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Syntax and semantics

The syntax mirrors the semantics.

Programs Logic Semantics
fun (x:A)-> (t:B) Proof of A ` B f : A→ B.

Types Formulas Objects
Execution Cut-elimination Equality

λ-calculus Min. Logic Normal functors

Linear Logic

Vectorial Models

Differential Linear LogicResources λ-calculus

Differential OperatorsD-DiLL
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1. Syntax and semantics of (Differential) Linear Logic

2. Semantics with Distributions

3. Syntax with Differential Operators
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Syntax and semantics of Linear Logic

Linear Logic

Syntax : A ⇒ B = ! A(; B
Semantics : C∞(A,B) ' L(!A,B)

A focus on linearity
I Higher-Order is about Seely’s isomoprhism.

!A⊗!B ' !(A&B)

!A⊗̂!B ' !(A×B)

I Classicality is about a linear involutive negation :

JA⊥K = L(JAK,R)
A⊥⊥ ' A A ' A′′
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Just a glimpse at Differential Linear Logic

A,B := A⊗B|1|A`B|⊥|A⊕B|0|A×B|>|!A|!A

Exponential rules of DiLL0

!A, !A ` Γ
c

!A ` Γ
` Γ w

!A ` Γ
A ` Γ

d
?A ` Γ, ?A

` Γ, !A, ` ∆, !A
c̄` Γ,∆, !A

`
w̄` !A

` Γ, A
d̄` Γ, !A

Normal functors, power series and λ-calculus. Girard, APAL(1988)

Differential interaction nets, Ehrhard and Regnier, TCS (2006)
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Differential Linear Logic

` : A ` B
d

` : !A ` B
f : !A ` B

d̄
D0(f) : A ` B

linear ↪→ non-linear. non-linear ↪→ linear

f ∈ C∞(R,R)

d(f)(0)

Differential interaction nets, Ehrhard and Regnier, TCS (2006)
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Differential Linear Logic

` Γ, ` : A⊥
d

` Γ, ` : ?A⊥
` ∆, v : A

d̄` ∆, (f 7→ D0(f)(v)) : !A
linear ↪→ non-linear. non-linear ↪→ linear

f ∈ C∞(R,R)

d(f)(0)

Differential interaction nets, Ehrhard and Regnier, TCS (2006)
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Differential Linear Logic
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Cut-elimination:

` Γ, v : A
d̄` Γ, D0( )(v) : !A

` ∆, ` : A⊥
d

` ∆, ` : ?A⊥
cut

Γ,∆

 
` Γ, v : A ` ∆, ` : A⊥

cut` Γ,∆, D0(`)(x) = `(x) : R = ⊥

Differential interaction nets, Ehrhard and Regnier, TCS (2006)

That’s the resolution of a Differential Equation !
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Smooth and classical models
of Differential Linear Logic

What’s the good category in which we interpret formulas ?

I Exponentials are distributions

I From reflexivity to polarities
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Exponential as Distributions

I Distributions with compact support are elements of C∞(Rn,R)′, seen as
generalisations of functions with compact support:

φf : g ∈ C∞(Rn,R) 7→
∫
fg

δa : g ∈ C∞(Rn,R) 7→ g(a)

Théorie des distributions, Schwartz, 1947.

I In a classical models of Differential Linear Logic, the exponential is a
space of distributions with compact support.

!A( ⊥ = A⇒ ⊥
L(!E,R) ' C∞(E,R)
(!E)′′ ' C∞(E,R)′

!E ' C∞(E,R)′

A convenient differential category, Blute, Ehrhard, Tasson 2012

I Seely’s isomorphism corresponds to the Kernel theorem:

C∞(E,R)′⊗̃C∞(F,R)′ ' C∞(E × F,R)′
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Smoothness and Duality

Smoothness
Spaces : E is a locally convex and Haussdorf topological vector space.
Functions: f ∈ C∞(Rn,R) is infinitely and everywhere differentiable.

The two requirements works as opposite forces .

X A cartesian closed category with smooth functions.

 Completeness, and a dual topology fine enough.

X Interpreting (E⊥)⊥ ' E without an orthogonality:

 Reflexivity : E ' E′′, and a dual topology coarse enough.

.
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What’s not working

A space of (non necessarily linear) functions between finite dimensional spaces
is not finite dimensional.

dim C0(Rn,Rm) =∞.

We can’t restrict ourselves to finite dimensional spaces.

The tentative to have a normed space of analytic functions fails (Girard’s
Coherent Banach spaces).

I We want to use power series.

I For polarity reasons, we want the supremum norm on spaces of power series.

I But a power series can’t be bounded on an unbounded space (Liouville’s Theorem).

I Thus functions must depart from an open ball, but arrive in a closed ball. Thus they do not compose.

I This is why Coherent Banach spaces don’t work.

We can’t restrict ourselves to normed spaces.
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MLL in TopVect

Topological vector spaces.

It’s a mess.

Duality is not an orthogonality in general :

I It depends of the topology E′β , E′c, E
′
w, E′µ on the dual.

I It is typically not preserved by ⊗.

I It is in the canonical case not an orthogonality : E′β is not reflexive.

E 9 E⊥⊥

Monoidal closedness does not extends easily to the topological case :

I Many possible topologies on ⊗: ⊗β , ⊗π, ⊗ε.
I LB(E ⊗B F,G) ' LB(E,LB(F,G))
⇔ ”Grothendieck problème des topologies”.
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Topological models of DiLL

[Ehr02] [Ehr05] [DE08]

countable bases

of vector spaces

Coherent Banach spaces [Gir99]

a norm is too restrictive

Reflexive anc complete :

e.g. C∞(Rn,R)

C∞(Rn,R) is not finite dimensional
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A polarized model of Smooth differential Linear Logic

Typical Nuclear Fréchet spaces are spaces of functions C∞(Rn,R), H(Rn,R).

Fréchet spaces

C∞(Rn, R)

DF-spaces

!Rn = C∞(Rn,R)′

Nuclear spaces

Rn

And more : ↑ is the completion  Chiralities [Mellies].
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A Logical account
for Linear Partial Differential Equations
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Linear functions as solutions to a Differential equation

Slogan : From Linearity/Non-linearity to
Solutions/Parameter of a differential equation.

f ∈ C∞(A,R) is linear

iff ∀x, f(x) = D0(f)(x)
iff ∃g ∈ C∞(Rn,R), f = d̄g

φ ∈ A′′ ' A iff ∃ψ ∈ !A, φ ◦D0 = ψ
φ ∈ A′′ ' A iff ∃ψ ∈ !A,D0(φ) = ψ

φ ∈ !DA iff ∃ψ ∈ !A,D(φ) = ψ

Another exponential is possible

!DE := (D(C∞(E,R)′) ⊂ (C∞c (E,R))′

The exponential is the space of solutions to a differential equation.

I !D0
E := E′′ ' E.

I !IdE := !E = C∞(E,R)′.
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Linear Partial Differential Equations
with constant coefficients

Consider D a LPDO with constant coefficients: D =
∑
α,|α|≤n aα

∂α

∂xα .

The heat equation in R2

∂2u
∂x2 − ∂u

∂t = 0
u(x, y, 0) = f(x, y)

Theorem (Malgrange 1956)

For any D LPDOcc, there is ED ∈ C∞c (R× Rn,R)′ such that :

D(ED) = δ0

and thus : output D(ED ∗ φ) = φ input
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D-DiLL

DiLL

` Γ w
` Γ, ?A

` Γ, ?A, ?A
c

` Γ, ?A

` Γ, ` : A
d` Γ, ` : ?A

` Γ
w̄` Γ, !A

` Γ, !A ` ∆, !A
c̄` Γ,∆, !A

` Γ, x : A
d̄` Γ, D0( )(x)!A

D −DiLL : dereliction solves / codereliction applies

` Γ wD
` Γ, D(cst1) : ?DA

` Γ, ?A, ?DA
c

` Γ, ?DA

` Γ, f : ?DA
dD` Γ, f ∗ ED : ?A

` w̄D` ED : !DA

` Γ, φ : !A ` ∆, ψ : !DA
c̄D` Γ,∆, !DA

` Γ, ψ : !DA
d̄D` Γ, Dψ : !A

A Logical Account for LPDEs, K. LICS 2018.
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Conclusion

A few insights:

I To Linear Logic principles correspond Functional Analysis tools.

I Being dereliction and co-dereliction hides the application and resolution
of some differential equation.

A LOT of questions:

I How do we mix LPDOs between them (S. Mirwasser, F. Breuvart)?
I What’s formal link with Indexed Logics ?

I Does it extend to other differential operators ?
I Approximate methods of resolutions ?
I Computational content of ODE’s ?

I How do they act on higher-order functions ?
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