let (s1, s2) = diff s (x, x') in
                                          (s1_i, s2_i)

diff    (s, t)           =    \(x, x') -> let (s1, s2) = diff s (x, x')
                                              (t1, t2) = diff t (x, x') in 
                                          ((s1, t1),(s2, t2))

diff    (let x = s in t) =    \(x, x') -> let (s1, s2) = diff s (x, x') in
                                              diff t ((x, s1), (x', s2))

                                  ● complexity:
○ O(n) time complexity overhead over for full derivative. Why? 
○ O(1) space complexity overhead over f. Why?
○ generates code of size O(size(f)). Why?

AD - basic idea - fwd dual numbers

computes column



Dual numbers forward AD example

x : real ⊦ t : real ✕
               real ✕
               real

let y = 2 * x
    z = x * y
    w = cos z
    v = (y , z ,w) in
    v

(x, x') : real ✕ real ⊦ Dt : (real ✕ real) 
✕       
                             (real ✕ real) 
✕ 
                             (real ✕ real)

let (y, y') = (2 * x, 2 * x')
    (z, z') = (x * y, x' * y + x * y')
    (w, w') = (cos z, -sin z * z')
    (v, v') = ((y , z ,w), (y', z', w')) in
    (v, v')

mixed
primals
and 
tangents

Original program Dual numbers forward AD transformed program



Dual numbers reverse mode AD
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diff :: (Vect a, Vect b) =>
        Code (a -> b) -> Code ((a ✕ (a -o c)) -> (b ✕ (b -o c)))

diff    (f . g)       =       diff f . diff g

diff    sin           =       \(x, x') -> (sin x, \z -> x' (z * cos x))

diff    (*)           =       \(x, x') -> ((*) x, \z -> x'(x_1 * z, x_2 * z))

diff    (+)           =       \(x, x') -> ((+) x, \z -> x'(z, z))

 ⋮                                ⋮             ⋮
                                  

AD - basic idea - rev dual numbers

● compute derivative   
computes row

● complexity:
○ O(m) time complexity overhead over for full derivative. 
○ space complexity overhead over f proportional to all intermediates of f.
○ generates code of size O(size(f)). Why?

but only with custom 
operational semantics 
for linear functions!

Michele Pagani's talk!!!

transposed



Dual numbers reverse AD example

x : real ✕ real ✕ real ✕ real 
         ⊦ t : real

let y  = x1 * x4 + 2 * x2
    z  = y * x3
    w  = z + x4
    u1 = sin w
    u2 = cos w
    v  = u1 + u2 in
    v

x : real ✕ real ✕ real ✕ real 

  ⊦ t : real ✕ (real -o 

                real ✕ real ✕ real ✕ real)

let y = x1 * x4 + 2 * x2
    z = y * x3
    w = z + x4
    u1 = sin w 
    u2 = cos w
    v = u1 + u2 in
(v, \v' -> let u1' = v' 
           let u2' = v' in 
           (let w' = cos w * u1' 
            let z' = w'
            let y' = z' * x3 in 
            (y' * x4, 2 * y', y * z',  x1 * y' + w'))

    + (let w' = -sin w * u2' 
            let z' = w' 
            let y' = z' * x3 in 
            (y' * x4, 2 * y', y * z',  x1 * y' + w'))) 

primals

cotangents

Original program Dual numbers reverse AD transformed program

aargh! duplicate computation 
from w' onwards, for both 
contributions!

Brunel, Mazza, Pagani
solution: linear factoring rule
wk w' + wk w'' ->  wk (w' + w'')
i.e. custom interpreter


