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Extended version of this talk is available in the paper “Focusing
Gentzen’s LK proof system” [Liang and Miller, to appear], in some
slides, and in a YouTube video.
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http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/ptvs-march-2021.pdf
https://www.youtube.com/watch?v=K-nbI6NJew8


A useful reference: Stanford Encyclopedia of Philosophy

I Linear Logic by Roberto Di Cosmo and Dale Miller.
https://plato.stanford.edu/archives/sum2019/entries/logic-linear/

I Intuitionistic Logic by Joan Moschovakis.
https://plato.stanford.edu/archives/fall2021/entries/logic-intuitionistic/

I Proof Theory by Michael Rathjen and Wilfried Sieg.
https://plato.stanford.edu/archives/fall2020/entries/proof-theory/.

I The Development of Proof Theory by Jan von Plato.
https://plato.stanford.edu/archives/win2018/entries/proof-theory-development/

I Church’s Type Theory by Christoph Benzmüller and Peter
Andrews. https://plato.stanford.edu/archives/sum2019/entries/type-theory-church/

I Logic and Games by Wilfrid Hodges.
http://plato.stanford.edu/archives/spr2013/entries/logic-games/
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A brief history of focused proof systems

I 1935: Gentzen presents the LK and LJ sequent calculi

I 1987: Logic programming: a two phase construction of
intuitionistic sequent proofs (goal-reduction and
back-chaining) is complete. (M, Nadathur, Scedrov.)

I 1987: Girard introduces linear logic

I 1992: Andreoli gives first focused proof system (linear logic)

I 1993-2007: Focused proof systems for classical and
intuitionistic logic (LJT, LJQ, LKT, LKQ, etc) [Danos et al;

Laurent; Chaudhuri et al; Zeilburger; Dyckhoff et al; Wadler]
I Functional programming: CBN, CBV, CBPV, etc
I Logic programming: back-chaining, forward-chaining

I 2001: Girard introduces Ludics

I 2009: Liang & M present LJF and LKF.

This lecture will focus on LKF.
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Gentzen’s LK using two-sided sequents
Structural rules

Γ,B,B ` ∆

Γ,B ` ∆
cL

Γ ` ∆,B,B

Γ ` ∆,B
cR

Γ ` ∆
Γ,B ` ∆

wL
Γ ` ∆

Γ ` ∆,B
wR

Identity rules

B ` B
init

Γ ` ∆,B Γ,B ` ∆′

Γ, Γ′ ` ∆,∆′
cut

Introduction rules

Γ,Bi ` ∆

Γ,B1 ∧ B2 ` ∆

Γ ` ∆,B Γ ` ∆,C

Γ ` ∆,B ∧ C Γ ` ∆, t

Γ,B ` ∆ Γ,C ` ∆

Γ,B ∨ C ` ∆ Γ, f ` ∆

Γ ` ∆,Bi

Γ ` ∆,B1 ∨ B2

Γ ` ∆,B Γ,C ` ∆′

Γ, Γ′,B ⊃ C ` ∆,∆′
Γ,B ` ∆,C

Γ ` ∆,B ⊃ C

Γ,Bs ` ∆

Γ, ∀x .Bx ` ∆

Γ ` ∆,By

Γ ` ∆, ∀x .Bx
Γ,By ` ∆

Γ,∃x .Bx ` ∆

Γ ` ∆,Bs

Γ ` ∆, ∃x .Bx
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Observations about LK

The structural rule of exchange is built into this presentation.

The additive variants of conjunction and disjunction are used, not
the multiplicative variants.

Implication is multiplicative (a kind of multiplicative disjunction).

Gentzen used negation ¬B while here we use B ⊃ f . As a result,
the LJ restriction on LK can be stated as either

I there is exactly one formula on the right, or

I the right is a linear context, the left is a classical context.

Intuitionistic logic is a hybridization of linear and classical logics.
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Four shortcomings of the LK sequent calculus

1. The collision of cut and the structural rules

2. Permutations of inference rules

3. Chose either the additive or multiplicative versions of binary
inference rules, but not both

4. No provision for synthetic inference rules
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1: The collision of cut and the structural rules

Cut-elimination can be widely nondeterministic. Consider the
collision of the cut rule with weakening.

Ξ1

` B

` C ,B
wR

Ξ2

` B

C ` B
wL

` B,B
cut

` B
cR

Cut-elimination can yield either Ξ1 or Ξ2.

Examples like these are due to Lafont [Girard et al., 1989].

Polarization in classical logic will allow us to get rid of these (and
similar) examples.
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2. Permutations of inference rules

The following two deviations differ by permuting an inference rule.

Γ,Bi ,Cj ` ∆

Γ,Bi ,C1 ∧ C2 ` ∆

Γ,B1 ∧ B2,C1 ∧ C2 ` ∆

Γ,Bi ,Cj ` ∆

Γ,B1 ∧ B2,Cj ` ∆

Γ,B1 ∧ B2,C1 ∧ C2 ` ∆

These two derivations are different but probably should be
considered equal.

Permutation of inference rules is a huge issue in trying to see
structure in the sequent calculus.

The existence of such permutations is probably the main reason for
the revolt against sequent calculus. Other popular choices are
natural deduction, typed λ-calculi, expansion trees, proof nets, etc.
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3. Choose only one among additive or multiplicative rules

Gentzen used the additive versions of conjunction and disjunction.

People in theorem proving usually use the invertible rules for the
disjunction (which is a multiplicative rule). Things can be arranged
so that the only non-invertible introduction rule is the ∃R rule.

Why not allow both the additive and multiplicative versions of
these rules?
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4. No provision for synthetic inference rules

Inference rules in LK are too small. Consider the axiom stating
that the predicate path is transitive.

∀x∀y∀z (path x y ⊃ path y z ⊃ path x z).

Using this axiom involves at least five LK introduction rules. It is
more natural to view that formula as yielding an inference rule.

Γ ` ∆, path x y Γ ` ∆, path y z

Γ ` ∆, path x z

path x y , path y z , path x z , Γ ` ∆

path x y , path y z , Γ ` ∆

One of these synthetic rules would be a more appropriate way to
invoke the transitivity axiom.

How can we build such synthetic rules? Can we guarantee
cut-elimination holds when we add them?
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LKF: polarized formulas

Positive connectives are f +, ∨+, t+, ∧+, and ∃.
Negative connectives are t−, ∧−, f −, ∨−, and ∀.
Literals are atomic formulas and negated atomic formulas.

An atomic bias assignment is a function δ(·) that maps atomic
formulas to the set {+,−}.

We extended δ(·) to literals by setting δ(¬A) to the opposite
polarity of δ(A).

A polarized formula is positive if its top-level connective is positive
or its a literal L and δ(L) = +.
A polarized formula is negative if its top-level connective is
negative or its a literal L and δ(L) = −.

We require that δ(·) is stable under substitution: δ(A) = δ(θA).
Thus, δ(A) is determined by the predicate symbol of A.
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LKF: polarized formulas (continued)

Linear logic has other names for the polarized connectives.

conjunction true disjunction false

multiplicative ∧+, ⊗ t+, 1 ∨−, ` f −, ⊥
additive ∧−, & t−, > ∨+, ⊕ f +, 0

Logical connectives have four attributes:
arity, additive/multiplicative, polarity, conjunction/disjunction.

De Morgan duality flips the last two but leaves the first two
unchanged.

12 / 23



LKF: negation normal form

Polarized formulas are in negation normal form (nnf), meaning
that there is no occurrences of implication ⊃ and that the negation
symbol ¬ has only atomic scope.

The negation symbol ¬ is extended also to non-atomic polarized
formulas.

I ¬¬A = A for atomic formula A

I ¬(A ∧+ B) = ¬A ∨− ¬B, ¬(A ∨− B) = ¬A ∧+ ¬B
I ¬(A ∨+ B) = ¬A ∧− ¬B, ¬(A ∧− B) = ¬A ∨+ ¬B
I ¬∃x .A = ∀x .¬A, ¬∀x .A = ∃x .¬A

Let B be an unpolarized formula (in nnf) and let B̂ result from
annotating the propositional connectives in B with a + or −. Let
δ(·) be an atomic bias assignment for the predicates in B. The
pair 〈δ(·), B̂〉 is a polarization of B.
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LKF: sequent

LKF uses one-sided sequents of two varieties, namely,

` Γ ⇑ Θ and ` B ⇓ Θ,

where Γ is a multiset of formulas, Θ is a set of formulas, and B is
a single formula.

The Θ context is called storage.

Introductions take place on formulas between ` and the ⇑ or ⇓.

Key facts:

I The right-introduction rules for negative connectives are
invertible.

I The right-introduction rules for positive connectives are
generally not invertible.
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LKF: proof rules
Negative introduction rules

` t−, Γ ⇑ Θ

` B, Γ ⇑ Θ ` C , Γ ⇑ Θ

` B ∧− C , Γ ⇑ Θ

` Γ ⇑ Θ

` f −, Γ ⇑ Θ

` B,C , Γ ⇑ Θ

` B ∨− C , Γ ⇑ Θ

` [y/x ]B, Γ ⇑ Θ

` ∀x .B, Γ ⇑ Θ

Positive introduction rules

` t+ ⇓ Θ

` B ⇓ Θ ` C ⇓ Θ

` B ∧+ C ⇓ Θ

` Bi ⇓ Θ

` B1 ∨+ B2 ⇓ Θ

` [s/x ]B ⇓ Θ

` ∃x .B ⇓ Θ

Non-introduction rules

` L ⇓ ¬L,Θ init
` Γ ⇑ Q,Θ

` Q, Γ ⇑ Θ
store

` N ⇑ Θ

` N ⇓ Θ
release

` P ⇓ P,Θ

` · ⇑ P,Θ
decide

Here: L is a positive literal, P is positive, N is negative, Q is
positive or a literal.
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Observations about LKF proof rules
We say that the polarized formula B has an LKF proof if the
sequent ` B ⇑ · has an LKF proof.

Key observations:

1. Contraction occurs only in the decide rule and only for
positive formulas. A negative formula is never contracted.

2. Weakening occurs only at the leaves (in the init and t+ rules)
and only on positive formulas and negative literals.

Theorem (Soundness and completeness of LKF)

Let B be an unpolarized formula.

1. If B̂ is a polarization of B and B̂ has an LKF proof, the B has
an LK proof.

2. If B has an LK proof and B̂ is a polarization of B, then B̂ has
an LKF proof.

See [Liang and Miller, to appear] for a direct proof.
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The structure of (cut-free) focused proofs

A sequent of the form ` · ⇑ Θ is called a border sequent.

Such sequents can only be proved by using the decide rule.

A synthetic inference rule is defined as these two phases, with
border sequents as the conclusion and the premises.

· · ·
· · ·

· · · ` · ⇑ Θ′ · · ·
` N ⇑ · · · neg phase

` N ⇓ · · · release · · ·
` · · · ⇓ · · · pos phase· · ·
` P ⇓ Θ

` · ⇑ Θ
decide P ∈ Θ
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The cut rule for LKF

The cut rule operates on ⇑ sequents.

` B ⇑ Θ ` ¬B ⇑ Θ′

` · ⇑ Θ,Θ′
cut

During the proof of cut-elimination, the following four variants of
the cut rule need to be considered and eliminated as well.

` A, Γ ⇑ Θ ` ¬A, Γ′ ⇑ Θ′

` Γ, Γ′ ⇑ Θ,Θ′
cutu

` A ⇓ Θ ` ¬A, Γ′ ⇑ Θ′

` Γ′ ⇑ Θ,Θ′
cut f

` Γ ⇑ Θ,P ` ¬P, Γ′ ⇑ Θ′

` Γ, Γ′ ⇑ Θ,Θ′
dcutu

` B ⇓ Θ,P ` ¬P ⇑ Θ′

` B ⇓ Θ,Θ′
dcut f

Here, A and B are arbitrary polarized formulas and P is a positive
polarized formula.
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Applications of LKF

1. Lafont’s examples disappear since cut connects a positive and
a negative formula and in LKF, only a positive formula can be
weakened and contracted.

2. The completeness of LKF immediately yields Herbrand’s
theorem.

3. LKF can host other focused proof systems, such as the LKQ
and LKT proof systems of [Danos et al., 1995]. Gentzen’s LK
can also be hosted in LKF. Here, polarizing allows the
insertion of delays (1-ary propositional connectives).

4. Admissibility of cut in LKF implies its admissibility in LK.

5. The many negative translations of classical logic into
intuitionistic logic can be seen as fixing a polarization of
classical formulas.

6. Synthetic inference rules...
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Application of LKF: Synthetic inference rules

Let Θ contain the negated and polarized transitivity axiom:

∃x∃y∃z .(path x y ∧+ path y z ∧+ ¬path x z)

Ξ1
` path r s ⇓ Θ

Ξ2
` path s t ⇓ Θ

Ξ3
` ¬path r t ⇓ Θ

` path r s ∧+ path s t ∧+ ¬path r t ⇓ Θ
∧+ × 2

` ∃x∃y∃z .(path x y ∧+ path y z ∧+ ¬path x z) ⇓ Θ
∃ × 3

` · ⇑ Θ
decide

The shape of Ξ1, Ξ2, and Ξ3 depends on the polarity of the path
predicate.
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Application of LKF: Synthetic inference rules (continued)

If path-atoms are negative, then Ξ1 and Ξ2 end with the release
and store rules while the proof Ξ3 is trivial. This synthetic rule is

` · ⇑ path r s,Θ ` · ⇑ path s t,Θ

` · ⇑ path r t,Θ

If path atoms are positive, then Ξ3 end with the release and store
rules while the proofs Ξ1 and Ξ2 are trivial. This synthetic rule is

` · ⇑ ¬path r s,¬path s t,¬path r t,Θ

` · ⇑ ¬path r s,¬path s t,Θ

These synthetic inference rules are the one-sided version of the
back-chaining and forward-chaining rules displayed earlier (see
[Chaudhuri et al., 2008]).

Cut-elimination holds when synthetic inference rules are added
[Marin et al., 2022].
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Conclusion

The LKF proof system is proposed as an improvement on LK,
especially for computer scientists interested in computational logic.

The LKF proof system is flexible and can mimic a range of proof
systems and supports the inclusion of synthetic inference rules.

The proof theory of LKF can be applied to unpolarized proof
systems as well (e.g., Herbrand’s theorem).

Intuitionistic logic can similarly be given a focused proof system
LJF [Liang and Miller, 2009].
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