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Introduction

How to Handle the Complexity of Software?

An operating system can be huge, e.g. Linux is about 12 million lines of code.

let k = ref 1.5 let alpha = ref ©.0055 let edgenum = ref 1 let help = ref false let save = ref false let syn = ref false let sa = ref folse let sources = ref
ref 16 (* common default values *) let filename - ref "" module An

[] ¢* default values for linear logic edge detector *) let threshold = ref .01 let ndirs
nealinghrg = struct let specl - [ ("-help”, Arg.Set help, " display this help message"); ("-k
1pha”, Arg.Float (fun f -> alpha := f), " alpha value (default = ©.0055)"); ("-n", Arg.Int (fun f -> edgenum
ult = 1)"); ("-s", Arg.Set save, " save edge map"); ("-syn", Arg.Set syn, " MFA's synchronous version"); ("-s
) 1 let usage = "Caml's eye\n" A "Usage: " A Sys.argv.(@) " [options] file\n” A " file\t\t ps file containing edges\mn"
non s = sources := !sources © [s] in let _ = Arg.parse specl anon usage in let _ = if ( ( List.length ‘saurces 9 = 1) then let _ = filename
€5 in let len - String.length Ifilename in if (len > 3) & C (String.sub !Filename ( len - 33 3) - ".ps" ) then Filenane

3) else invalid_arg ( "wrong " A Ifilename /A *

", Arg.Flogt (fun £ -» K := £, " k value (default
= £), " minimm nurber of edge in

) A

extension.
cl usage; exit @) else () end module LoglinArg - struct let specl = [ ("
* number of directions (only even values) (default = 16)"); ("-
t usage = "Linear Logic Edge Detector\n" A “Usage: * A Sys.argv.(0) » [Dﬂtlons] filewn" A
" A "Dptions:" let get_par () = let anon s = sources := !sources © [s] in let _ - Arg.parse specl anon usage in let _ -
en let _ - filename - List.hd sources in let len - String.length Ifilename in if  len > 4 ) & ( ( (String.sub !Filenane ( len - 4 ) 4 )
tring.sub !filename ( len - 4 ) 4 3 = ".pbm" 5 || C (String.sub 'filename C len - 4 ) 4 5 = ".ppn" ) ) then () else invalid_arg  "wrong "

ension.” ) else ( Arg.usage specl usage ; exit @ ) in if ( lhelp ) then (* user
struct let specl = [ ("-help”, Arg.Set help, " display this help message'); ("
loat (fun f > alpha :- £), " alpha value (default = 0.8955)"; ("-n", Arg.Int (fun f -» edgenun
("-ptpg”, Arg.Unit (fun () -> (), " set procgroup File” ); ("-pawd”, Arg.Unit Cfun () -> ()
: a parallel version of camleye.\n" A “Usage ~ Sys.argv.(@) 4 " [options] filewn"
get_par () - let anon s - sources :~ !sources & [s] in let _ - Arg.parse specl anon usage in let _
ist.hd Isources in let len - String.length |filename in if ( len > 3 ) && ( (String.sub Ifilename ( len - 3 ) 3

, Arg.Float ( fun £ - threshold := ),

rs - n ),

, Arg.Float Cfun £ -> k := £), " k value (default = 1.5)");

rg.Set sa, " Simulated Annealing algarithn”
A "Options:” let get_y
= List.hd !sourc
String.sub |Filename @ (len -
") else ( Arg.usage specl usage ; exit @ ) in e ( thelp ) then (* user needs help *) (Arg.usage spe
heln , Arg.Set help, " display this help message"); ("-ndirs”, Arg.Int  fun n -> ndi
* threshold value (default

" file\t\t (pgnpbn/ppr) file containing scit or binary image\nin
= if ( ( List.length !sources ) — 1) th

A Ifilenane 4 " ext
eds help *) (Arg.usage specl usage; exit @) else () end module ParallelArg -

= £, " minimum nurber of edge in an edgel (default = 1)"3;

" set working directory\n” ) ] let usage
 “Options:\n® A * file\t\t ps file containing edges" let

if € ( List.length ‘sour(es ) = 1) then let _ - filename
)= ") then filename :-

-15";
on edgel (defa

par O = let a

-e.en") ] le

pgm” ) 11 C (S

alpha”, Arg

string.sub !
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How to Handle the Complexity of Software?

An operating system can be huge, e.g. Linux is about 12 million lines of code.

ref ©.0055 let edgenun = ref 1 let help = ref false let save = ref false let syn = ref false let sa = ref false let sources = ref
re

let k = ref 1.5 let alpha =
f 16 (* common default values *) let filename = ref "" module An

[] ¢* default values for linear logic edge detector *) let threshold = ref 0.01 let ndir
nealinghrg - struct let specl - [ ("-help”, Arg.Set help, " display this help message™); ("-k”, Arg.Float (fun £ -> k := £), " k value (default = 1.5)"); ("-a
1pha”, Arg.Float Cfun f -> alpha := f), " alpha value (defoult = 8.0055)"); ("-n", Arg.Int (fun f -> edgenum := ), " minimum nurber of edge in an edgel (defa
ult = 1)"3; ("-s", Arg.Set save, " save edge map"); ("-syn”, Arg.Set syn, " MFA's synchronous version"); ("-sa”, Arg.Set sa, " Simulated Annealing algarithn”
) 1 let usage = "Caml's eye\n" A "Usage: " A Sys.argv.(®) » " [options] file\n” A " file\t\t ps file containing edges\mn” A "Options:” let get_par () = let a
non s = sources := !sources © [s] in let _ = Arg.parse specl anon usage in let _ = if ( ( List.length !sources ) = 1) then let _ = filename := List.hd !sourc
€5 in let len - String.length Ifilename in if (len > 3 ) &  (String.sub IFilename ( len - 33 3 ) - ".ps" ) then Filenane - String.sub !Filenane @ Clen -
3) else invalid_arg ( "wrong " A Ifilename A * extension.” ) else ( Arg.usage specl usage ; exit @ ) in if ( thelp ) then (* user needs help *) (Arg.usage spe
cl usage; exit @) else () end module LoglinArg = struct let specl = [ ("-help”, Arg.Set help, " display this help message"); ("-ndirs", Arg.Int ( fun n -» ndi
rs :=n ), " number of directions (only even values) (default - 16)") *, Arg.Float ( fun £ —> threshold := £ ), " threshold value (default = 0.61)") ] le
" filevewe Cpgn/pbn/ppn file contatning oscit or binary inagennn

+ usage = "Linear Logic Edge Detector\n” ~ “Usage: * & Sys.argv.(0) » “ [options] filewn" A
" 4 "Options:" let getpar () = let anon 5 - sources i~ Isources € [s] in let _ - Arg,parse specl anon usage in let _ - if ( ( List.length Isources ) = 1) th
- List.hd Isources in let len - String.length |filename in i ( len > 4 ) && ( ( (String.sub |filename C len - 4 ) 4 ) = ".pgn" ) 11 ( (S

en let _ - filename :-
tring.sub !filename ( len - 4 ) 4 3 = ".pbm" ) || ¢ (String.sub !filename ( len - 4 ) 4 5 = ".ppn" ) ) then () else invalid_arg C "wrong * + !filename 4 " ext
ension.” J else ( Arg.usage specl usage ; exit @ ) in if ( lhelp ) then (* user needs help *) (Arg.usage specl usage; exit @) else () end module ParallelArg =
struct let specl = [ ("-help”, Arg.Set help, " display this help message'); ("-k”, Arg.Float (fun f -> k := f), " k value (default = 1.5)"); ("-alpha” X
loat (fun f -> alpha := £), " alpha value (default = 0.6955)"); ("-n", Arg.Int (fun f -> edgenum := ), " minimum nurber of edge in an edgel (default =
("-pdpg”, Arg.Unit (fun ) -> (), " set procgroup file” ); ("-pawd”, Arg.Unit (fun () -> ()), " set working directory\n” ) ] let usage
“Caml's eyes: parallel version of camleye.\n" A “Usage: “ A Sys.argv.(®) ~ " [options] file\n"  “Options:\n” A “ file\t\t ps file containing edges" let
= let anon s = sources := !sources © [s] in let _ - Arg.parse specl anon usage in let _ = if ( ( List.length ‘snur(es ) = 1) then let _ - filename
fet.nd 1sources in Let lon - String.length |Filename in if  len > 3 ) & ( (String.sub !filename ( len - 3 ) 3 ) — ") then filename :- String.sub !

Denotational Semantics
@ Define a program interpretation satisfying compositionality.

The Theory of Program Approximation
@ Decompose a program into elementary “bricks” (its approximants),

@ Retrieve the whole program behaviour performing a “limit” of its approximants.
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Introduction

The Crucial Point — How to Handle Recursion?

Scott’s continuity
“A finite portion of the output of a program must be generated by a finite portion of its input.”

Kleene Fixed Point Theorem
Let D = (D, <, 1) be a domain. Every Scott-continuous function
f:D—D

has a least fixed point Ifp(f) that can calculated as follows:

1fp(f) = \/ £7(L)

neN

Example. The factorial is the least fixed point of the higher-order program:

fun f - fun n— if n =0 then 1 else n « (f (n - 1)))
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Introduction
The Theory of Program Approximation
First developed for untyped A-calculus (Church, 1932)
Based on a primitive notion of function.
M,N == x| \x.M| MN

Computation becomes substitution (Ax.M)N — s M[N/x].

Continous Semantics (Scott, 1969)
Do First denotational model of A-calculus.

Béhm tree semantics (Barendregt, 1977)
Tree-like representation for program execution.
“Syntactic model” of A-calculus.
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Introduction

Possible behaviours of a program

Classification Behaviour Result
normalizable P — Py — P —»g7 Pgg — 42 completely defined
P > P > Po 3 Pgg ———— 42
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Introduction

Possible behaviours of a program

Classification Behaviour

Result

normalizable P — Py — P2 —g7 Pag — 42 completely defined
unsolvable P— Py — P —g7 Pt — - undefined
solvable P — 01P1 — 01(02P2) — 01(02(03P3)) stable parts
oo 01(02(03(- - 0n)) -+ +) (infinitary)
P > P > Pz P Py e »om
3 1 4 15926535 - - -
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Introduction

The Bohm Tree Semantics

Given a program P, its Béhm tree BT(P) is defined as follows: Example
. . BT(Y)
@ If P is completely undefined (unsolvable), then |
BT(P) = L, A'|‘ !
f
@ Otherwise P —» output P; - - - Px and |
BT(P) = output i‘
\ f
|
BT(Py) --- BT(FP)

The Bohm Tree Semantics

B+ P=P < BT(P)=BT(P)

D. Barbarossa and G. Manzonetto Taylor Expansion, at work 28/01/2022 7124
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Introduction

The Mainstream Programming Languages

Quantum

A-calculus calculi

differential . . AR
A-calculus Differential Probabilistic Non-
calculi calculi determinism

must

Probabilistic
PCF

Resource Erratic PCF
PCF Resource / ldealized
calculus Algol
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Introduction

The origin of Linear Logic Quantitative Semantics

ﬁ Girard: Normal functors, power series and A-calculus. Ann. Pure Appl. Log., 1988.

@ Girard: Linear Logic. Theor. Comput. Sci. 50: 1-102 (1987)

As remarked in the LL paper: A notion of differentiation is at hand in some of these models. .. )
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The Differential X-calculus

The differential A\-calculus — Ehrhard & Regnier 2003

Mathematical Analysis

A

)

"
tangent A | |2V
Ax

Q

erivative

/ %asAan

Taylor expansion

> f(")(a)
n!

f(x) = (x—a)"

n=0
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The Differential X-calculus

The differential A\-calculus — Ehrhard & Regnier 2003

Mathematical Analysis

A

. f(x)

ay

tapgent

adl
AXx

Q

erivative

Ay

Ay 88 Ax =0

Taylor expansion

o f(")(a)

f(x) = o

(x—a)
n=0
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The Differential X-calculus

The differential A\-calculus — Ehrhard & Regnier 2003

Mathematical Analysis Theory of Programming Languages
y . .
T The differential A-calculus
tangent A | |2V
Ax D(Ax.M)-N —
derivative M
. Ax. (2 N)
M asAx—0
/ linear substitution of N
N for one occurrence of x in M
X,
Taylor expansion Taylor expansion 7(—)
— f"(a > 4
f(x) = nf )(x—a)” PXIZH(Dn(P)~(X,...7X))O
n=0 n=0

The ambitious goal: to replace the theory of program approximation based on continuity and B6hm trees with
the theory of resource consumption based on Taylor expansion.
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Resource Calculus & Taylor Expansion

The Resource Calculus A"

Resource approximants:

t o= Xx |Axt |tb
b == [h,...,t] where n >0
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Resource Calculus & Taylor Expansion

The Resource Calculus A"

Resource approximants:

t o= Xx |Axt |tb
b == [t,..., ] where n > 0

Bags

D. Barbarossa and G. Manzonetto Taylor Expansion, at work

28/01/2022

11/24



Resource Calculus & Taylor Expansion

The Resource Calculus A"

Resource approximants:

t == X |Xxt |tb
[t,..., t] where n >0

o
[

Reduction:

(Ax.t)[s1, 52,8 = 7
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Resource Calculus & Taylor Expansion

The Resource Calculus A"

Resource approximants:

t == X |Xxt |tb
b == [H,...,t] where n >0

Reduction:

(Ax)[si, 52, 8] = K51 /%1, 82/ %2, 83/ x1)
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Resource Calculus & Taylor Expansion

The Resource Calculus A"

Resource approximants:

t = x |Axt |tb
b == [H,..., 1] where n > 0
T = H+---+1
Formal sums
Reduction:

(AxB)s1, 82,81 = D HS1/Xo(1), 2/ Xo(2), 83/ Xa (1))

AR
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Resource Calculus & Taylor Expansion

The Resource Calculus A"

Resource approximants:

t == X |Xxt |tb
b == [H,...,t] where n >0
T = H+---+1

Reduction:

(Ax.t)[s1,5,8] = 7

X—O—O—O—)(_ X

| [¢]

{ X
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Resource Calculus & Taylor Expansion

The Resource Calculus A"

Resource approximants:

t = Xx |Xxt|tb
b == [H,...,t) where n > 0
T == H+---+1Mh
Reduction: All constructors are linear:

XD = YA
o)) = 2, by
[l = X0t ]

(Ax.t)[si,52,5]— 0
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Resource Calculus & Taylor Expansion

The Resource Calculus A" — Examples

Let | = Ax.x be the identity.
The linear fragment of A-calculus is embeddable:

(Mgh-flgllADIX]V1[2] = (Agh-x[gl[)I¥][2] — (Ah.x[yl[A)[2] — x[¥][2]
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Resource Calculus & Taylor Expansion

The Resource Calculus A" — Examples

Let | = Ax.x be the identity.

The linear fragment of A-calculus is embeddable:

(Mgh-flgllADIX]V1[2] = (Agh-x[gl[)I¥][2] — (Ah.x[yl[A)[2] — x[¥][2]

Resource terms may experience starvation:

(Axx[x])[Ax.x[x], Ax.x[x]] = (Axx[x])[Ax.x[x]] — O

Resource terms may experience surfeit:

(Mg )Xyl = (Ag-x)ly] — 0

Non-determinism may arise along the reduction:

(ALAMY, 2] = yl2] + 2ly]
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Resource Calculus & Taylor Expansion

The Resource Calculus A"

Resource approximants:

t o= x| Ax.t|th
b = [t,..., 1] where n > 0
T = H+---+1h
Reduction:
(Ax.t)[S1,...,81] > T#0 = I must use each S; exactly once in the reduction to a value.
t—-c(0)=0 < otherwise, the whole program f becomes an empty program 0.
Main Properties
@ Strong Normalization: Trivial, because there is no duplication. O
@ Confluence: Locally confluent + strongly normalizing. O
@ Linearity: Nothing gets erased in a non-zero reduction sequence. [J
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Resource Calculus & Taylor Expansion

Taylor Expansion : A\-terms +—  (infinite) series of resource approximants

The Taylor Expansion of a A-term:

MN Z%M[N,...,N} (%Z%(DK(MHN,---W))O)

k times
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Resource Calculus & Taylor Expansion

Taylor Expansion : A\-terms —  sets of resource approximants

The Taylor Expansion of a A-term:
T(x) = {x}, TOxM) = {Xx.t|teT (M)},
T(MN) = UkeN{t[s1,...,sk]|teT(M),s1,...,sk€7'(N)}.
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Resource Calculus & Taylor Expansion

Taylor Expansion : A\-terms —  sets of resource approximants

The Taylor Expansion of a A-term:

T(x) = {x}, TOxM) = {Xx.t|teT (M)},
T(MN) = Upey {tls1,--..8c] | t€ T(M),s1,...,sc € T(N)}.
Examples:
T(Ox.x) = {Xxx}
T(Ox.xx) = {dxx[x"]| neN}
T(Q) = {(xx[x™)[x.x[x"], ..., Axx[x"]] | k,no, ...,nk € N}
T(Ay) = {Mf[x"][x¥] | n,k € N}
T(Y) = {Afi[s1,....,s] | keN, t,s1,...,5 € T(As)}

where Y = Af.AsAr and Ay = Ax.f(xx).
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Resource Calculus & Taylor Expansion

The Dynamics of Taylor Expansion

Computing the normal form:
F(T (M) = {nf(t) | t € T(M)}
Examples
o T (Ax.x), T (Ax.xx), T (Ax.f(xx)) are already in normal form.

© NE(T(Y)) = {AF.A[], MNAFII], ML A0, M-ALALA, FULAN, T, - - - -

@ NF(7(€)) = 0. This is the case for all unsolvables.
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Resource Calculus & Taylor Expansion

The Dynamics of Taylor Expansion

Computing the normal form:
NF(T (M) = J{nf(t) | t € T(M)}
Examples
o T (Ax.x), T (Ax.xx), T (Ax.f(xx)) are already in normal form.
© NF(T(Y)) = {\f.f[], MATFL, MFLELD, FOI0, MF-FLELFLNN, FLFLFOND, LD, - - - 3
@ NF(7(€)) = 0. This is the case for all unsolvables.

Taylor Expansion vs B6hm Trees

Advantages:
@ Approximants are closed under application.
@ Enjoy Strong Normalization & Confluence & Linearity.

T<—>

© Generalizable to the mainstream languages. o N
Disadvantage:
@ lots of indices arise from the linearization. NF(A")
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Resource Calculus & Taylor Expansion

The Dynamics of Taylor Expansion

Computing the normal form:
NF(T (M) = J{nf(t) | t € T(M)}
Examples
o T (Ax.x), T (Ax.xx), T (Ax.f(xx)) are already in normal form.
© NF(T(Y)) = {\f.f[], MATFL, MFLELD, FOI0, MF-FLELFLNN, FLFLFOND, LD, - - - 3
@ NF(7(€)) = 0. This is the case for all unsolvables.

Taylor Expansion vs B6hm Trees Ehrhard & Regnier 2003

Advantages: AT N
@ Approximants are closed under application.
@ Enjoy Strong Normalization & Confluence & Linearity.

© Generalizable to the mainstream languages. o N
Disadvantage:
o T
@ lots of indices arise from the linearization. B————— NF(\)
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Resource Calculus & Taylor Expansion

App rox i m ati O n Th eo ry On the Taylor Expansion of Probabilistic A-terms

(Long Version)

Ugo Del Lago Thomas Leventis

A common structure
@ Source language

@ Target language: resource calculus
e confluence,
@ strong normalization.

© Definition of Taylor Expansion
@ static analysis (coherence/cliques),
e dynamic analysis (normalization).

© Adequacy

e
ety 08,
g Nt

»
4
ey Py,
e
ey

Commutation Theorem

NE(7(P)) = T(BT(P))

Corollary
Béhm trees and Taylor semantics coincide:
BT(P) = BT(P') — NF(T(P)) = NF(T (P))

4
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Resource Calculus & Taylor Expansion

Approximation Theory

A common structure
@ Source language

@ Target language: resource calculus

@ confluence,
@ strong normalization.

© Definition of Taylor Expansion

@ static analysis (coherence/cliques),
e dynamic analysis (normalization).

© Adequacy

Commutation Theorem

NE(7(P)) = T(BT(P))

Corollary
Béhm trees and Taylor semantics coincide:

BT(P) =BT(P') <= NF(T(P)) = NF(T (P"))

D. Barbarossa and G. Manzonetto

Taylor Expansion, at work

On the Taylor Expansion of Probabilistic M-terms
(Long Version)

Ugo Del Lago

1 Introductic

Tho

.

We explored the real
»  power of the Taylor expansion!J

o,
,

%
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Tty e, g

g,

e
o
", e,
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o
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o
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Applications

Classic results

Scott’s Continuity J Chapter 14 Berry’s

Stability |

STUDIES INLOGIC

The Lambda
Caleulus

A

Perpen
Lines L

A

topological argument

Contextuality of BTs
Genericity Lemma

Khan & Plotkin

v
# parallel or

N

dicular
emma

N

's Sequentiality J
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Applications

Classic results with simpler inductive proofs

Scott’s Continuity J

Commutation Theorem
NE(T(P)) = T(BT(P))

Contextuality of BTs
Genericity Lemma

D. Barbarossa and G. Manzonetto Taylor Expansion, at work

Berry’s Stability ]

# parallel or

Perpendicular
Lines Lemma

Khan & Plotkin’s Sequentiality )
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Applications

Classic results with simpler inductive proofs

Scott’s Continuity J Berry’s Stability ]

# parallel or

Commutation Theorem
NE(T(P)) = T(BT(P))

Perpendicular
Lines Lemma

Contextuality of BTs

Genericity Lemma

Khan & Plotkin’s Sequentiality )
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Applications

A proof of context closure via Taylor Expansion

Contextuality of B6hm trees

BT(M)=BT(N) = VCJ[].BT(C[M]) =BT(C[N])

Proof. By structural induction on C[]. Assuming NF(7 (M)) = NF(7 (N)), we have to prove:

NE(T (C[M])) = NF(T (C[N]))
The only difficult case is application: C[] = (Ci[]) (C2[])-
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28/01/2022

18/24



Applications

A proof of context closure via Taylor Expansion

Contextuality of B6hm trees

BT(M)=BT(N) = VCJ[].BT(C[M]) =BT(C[N])

Proof. By structural induction on C[]. Assuming NF(7 (M)) = NE(T (N)), we have to prove:
NE(T (C[M])) = NF(T (C[N]))

The only difficult case is application: C[] = (Ci[]) (C2[])-

Take t € NF(T(C[M])), then 3t" € T((Ci[M])(C2[M])) such that

t = sifur, ..., u] ———=t+T

with s; € T(C1 [M])
and uy, ..., ux € T(C[M]).
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Applications

A proof of context closure via Taylor Expansion

Contextuality of B6hm trees

BT(M)=BT(N) = VCJ[].BT(C[M]) =BT(C[N])

Proof. By structural induction on C[]. Assuming NF(7 (M)) = NE(T (N)), we have to prove:
NE(T (C[M])) = NF(T (C[N]))

The only difficult case is application: C[] = (Ci[]) (C2[])-

Take t € NF(T(C[M])), then 3t" € T((Ci[M])(C2[M])) such that

t = sifur, ..., u] ———=t+T

|

nf(s)[nf(ur), .. nf(u)]

with nf(s1) € NF(T (Ci[M]))
and nf(uy), ..., nf(ux) € NE(T (C2[M]))
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Applications

A proof of context closure via Taylor Expansion

Contextuality of B6hm trees

BT(M)=BT(N) = VCJ[].BT(C[M]) =BT(C[N]) J

Proof. By structural induction on C[]. Assuming NF(7 (M)) = NF(7 (N)), we have to prove:
NE(T (C[M])) = NE(T (C[N]))

The only difficult case is application: C[] = (Ci[]) (C2[])-

Take t € NF(T(C[M])), then 3t" € T((Ci[M])(C2[M])) such that

t = sifur, ..., u] ———=t+T

|

nf(s)[nf(ur), .. nf(u)]

with nf(s1) € NF(7 (C1[M])) = NF(T (C4[N]))
and nf(u1), ..., nf(ux) € NF(T (C2[M])) = NFE(T (C2[N])). We conclude that t € NF(7 (C[N])). O
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Applications

The Genericity Lemma

Genericity Lemma

Let M unsolvable. If C[M] has a 3-nf, then C[—] is constant (i.e., VN € A. C[N] =g C[M]). J

Standard proof: Topological method.
Compactification points in the tree topology are precisely the unsolvables.

Several proofs in the literature:

A Simple Proof of the Genericity Lemma

Proving the Genericity Lemma
by Leftmost Reduction
is Simple

Jan Kuper

University of Twente, Department of Computer Science
P.0.Box 217, 7500 AE Enschede, The Netherlands
-mail; jankuper®cs.utwente.nl

Abstract, The Genericity Lemma is one of the most important moti-
vations to take in the untyped lambda caleulus the notion of solvability
as a formal representation of the informal notion of undefinedness, We
generalise solvability towards typed lambda calculi, and we call this gen-
eralisation: usability, We then prove the Genericity Lemma for un-usable
terms. The technique of the proof is based on leftmost reduction, which
strongly simplifies the standard proof.
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Applications

The Genericity Lemma

Genericity Lemma

Let M unsolvable. If C[M] has a -nf, then C[—] is constant (i.e., VN € A. C[N] =5 C[M]).

Proof. If C[M] normalizable then there is a linearized t € NF(7 (C[M])) such that

t = nf(C[M])
So, there exist t' € T (C[M]) such that:

V= c(]s1,...,sk[)—>>t+'}1‘

for some c € T(C[-]) and s1,..., s8¢ € T(M).
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Applications

The Genericity Lemma

Genericity Lemma

Let M unsolvable. If C[M] has a -nf, then C[—] is constant (i.e., VN € A. C[N] =5 C[M]).

Proof. If C[M] normalizable then there is a linearized t € NF(7 (C[M])) such that

t = nf(C[M])
So, there exist t' € T (C[M]) such that:

V= c(]s1,...,sk[)—>>t+'}1‘

|

c(nf(s1),...,nf(sk))

for some ¢ € T(C[-]) and s4,..., sk € T(M). (By Confluence and Strong Normalization.)
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Applications

The Genericity Lemma

Genericity Lemma

Let M unsolvable. If C[M] has a -nf, then C[—] is constant (i.e., VN € A. C[N] =5 C[M]).

Proof. If C[M] normalizable then there is a linearized t € NF(7 (C[M])) such that

t = nf(C[M])
So, there exist t' € T (C[M]) such that:
t = C(]S1,...,SkDHt+T
c(0,...,0)

for some ¢ € T(C[-]) and s, ..., € T(M). Since M unsolvable entails nf(s;) = 0.
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Applications

The Genericity Lemma

Genericity Lemma

Let M unsolvable. If C[M] has a -nf, then C[—] is constant (i.e., VN € A. C[N] =3 C[M]). J
Proof. If C[M] normalizable then there is a linearized t € NF(7 (C[M])) such that

t = nf(C[M])
So, there exist t' € T (C[M]) such that:

t = c(S1y...,S) ——=t+T
|

c(0,...,0)

for some ¢ € T(C[-]) and s, ..., € T(M). Since M unsolvable entails nf(s;) = 0.

Therefore, no hole may actually occur in ¢(—) so we get:
c(st,...,sk) € T(CIN]) = teNF(T(C[N])

and since t is linearized we obtain nfz(C[N]) = t. O
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Applications

For more details and proofs. .. look in the paper!

POPL 2020

Taylor Subsumes Scott, Berry, Kahn and Plotkin®

DAVIDE BARBARQOSSA, Université Paris 13, Sorbonne Paris Cité, LIPN, CNRS UMR 7030, France
GIULIO MANZONETTQ, Université Paris 13, Sorbonne Paris Cité, LIPN, CNRS UMR 7030, France

The speculative ambition of replacing the old theory of program approximation based on syntactic continuity
with the theory of resource consumption based on Taylor expansion and originating from the differential
A-calculus is nowadays at hand. Using this resource sensitive theory, we provide simple proofs of important
results in A-calculus that are usually demonstrated by exploiting Scott’s continuity, Berry’s stability or Kahn
and Plotkin’s sequentiality theory. A paradigmatic example is given by the Perpendicular Lines Lemma for
the Bohm tree semantics, which is proved here simply by induction, but relying on the main properties of
resource approxi : strong normalization, confl e and linearity.

CCS Concepts: « Theory of computation — Lambda calculus; Linear logic.

Additional Key Words and Phrases: Lambda calculus, Taylor expansion, Béhm trees, Linear Logic.

ACM Reference Format:
Davide Barbarossa and Giulio Manzonetto. 2020. Taylor Subsumes Scott, Berry, Kahn and Plotkin. Proc. ACM

Program. Lane. 4. POPT._Article 1 (Tannarv 2020). 23 naees. httns://doi ore/10.1145/3371069
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Applications

Perpendicular Lines Lemma

PLL: If a context C[—1,...,—n] : A" — A is constant on n perpendicular lines, then it must be constant
everywhere. y

A

R® 6 ={(x,1,2) | x €R},

/ X £2:{(07y71)|y6R},
% ; s =1{(1,0,2) | z € R}.
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Applications

Perpendicular Lines Lemma

PLL: If a context C[—1,...,—n] : A" — A is constant on n perpendicular lines, then it must be constant
everywhere. y
A O = {(X, Ax.x,  xy.x) | X € A},
. X L ={(Mxy.y,Y, Ax.x) | Y € A},
/ ; 3 = {(Mx.x,\xy.x,Z) | Z € N}.
Known results: z

@ M(B) = PLL, Barendregt's Book 1982,
Proof technique: Sequentiality.

® M°(B) = PLL?

@ M°(B) i~ PLL, by Barendregt & Statman 1999.
Proof: Counterexample via Plotkin’s terms.

@ M(pB) E PLL, by De Vrijer & Endrullis 2008.
Proof: via Reduction under Substitution.

D. Barbarossa and G. Manzonetto Taylor Expansion, at work
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Applications

Perpendicular Lines Lemma

PLL: If a context C[—1,...,—n] : A" — A is constant on n perpendicular lines, then it must be constant
everywhere.

Perpendicular Lines Lemma

ClZ, M, ...... M =5 N
C[Me1,Z

S e ,Mgn] =5 N>
VZ . . .
C[Mm LR Mn(n71), Z] =5 Np
4
VZ.ClZi,....Z) =8 Ny =5 - =5 Ny
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Applications

Perpendicular Lines Lemma

PLL: If a context C[—1,...,—n] : A" — A is constant on n perpendicular lines, then it must be constant
everywhere.

Perpendicular Lines Lemma

C[Z, M12, ...... 7,\/Im] =5 N

C[M21 Ly s Mg,,] =5 N>
VZ . - .

C[Mn17-~~7Mn(n71),Z] =B Nn
4
VZ.ClZ,....Z) =8 Ny =5 - =5 Ny

.
In B a context C[—] can be constant for several reasons:

@ C[-] does not contain the hole in the first place (the trivial case);
@ the hole is erased during its reduction;

© the hole is “hidden” behind an unsolvable;
© the hole is never erased but “pushed into infinity”.
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Applications

Perpendicular Lines Lemma

PLL: If a context C[—1,...,—n] : A" — A is constant on n perpendicular lines, then it must be constant
everywhere.
Perpendicular Lines Lemma

C[Z, M12, ...... 7M1n] =B N1
(:[AAE1, 227 ...... 5 A42n] =B /V&
VZ . . .
C:[lb4n1 PICIIRITY /b4n(n4,1)7 2?] =B fdn
4
VZ.ClZ,....Z) =8 Ny =5 - =5 Ny

An approximant ¢ € T (C[—]) such that nf(c) # 0 can be constant for only one reason:
@ c does not contain the hole in the first place (the trivial case);
@ the hole is erased during its reduction ;
@ the hole is “hidden” behind an unsolvable;
© the hole is never erased but “pushed into infinity”.
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Applications

Perpendicular Lines Lemma

PLL: If a context C[—1,...,—n] : A" — A is constant on n perpendicular lines, then it must be constant
everywhere.
Perpendicular Lines Lemma

C[Z, M12, ...... 7M1n] =B N1
(:[AAE1, 227 ...... 5 A42n] =B /V&
VZ . . .
C:[lb4n1 PICIIRITY /b4n(n4,1)7 2?] =B fdn
4
VZ.ClZ,....Z) =8 Ny =5 - =5 Ny

An approximant ¢ € T (C[—]) such that nf(c) # 0 can be constant for only one reason:
@ c does not contain the hole in the first place (the trivial case);

Q the-holeis-erasedduring-itsreduction (linearity);
© the hole is “hidden” behind an unsolvable;
© the hole is never erased but “pushed into infinity”.
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Applications

Perpendicular Lines Lemma

PLL: If a context C[—1,...,—n] : A" — A is constant on n perpendicular lines, then it must be constant
everywhere.
Perpendicular Lines Lemma

C[Z, M12, ...... 7M1n] =B N1
(:[AAE1, 227 ...... 5 A42n] =B /V&
VZ . . .
C:[lb4n1 PICIIRITY /b4n(n4,1)7 2?] =B fdn
4
VZ.ClZ,....Z) =8 Ny =5 - =5 Ny

An approximant ¢ € T (C[—]) such that nf(c) # 0 can be constant for only one reason:
@ c does not contain the hole in the first place (the trivial case);

Q the-holeis-erasedduring-itsreduction (linearity);
Q thehole-is“hiddenbehind-an-unselvable (strong normalization);
© the hole is never erased but “pushed into infinity”.
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Applications

Perpendicular Lines Lemma

PLL: If a context C[—1,...,—n] : A" — A is constant on n perpendicular lines, then it must be constant
everywhere.
Perpendicular Lines Lemma

C[Z, M12, ...... 7M1n] =B N1
(:[AAE1, 227 ...... 5 A42n] =B /V&
VZ . . .
C:[lb4n1 PICIIRITY /b4n(n4,1)7 2?] =B fdn
4
VZ.ClZ,....Z) =8 Ny =5 - =5 Ny

An approximant ¢ € T (C[—]) such that nf(c) # 0 can be constant for only one reason:
@ c does not contain the hole in the first place (the trivial case);

Q the-holeis-erasedduring-itsreduction (linearity);
© ihe-hole-is“hidden behind-anunselvable (strong normalization);

Q the-hole-ishevererased-but-“pushed-inte-infinity” (finiteness).
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Applications

Perpendicular Lines Lemma

PLL: If a context C[—1, .

.., —n] : N7 = A is constant on n perpendicular lines, then it must be constant
everywhere.

Perpendicular Lines Lemma

ClZ, Mz,
ClMer,Z, ...... Moy =5 N

vZ
C[Mn1>~~7Mn(n—1)aZ] =B Nn

[}
VZ.ClZi,...,Z) =5 Ny =5 -+ =5 N

Claim. PLL 6 | B
vc € T(C[-1,...,—n]),nf(c) #0 = ¢ cannot contain any hole. J open v |/
By induction on the size of ¢, using all the properties mentioned before. closed | X | 2
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Applications

Perpendicular Lines Lemma

PLL: If a context C[—1,...,—n] : A" — A is constant on n perpendicular lines, then it must be constant
everywhere.
Perpendicular Lines Lemma

C[Z, Mig, ...... ,M1n] =5 N
C[M21 s Z, ...... s Mg,-,] =5 N>
VZ . . .
C[M,ﬂ,...,Mn(n_”’Z] =B N,7
I
VZ.ClZi,...,Z) =5 Ny =5 -~ =5 N,

Our proof does not need open terms! PLL B B
MOB) EPLL v/ J open |V |V
closed | X | V
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Applications

These techniques extends easily to. . .

Other paradigms

@ Revisiting Call-by-value B6hm trees in light of their Taylor expansion.
Axel Kerinec, Giulio Manzonetto, Michele Pagani. Log. Methods Comput. Sci. 16(3) (2020)

@ Taylor expansion for Call-By-Push-Value.
Jules Chouquet, Christine Tasson. CSL 2020: 16:1-16:16

Other primitives (e.g., call-cc)

[§ Towards a resource based approximation theory of programs.
Davide Barbarossa. PhD thesis. 2021.

Other kinds of “effects”

@ Normalizing the Taylor expansion of non-deterministic A-terms, via parallel reduction of resource vectors.
Lionel Vaux. Log. Methods Comput. Sci. 15(3) (2019)

@ On the Taylor Expansion of Probabilistic lambda-terms.
Ugo Dal Lago, Thomas Leventis, FSCD 2019: 13:1-13:16.

B
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Questions

Thanks for your attention!

ANY

L 1
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