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Introduction

How to Handle the Complexity of Software?

An operating system can be huge, e.g. Linux is about 12 million lines of code.

Denotational Semantics
1 Define a program interpretation satisfying compositionality.

The Theory of Program Approximation
1 Decompose a program into elementary “bricks” (its approximants),
2 Retrieve the whole program behaviour performing a “limit” of its approximants.
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Introduction

The Crucial Point — How to Handle Recursion?

Scott’s continuity
“A finite portion of the output of a program must be generated by a finite portion of its input.”

Kleene Fixed Point Theorem

Let D = (D,≤,⊥) be a domain. Every Scott-continuous function

f : D → D

has a least fixed point lfp(f ) that can calculated as follows:

lfp(f ) =
∨
n∈N

f n(⊥)

Example. The factorial is the least fixed point of the higher-order program:

fun f → fun n → i f n = 0 then 1 else n * ( f ( n − 1 ) ) )
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Introduction

The Theory of Program Approximation

First developed for untyped λ-calculus (Church, 1932)

Based on a primitive notion of function.

M,N ::= x | λx .M | MN

Computation becomes substitution (λx .M)N →β M[N/x ].

Continous Semantics (Scott, 1969)

D∞: First denotational model of λ-calculus.

Böhm tree semantics (Barendregt, 1977)

Tree-like representation for program execution.

“Syntactic model” of λ-calculus.
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Introduction

Possible behaviours of a program

Classification Behaviour Result

normalizable P → P1 → P2 �97 P99 → 42 completely defined

unsolvable P → P1 → P �97 P1 → · · · undefined

solvable P → o1P1 → o1(o2P2)→ o1(o2(o3P3)) stable parts
�∞ o1(o2(o3(· · · on)) · · · ) (infinitary)

P P1 P2 P99 42
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Introduction

The Böhm Tree Semantics

Given a program P, its Böhm tree BT(P) is defined as follows:

If P is completely undefined (unsolvable), then

BT(P) = ⊥,

Otherwise P � output P1 · · ·Pk and

BT(P) = output

BT(P1) · · · BT(Pk )

Example
BT(Y)

q
λf .f

f

f

f

...

The Böhm Tree Semantics

B ` P = P′ ⇐⇒ BT(P) = BT(P′)
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Introduction

The Mainstream Programming Languages

λ-calculus Quantum
calculi

Probabilistic
calculi

Non-
determinism

may

must

Probabilistic
PCF

Erratic PCF
/ Idealized

Algol

Differential
calculi

Resource
calculus

Resource
PCF

differential
λ-calculus

Algebraic
calculi
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Introduction

The origin of Linear Logic Quantitative Semantics

Girard: Normal functors, power series and λ-calculus. Ann. Pure Appl. Log., 1988.

Girard: Linear Logic. Theor. Comput. Sci. 50: 1-102 (1987)

As remarked in the LL paper: A notion of differentiation is at hand in some of these models. . .
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The Differential λ-calculus

The differential λ-calculus — Ehrhard & Regnier 2003

tangent
∆x

∆y

x

y

f (x)

derivative

∆y
∆x as ∆x → 0

Mathematical Analysis

Taylor expansion

f (x) =
∞∑

n=0

f (n)(a)

n!
(x − a)n

Theory of Programming Languages

The differential λ-calculus

D(λx .M) · N →

λx .
(
∂M
∂x · N

)
linear substitution of N

for one occurrence of x in M

Taylor expansion T (−)

P x =
∞∑

n=0

1
n!

(
Dn(P) · (x , . . . , x)

)
0

The ambitious goal: to replace the theory of program approximation based on continuity and Böhm trees with
the theory of resource consumption based on Taylor expansion.
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Resource Calculus & Taylor Expansion

The Resource Calculus Λr

Resource approximants:

t ::= x | λx .t | t b

b ::= [t1, . . . , tn] where n ≥ 0

T ::= t1 + · · ·+ tn

Confluent LinearStrongly Normalizable

D. Barbarossa and G. Manzonetto Taylor Expansion, at work 28/01/2022 11 / 24



Resource Calculus & Taylor Expansion

The Resource Calculus Λr

Resource approximants:

t ::= x | λx .t | t b

b ::= [t1, . . . , tn] where n ≥ 0

T ::= t1 + · · ·+ tn

Confluent LinearStrongly Normalizable

Resource Terms

D. Barbarossa and G. Manzonetto Taylor Expansion, at work 28/01/2022 11 / 24



Resource Calculus & Taylor Expansion

The Resource Calculus Λr

Resource approximants:

t ::= x | λx .t | t b

b ::= [t1, . . . , tn] where n ≥ 0

T ::= t1 + · · ·+ tn

Confluent LinearStrongly Normalizable

Resource Terms

O

D. Barbarossa and G. Manzonetto Taylor Expansion, at work 28/01/2022 11 / 24



Resource Calculus & Taylor Expansion

The Resource Calculus Λr

Resource approximants:

t ::= x | λx .t | t b

b ::= [t1, . . . , tn] where n ≥ 0

T ::= t1 + · · ·+ tn

Confluent LinearStrongly Normalizable

Bags

D. Barbarossa and G. Manzonetto Taylor Expansion, at work 28/01/2022 11 / 24



Resource Calculus & Taylor Expansion

The Resource Calculus Λr

Resource approximants:
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Reduction:

(λx .t)[s1, s2, s3]→ ?
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o
x

x

x
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The Resource Calculus Λr

Resource approximants:

t ::= x | λx .t | t b

b ::= [t1, . . . , tn] where n ≥ 0

T ::= t1 + · · ·+ tn

Reduction:

(λx .t)[s1, s2, s3]→
∑
σ∈S3

t〈s1/xσ(1), s2/xσ(2), s3/xσ(1)〉

x

o
x

x

x

Confluent LinearStrongly Normalizable

Formal sums

D. Barbarossa and G. Manzonetto Taylor Expansion, at work 28/01/2022 11 / 24



Resource Calculus & Taylor Expansion

The Resource Calculus Λr

Resource approximants:

t ::= x | λx .t | t b

b ::= [t1, . . . , tn] where n ≥ 0

T ::= t1 + · · ·+ tn

Reduction:

(λx .t)[s1, s2, s3]→ ?

x

o

x

x

Confluent LinearStrongly Normalizable

D. Barbarossa and G. Manzonetto Taylor Expansion, at work 28/01/2022 11 / 24



Resource Calculus & Taylor Expansion

The Resource Calculus Λr

Resource approximants:

t ::= x | λx .t | t b

b ::= [t1, . . . , tn] where n ≥ 0

T ::= t1 + · · ·+ tn

Reduction:

(λx .t)[s1, s2, s3]→ 0

x

o

x

x

Confluent LinearStrongly Normalizable

All constructors are linear:

λx .
∑

i ti :=
∑

i λx .ti

(
∑

i ti )(
∑

j bj ) :=
∑

i,j tibj

[
∑

i ti , . . . ] :=
∑

i [ti , . . .]

D. Barbarossa and G. Manzonetto Taylor Expansion, at work 28/01/2022 11 / 24



Resource Calculus & Taylor Expansion

The Resource Calculus Λr — Examples

Let I = λx .x be the identity.

The linear fragment of λ-calculus is embeddable:

(λfgh.f [g][h])[x ][y ][z]→ (λgh.x [g][h])[y ][z]→ (λh.x [y ][h])[z]→ x [y ][z]

Resource terms may experience starvation:

(λx .x [x ])[λx .x [x ], λx .x [x ]]→ (λx .x [x ])[λx .x [x ]]→ 0

Resource terms may experience surfeit:

(λfg.f )[x ][y ]→ (λg.x)[y ]→ 0

Non-determinism may arise along the reduction:

(λf .f [f ])[y , z]→ y [z] + z[y ]
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Resource Calculus & Taylor Expansion

The Resource Calculus Λr

Resource approximants:
t ::= x | λx .t | t b

b ::= [t1, . . . , tn] where n ≥ 0

T ::= t1 + · · ·+ tn

Reduction:

(λx .t)[s1, . . . , sn] � T 6= 0 ⇒ t must use each si exactly once in the reduction to a value.

t � cL0M = 0 ⇐ otherwise, the whole program t becomes an empty program 0.

Main Properties

Strong Normalization: Trivial, because there is no duplication. �

Confluence: Locally confluent + strongly normalizing. �

Linearity: Nothing gets erased in a non-zero reduction sequence. �
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Resource Calculus & Taylor Expansion

Taylor Expansion : λ-terms 7→ (infinite) series of resource approximants

The Taylor Expansion of a λ-term:

MN 7→
∞∑

k=0

1
k !

M[N, . . . ,N︸ ︷︷ ︸
k times

]
(
∼=
∞∑

k=0

1
k !

(
Dk (M) · (N, . . . ,N)

)
0
)

Examples:
T (λx .x) = {λx .x}

T (λx .xx) = {λx .x [xn] | n ∈ N}

T (Ω) = {(λx .x [xn0 ])[λx .x [xn1 ], . . . , λx .x [xnk ]] | k , n0, . . . , nk ∈ N}

T (∆f ) = {λx .f [xn][xk ] | n, k ∈ N}

T (Y) = {λf .t [s1, . . . , sk ] | k ∈ N, t , s1, . . . , sk ∈ T (∆f )}

where Y = λf .∆f ∆f and ∆f = λx .f (xx).
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Resource Calculus & Taylor Expansion

The Dynamics of Taylor Expansion

Computing the normal form:
NF(T (M)) =

⋃{
nf(t) | t ∈ T (M)

}
Examples

T (λx .x), T (λx .xx), T (λx .f (xx)) are already in normal form.

NF(T (Y)) = {λf .f [], λf .f [f []], λf .f [f [], f []]], λf .f [f [f []], f [f [f []]], f []], . . . }.
NF(T (Ω)) = ∅. This is the case for all unsolvables.

Taylor Expansion vs Böhm Trees

Ehrhard & Regnier 2003

Advantages:
1 Approximants are closed under application.
2 Enjoy Strong Normalization & Confluence & Linearity.
3 Generalizable to the mainstream languages.

Disadvantage:
1 lots of indices arise from the linearization.

Λ

BT

��

T // Λr

NF

��
B NF(Λr )
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1 Approximants are closed under application.
2 Enjoy Strong Normalization & Confluence & Linearity.
3 Generalizable to the mainstream languages.

Disadvantage:
1 lots of indices arise from the linearization.
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BT
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T // Λr

NF
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Resource Calculus & Taylor Expansion

Approximation Theory

A common structure
1 Source language
2 Target language: resource calculus

confluence,
strong normalization.

3 Definition of Taylor Expansion
static analysis (coherence/cliques),
dynamic analysis (normalization).

4 Adequacy

Commutation Theorem

NF(T (P)) = T (BT(P))

Corollary

Böhm trees and Taylor semantics coincide:

BT(P) = BT(P′) ⇐⇒ NF(T (P)) = NF(T (P′))
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A common structure
1 Source language
2 Target language: resource calculus

confluence,
strong normalization.

3 Definition of Taylor Expansion
static analysis (coherence/cliques),
dynamic analysis (normalization).

4 Adequacy

Commutation Theorem

NF(T (P)) = T (BT(P))

Corollary

Böhm trees and Taylor semantics coincide:

BT(P) = BT(P′) ⇐⇒ NF(T (P)) = NF(T (P′))

We explored the real
power of the Taylor expansion!
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Applications

Classic results

Chapter 14Scott’s Continuity Berry’s Stability

Khan & Plotkin’s Sequentiality

Contextuality of BTs
Genericity Lemma

@ parallel or

Perpendicular
Lines Lemma

topological argument

Commutation Theorem
NF(T (P)) = T (BT(P))
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Applications

A proof of context closure via Taylor Expansion

Contextuality of Böhm trees

BT(M) = BT(N) ⇒ ∀C[] . BT(C[M]) = BT(C[N])

Proof. By structural induction on C[]. Assuming NF(T (M)) = NF(T (N)), we have to prove:

NF(T (C[M])) = NF(T (C[N]))

The only difficult case is application: C[] = (C1[]) (C2[]).

Take t ∈ NF(T (C[M])), then ∃t ′ ∈ T ((C1[M])(C2[M])) such that

t ′ = s1[u1, . . . , uk ] // // t + T

nf(s1)[nf(u1), . . . , nf(uk )]

We conclude that t ∈ NF(T (C[N])). �
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t ′ = s1[u1, . . . , uk ] // // t + T

nf(s1)[nf(u1), . . . , nf(uk )]

with s1 ∈ T (C1[M])

and u1, . . . , uk ∈ T (C2[M]).

We conclude that t ∈ NF(T (C[N])). �

D. Barbarossa and G. Manzonetto Taylor Expansion, at work 28/01/2022 18 / 24



Applications

A proof of context closure via Taylor Expansion

Contextuality of Böhm trees

BT(M) = BT(N) ⇒ ∀C[] . BT(C[M]) = BT(C[N])

Proof. By structural induction on C[]. Assuming NF(T (M)) = NF(T (N)), we have to prove:

NF(T (C[M])) = NF(T (C[N]))

The only difficult case is application: C[] = (C1[]) (C2[]).

Take t ∈ NF(T (C[M])), then ∃t ′ ∈ T ((C1[M])(C2[M])) such that

t ′ = s1[u1, . . . , uk ] // //

����

t + T

nf(s1)[nf(u1), . . . , nf(uk )]

66 66

with nf(s1) ∈ NF(T (C1[M]))

= NF(T (C1[N]))
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Applications

The Genericity Lemma

Genericity Lemma

Let M unsolvable. If C[M] has a β-nf, then C[−] is constant (i.e., ∀N ∈ Λ .C[N] =β C[M]).

Standard proof: Topological method.
Compactification points in the tree topology are precisely the unsolvables.

Several proofs in the literature:

Proof. If C[M] normalizable then there is a linearized t ∈ NF(T (C[M])) such that

t ∼= nf(C[M])

So, there exist t ′ ∈ T (C[M]) such that:

t ′ = cLs1, . . . , sk M // // t + T

for some c ∈ T (C[−]) and s1, . . . , sk ∈ T (M).

Therefore, no hole may actually occur in cL−M so we get:

cLs1, . . . , sk M ∈ T (C[N]) ⇒ t ∈ NF(T (C[N]))

and since t is linearized we obtain nfβ(C[N]) ∼= t . �
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77 77

for some c ∈ T (C[−]) and s1, . . . , sk ∈ T (M). (By Confluence and Strong Normalization.)
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Applications

For more details and proofs. . . look in the paper!

POPL 2020
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Applications

Perpendicular Lines Lemma

PLL: If a context C[−1, . . . ,−n] : Λn → Λ is constant on n perpendicular lines, then it must be constant
everywhere.

x

y

z

R3
`1 = {(x , 1, 2) | x ∈ R},

`2 = {(0, y , 1) | y ∈ R},

`3 = {(1, 0, z) | z ∈ R}.

Known results:

M(B) |= PLL, Barendregt’s Book 1982,
Proof technique: Sequentiality.

Mo(B) |= PLL?

Mo(β) 6|= PLL, by Barendregt & Statman 1999.
Proof: Counterexample via Plotkin’s terms.

M(β) |= PLL, by De Vrijer & Endrullis 2008.
Proof: via Reduction under Substitution.

PLL β B
open ! !

closed % ?
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z

Λ3
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`2 = {(λxy .y ,Y , λx .x) | Y ∈ Λ},
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Applications

Perpendicular Lines Lemma

PLL: If a context C[−1, . . . ,−n] : Λn → Λ is constant on n perpendicular lines, then it must be constant
everywhere.

Perpendicular Lines Lemma

∀Z


C[Z ,M12, . . . . . . ,M1n] =B N1

C[M21,Z , . . . . . . ,M2n] =B N2

. . .
...

...
C[Mn1, . . . ,Mn(n−1),Z ] =B Nn

⇓

∀~Z .C[Z1, . . . ,Zn] =B N1 =B · · · =B Nn
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PLL: If a context C[−1, . . . ,−n] : Λn → Λ is constant on n perpendicular lines, then it must be constant
everywhere.

Perpendicular Lines Lemma
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C[Z ,M12, . . . . . . ,M1n] =B N1

C[M21,Z , . . . . . . ,M2n] =B N2

. . .
...

...
C[Mn1, . . . ,Mn(n−1),Z ] =B Nn

⇓

∀~Z .C[Z1, . . . ,Zn] =B N1 =B · · · =B Nn

In B a context C[−] can be constant for several reasons:
1 C[−] does not contain the hole in the first place (the trivial case);
2 the hole is erased during its reduction;
3 the hole is “hidden” behind an unsolvable;
4 the hole is never erased but “pushed into infinity”.
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An approximant c ∈ T (C[−]) such that nf(c) 6= 0 can be constant for only one reason:
1 c does not contain the hole in the first place (the trivial case);
2 the hole is erased during its reduction ;
3 the hole is “hidden” behind an unsolvable;
4 the hole is never erased but “pushed into infinity”.
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An approximant c ∈ T (C[−]) such that nf(c) 6= 0 can be constant for only one reason:
1 c does not contain the hole in the first place (the trivial case);
2 the hole is erased during its reduction (linearity);
3 the hole is “hidden” behind an unsolvable;
4 the hole is never erased but “pushed into infinity”.
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An approximant c ∈ T (C[−]) such that nf(c) 6= 0 can be constant for only one reason:
1 c does not contain the hole in the first place (the trivial case);
2 the hole is erased during its reduction (linearity);
3 the hole is “hidden” behind an unsolvable (strong normalization);
4 the hole is never erased but “pushed into infinity”.
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An approximant c ∈ T (C[−]) such that nf(c) 6= 0 can be constant for only one reason:
1 c does not contain the hole in the first place (the trivial case);
2 the hole is erased during its reduction (linearity);
3 the hole is “hidden” behind an unsolvable (strong normalization);
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Applications

Perpendicular Lines Lemma

PLL: If a context C[−1, . . . ,−n] : Λn → Λ is constant on n perpendicular lines, then it must be constant
everywhere.

Perpendicular Lines Lemma

∀Z


C[Z ,M12, . . . . . . ,M1n] =B N1

C[M21,Z , . . . . . . ,M2n] =B N2

. . .
...

...
C[Mn1, . . . ,Mn(n−1),Z ] =B Nn

⇓

∀~Z .C[Z1, . . . ,Zn] =B N1 =B · · · =B Nn

Claim.

∀c ∈ T (C[−1, . . . ,−n]), nf(c) 6= 0 ⇒ c cannot contain any hole.

By induction on the size of c, using all the properties mentioned before.

PLL β B
open ! !

closed % ?
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Applications

Perpendicular Lines Lemma

PLL: If a context C[−1, . . . ,−n] : Λn → Λ is constant on n perpendicular lines, then it must be constant
everywhere.

Perpendicular Lines Lemma

∀Z


C[Z ,M12, . . . . . . ,M1n] =B N1

C[M21,Z , . . . . . . ,M2n] =B N2

. . .
...

...
C[Mn1, . . . ,Mn(n−1),Z ] =B Nn

⇓

∀~Z .C[Z1, . . . ,Zn] =B N1 =B · · · =B Nn

Our proof does not need open terms!

Mo(B) |= PLL !

PLL β B
open ! !

closed % !
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Applications

These techniques extends easily to. . .

Other paradigms
Revisiting Call-by-value Böhm trees in light of their Taylor expansion.
Axel Kerinec, Giulio Manzonetto, Michele Pagani. Log. Methods Comput. Sci. 16(3) (2020)

Taylor expansion for Call-By-Push-Value.
Jules Chouquet, Christine Tasson. CSL 2020: 16:1-16:16

Other primitives (e.g., call-cc)
Towards a resource based approximation theory of programs.
Davide Barbarossa. PhD thesis. 2021.

Other kinds of “effects”
Normalizing the Taylor expansion of non-deterministic λ-terms, via parallel reduction of resource vectors.
Lionel Vaux. Log. Methods Comput. Sci. 15(3) (2019)

On the Taylor Expansion of Probabilistic lambda-terms.
Ugo Dal Lago, Thomas Leventis, FSCD 2019: 13:1-13:16.

...
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Questions

Thanks for your attention!
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