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Representations in group theory
Imagine that one wants to study the properties of a specific group G.
One well-known and important technique is to look at
the representations of the group G

where a representation is defined as:

>  afinite (or infinite) dimensional vector space V,
> a linear action
—eo— : GXV —/]V

of the group G on the vector space V.



Linear actions

Definition. A linear action is a function
—eo— : GXV —/V
defining an action of the group (G, -, e) on the vector space V
Ve, ' eGVveV (¢-g)ev = ¢'e(ge0) ol =1u
such that the action of any element g € G
ge— : V—V
defines a linear map from the vector space V to itself:

YVobweV,  ge(v+w) = (gev)+(gew) ge0 =10



Linear actions

Equivalently, a linear action
A GXV —V
is a family of linear maps from the vector space V to itself
Aq ¢ V—7V

parameterized by ¢ € G and satisfying the two equations:

Agrg = Agrolg e = idy




Linear actions

Equivalently, a linear action
A GXV —V
is a family of linear maps from the vector space V to itself
Aq 0 V—7V

parameterized by ¢ € G and making the two diagrams commute:

Vv A
Ag Ay v ~— v
\_)(
ZdV
vV >V
Ao



lllustration

The group of rotations of the three-dimensional Euclidean space V = R’

G = SO (3)
where a rotation
M : R —R?
is an isometry preserving the origin as well as the orientation of V = IR3.

Equivalently, a rotation is a real-valued 3 x 3-matrix

a11 d12 413
M = a1 dapy a3

| 431 a3y a3z

satisfying the equation:
(Mo, Mw) = (v, w)
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lllustration

The group of rotations of the three-dimensional Euclidean space V = R’

G = SO(3)

where a rotation
M : R —R?
is an isometry preserving the origin as well as the orientation of V = IR3.

Equivalently, a rotation is a real-valued 3 x 3-matrix

a11 d12 413
M = a1 dapy a3

| 431 a3y a3z

satisfying the equation:
MM = MM = Idy



lllustration

A fruitful observation in algebra:
The natural representation in the algebra C[X, Y, Z] of polynomials
SOB) x C[X,Y,Z] —— C[X, Y, Z]
defined by the algebra maps induced from the rotation g € SO(3)
e+ CIXY,Z] — CIX,Y,Z]

can be decomposed as an infinite sum of representations
CIX,Y,Z] = @iel V;

which contains all the irreducible representations of SO(3).



Denotational semantics
What is traditionally called
denotational semantics of proofs and programs
can be seen as
a representation theory for proofs and programs
based on the three fundamental concepts of

1. category 2. functor 3. natural transformation



A brief introduction to
Categories
Functors
Natural transformations

First steps in the functorial language



Categories
A category <7 is an oriented graph
> whose nodes are called objects
> whose edges are called maps or arrows or morphisms
Given two objects A and A’, we write
Hom ,(A,A”) or more simply Hom(A,A")

for the set of maps from the object A to the object A’ in the category 7.



Categories

A category .7 is moreover equipped with

a composition law
defined as a family of functions:

OAi,Ay, Ay - Hom(Ap Az) X Hom(Aq, Ay) —> Hom(Aq, A3)

indexed by objects A1, A, A3 of the category .«7.

Az $—

Diagrammatically: Ay gof




Categories

A category .7 is moreover equipped with
an identity law
defined as a family of maps:
id, € Hom(A,A)

indexed by the objects A of the category .«7. Diagrammatically:




Categories

Finally, one requires the following two properties:

Associativity: the following equation is satisfied

(hog)of = ho(gof)

for every path of length 3 in the category, as depicted below:

A2%A3 Az%/\_%

LN ey

ho(go f) (hog)of




Categories

Neutrality: the two equations

foidg = f = ddaof
are satisfied for every map
A / > A’
in the category, as depicted below:
foidy = f
[ id id 4
A g / N R

idyrof = f

~~



Large categories
A bestiary of examples given by large categories such as:

> the category Set with sets as objects and functions as maps

> the category Rel with sets as objects and relations as maps

> the category Grp of groups and group homomorphisms

> the category Vec of vector spaces and linear maps

> the category Top of topological spaces and continuous functions
> the category Coh of coherence spaces and linear maps

> the category Stab of coherence spaces and stable maps



Preorders as small categories
There is also a wide variety of small categories defined as preorders:

> acategory o/ such that
the set Hom(A, A”) is empty or singleton for all objects A, A’

is the same thing as a preorder <_, on the objects of .«7.

The preorder relation <, on the objects of <7 is defined as follows:

A<, A" precisely when there existsamap f:A—->A" in &




Monoids as small categories

every monoid M = (M, -p;, epr) may be equivalently seen as
a category X M with one single object noted =
whose maps = — = are the elements of the monoid:
Homy \(*,*) = M
equipped with the induced composition and identity laws:

moypn (= m-pn ide = ep
* e
. . * *
Diagrammatically: / \{ ~__ 7
, C id .

m-pn



— a little exercise just for the fun of it —
Definition A map in a category .«
f + A—B
is called an isomorphism when there exists a pair of maps
u,v : B— A

such that the two equations hold:

fou — idB

3
> B

> A
l

> A
]

UOf = idA

Exercise: Show that the two maps u and v are equal in that case.



Functors

A functor between categories .o/ and %4

F . o — A
IS an operation

>  which transports every object A € o7 to an object F(A) € #
>  which transports every map
foA— A
of the category .<7 to a map
F(f) : FA) — FA)
of the category %.



Functors
One requires moreover that
the image of the composite = the composite of the images

which means diagrammatically that

Az <— FA3 <—
ST F(g)T
A gof IS mapped into FA, F(gof)=FgoFf

] y

Al I FAl —




Functors

One also requires that

the image of the identity map = the identity map of the image

which means diagrammatically that

A FA

N\ N

\

id 4 IS mapped into F(id 4) = idp 4




Natural transformations
A natural transformation
0 : F—G : o — A

between two functors F and G of the same source and target:

F,G : o — A

is a family of maps in the category #

04, : FA—> GA

indexed by the objects of the category 7.



Natural transformations

One also requires that the diagram commutes in the category %

6

FA 4 v GA
O 4r

FA’ Ay GA’

In the sense that the equation below holds:

Oar o Ff = GfoOy

for every map f: A — A’ of the category <7



The 2-category Cat of categories
Categories, functors and natural transformations organize themselves into
a 2-category Cat
where every natural transformation
O : F—G : o — A

defines a 2-dimensional cell between functors

seen themselves as 1-dimensional cells between categories.



An intermezzo on 2-categories

Second steps in the functorial language



The notion of 2-category in four slides

A 2-category K is defined just as a category except that the set
Hom(A, B)

IS now replaced by a category whose objects are 1-dimensional cells

f,.g + A > B

and whose maps 0 : f — ¢ are 2-dimensional cells

between the 1-dimensional cells f,¢: A — B of the 2-category K .



Vertical composition

This equips the 2-category with a vertical composition

f f
A 0,001 B = A 8 > B
U W
I h

where we write 0, e 01 for the composite of the two maps

Qlifﬁg tagﬁh

in the category Hom(A, B) of 1- and 2-dimensional cells from A to B.



Horizontal composition

The composition law is defined as a family of functors
OAi,Ay, Az Hom(Aj, Az) X Hom(A1,A>) — Hom(A1, A3)

between hom-categories of the 2-category.

This equips the 2-category with a horizontal composition

g1°f1

fi g1
A Yop  C = A ¢ B (% C
f2 82

N

32082

moreover compatible with vertical composition in the following sense.



The interchange law

Horizontal and vertical composition are compatible in the sense that

(Yo eP1)o(preqpr) = (P2o@)e(P10¢q)

whenever we are in the following situation:

/\m
\/W

in the 2-category K.

A




In the specific case of categories and functors

The interchange law of the 2-category K = Cat ensures that

(Yo eP1)o(preqpr) = (P2o@r)e(P10¢q)

whenever we have natural transformations of the following shape:

Fq G1
m m
N4 F> > A Gop S 6

\y 12




A brief introduction to
Categories
Functors
Natural transformations

First steps in the language of string diagrams



A brief [ pictorial ] introduction to
Categories
Functors
Natural transformations

First steps in the language of string diagrams



Categories in string diagrams

The basic idea is to represent a map in a given category .«

f A

> B

as a process or as a causal flow going from bottom to top

B

flow of time
wn the category

A

transforming an input string A into an output string B.



Categories in string diagrams

The composite of two maps in the category .«

f g

A

> B 7

C

is represented by composing vertically the two string diagrams:

C

€D,

C



Categories in string diagrams

Accordingly, the identity map

idy : A s A

is represented by the trivial string on which « nothing » happens:

A A




Functors in string diagrams

By definition, a functor
F : o — A
transports every map of the category .«
f o A— A
to a map of the category &4
Ff : FA — FA’

How shall we represent this operation using string diagrams?



Functors in string diagrams

In the language of string diagrams, a functor

F : o — A

behaves in the following way:

A,

Ff

FA’

FA



Functorial boxes

In the language of string diagrams, a functor

may be thus depicted as a functorial box in this way:

A?

F

o — B

FA
4 A’ )
>
F A )
FA



Functorial boxes

In the language of string diagrams, a functor

F

o — B

may be thus depicted as a functorial box in this way:

FB

Ff

FA

FB
4 B
F A

FA




Functorial boxes

Functorial boxes satisfy the following pictorial equations:

- N e e p
© ©) }
F
D) () ]
F ) F F Y,

F(gof) = FgoFf Fidy idpp




Natural transformations in string diagrams

What about natural transformations

0 : F—G : o — XA

which are (as we have just seen) defined as a family of maps
64 : FA — GA

making the diagram commute:

FA > GA

Ffl lcf

FA’ > GA’




Natural transformations in string diagrams

Natural transformations
O : F—G : & — A
thus satisfy the pictorial equation in string diagrams:

| g4’ GA’
(8)
FA’
' A: /_ A’
(F) — ()
= A e A
|| cA
(6D
| Fa | Fa

Oar o Ff = GfolOy




Back to representation theory

On our way to the mathematical interpretation of linear logic



Representation theory for groups

We have seen that a linear action of agroup G = (G, -, eg)
A GXV —V
is a family of linear maps from the vector space V to itself
Aq ¢ V—7V

parameterized by ¢ € G and satisfying the two equations:

Ngrg=AgroAg Ae = idy




Representation theory for groups

We have just seen that a linear action of agroup G = (G, g, eg)
A GXV —V
is a family of linear maps from the vector space V to itself
Aq ¢ V—7V

parameterized by ¢ € G and making the two diagrams commute:

vV Ao
Ag Ay v ~— v
\_)(
ZdV
V >V
Ao



A functorial way to look at representation theory

Key observation: a linear action

A GXV —V
is the same thing as a functor

F : XG — Vec

from the category X~ G with one object = to the category Vec.

The functor F : 2. G — Vec associated to the linear action A : GxV —» V
> transports the single object = € X G to the vector space V € Vec

> transports every map ¢:x* — x tothelinearmap Ao:V — V.



Key insight
In order to define
a functorial interpretation of linear logic (as a whole!)
we need to pick in a consistent way:
> a mathematical interpretation for every formula and every proof.

To that purpose, we will design and investigate

categorified notions of boolean algebras

provided by notions of monoidal categories with dualities:

star-autonomous categories compact-closed categories




Key insight
Every boolean algebra defines a partial order.

For that reason, there exists at most one map between two formulas:

A implies B = A< B

Categories will enable us to have different maps for different proofs:

AFrB

Proof theory appears here as a categorification of algebraic semantics!



Proof-nets and proof-structures

The distinction between proof-structures and proof-nets is at the heart
of categorical semantics with the unifying idea of free constructions.

Indeed, as we will see very soon:

the free star-autonomous category

has formulas of linear logic (MLL) as objects and proof-nets as maps,

the free compact-closed category

has sequences of atoms as objects and proof-structures as maps.



The free star-autonomous category
Key idea: construct a category star-autonomous of a syntactic nature

> whose objects A, B, C are the formulas of linear logic,
> whose maps between formulas
n : A—> B
are the proofs of linear logic, defined as derivation trees
TC

AL

modulo an equational equivalence extending cut-elimination:

n/

112

Tt



A few examples of equations

The derivation tree

s| T 3

. r,.OA AI.—B Y1,A,B, Yo+ C
Right © "\ A e B Tl,A®B,T2|—CIC‘;eftt®
Y, T,A, Y5+ C .

is equivalent to the derivation tree

UY) i3
e : :

: A+B 7Yq,A,B, Yo +C
TFA T, A MY FC
Y{,T,A, Y5 C .

Cut




A few examples of equations

The derivation tree
Us|
. 7

A1, An - B
Ao(l)/ .. G(n) + B Yl,B Yz FC

Ylf o(1)r -+ -+ Agmy Y2 F C

Exchange

Cut

IS equivalent to the derivation tree

U%i
1 .

' Y1, T, C ot
Yl/ (1) -7 G(H)/TZ FC




Proof invariants

Key property. Every functor to a star-autonomous category &
X — 9
lifts uniquely (%) to a functor of star-autonomous categories
[-] : -star-autonomous(Z) —— %

defining a proof invariant modulo cut-elimination:

star-autonomous(.2")

atoms interpretation of atoms

(%) up to a unique iso



Translating proof-nets into proof-structures

In particular, the canonical functor from proof-nets to proof-structures

star-autonomous(.2") > compact-closed(.2)

transports the two different maps (= proof-nets) in star-autonomous(.%")

idsym @ 1®.1 > 1 ® 1

represented by the derivation trees of linear logic:

axiom 1,1 F1,L axiom
id = R ®-intro svm = +FL1,1®1L ®-Intro
F1,1, L@ L1 . y exchange
F1I®1,1Q 1 2-intro F1,1,L® L intro
' F1R 1,11

to the very same map (= proof-structure) in compact-closed(2").



Cartesian categories

A categorification of the notion of semilattice in order theory



Cartesian products
Suppose given two objects A and B in a category .
Definition. The cartesian product of A and B is a triple
(AXB, fst, snd)
consisting of an object A x B together with a pair of maps

A < fst AxB snd \ B

which is universal among all such spans (= pairs of maps)

At X g

~
oy

in the category %



Universal property of the cartesian product

Property. For every object X € &/ equipped with a span
f:X—>A g: X ——B
there exists a unique map
h : X —— AXB
making the diagram below commute:

A B
fst snd

fstoh = f
b sndoh =g




Terminal object

Definition.

An object 1 is terminal in a category .«Z when for every object A,
there exists a unique map

~
o

A

from the object A to the object 1.



Cartesian categories

Definition.

A cartesian category is a category % equipped with

> a cartesian product

A < fst AxB snd y B

for every pair of objects A and B of the category,

> aterminal object 1.



A bestiary of cartesian categories

the category
the category
the category
the category
the category
the category

the category

Set with the cartesian product A,B — A XB
Rel with the disjointsum A,B — A+ B

Grp with the cartesian product G,H — G X H
Vec withthesum VW — Vo W

Top with the cartesian product X, Y — X XY
Coh with the with product A,B — A&B

Stab with the cartesian product D, E — D X E



Functoriality of the cartesian product
Key structural property.

The cartesian product of a cartesian category % induces a functor

L % F times y @
(A, B) | > AXB

which transports every pair
(A,B) € EX%E
to the cartesian product
AXB € %

in the cartesian category.



Functoriality of the cartesian product

Sketch of the proof: every pair of maps

hAIAHA, hBIBHB,

induces a map
hgyXhg : AXB — A’ X B’

defined as the unique map making the diagram below commute:

A’ B’
A fst SV A
ha A’ X B’ hg
A
|
A T4 xhg B
|
|
fst I snd



Symmetry maps

Key structural property.

In a cartesian category, every pair A, B comes equipped with a map

symyp : AXB > BXA

defined as the uniqgue map making the diagram commute:

B A
fst snd
fst o sym, 5 = snd
BxA snd o sym 4 g = fst
AL /4
snd | fst
|Symy g



Symmetry maps = braiding = exchange
The family of symmetry maps defines a natural transformation

125 ¢xe \times
“sym

C XC ©

(1) C X times

depicted as a symmetry in the language of string diagrams:




Diagonal maps

Key structural property.

In a cartesian category, every object A comes equipped with a map

Ay @ A > AXA
defined as the unique map making the diagram commute:
A A
fst snd
fst o AA = ZdA
AXA SndOAAIidA
AN
id 4 :AA id 4




Diagonal maps = duplication = contraction

The family of diagonal maps defines a natural transformation

” Id y @
\ “A /
diag times
C xXE

depicted as a duplicator in the language of string diagrams:




Eraser maps

Key structural property.

In a cartesian category, every object A comes equipped with a map

eraser

A > 1

to the terminal object of the cartesian category %'



Eraser maps = garbage collect = weakening

The family of eraser maps defines a natural transformation

eraser
collapse terminal

depicted as an eraser in the language of string diagrams:

1 1

(e rase T‘)

B — (eras ea




Eraser maps = garbage collect = weakening

The family of eraser maps defines a natural transformation

Id

€ > €
||
eraser
collapse | terminal
1

depicted as an eraser in the language of string diagrams:

( eraser)
B — eraser




Monoidal categories

The linear counterpart of cartesian categories



Monoidal categories
A monoidal category is a category % equipped with a functor

® : EXE > €

together with an object I € % and three natural transformations:
(AB)®C —3 A®(B®C)
A p

IA —— A ARl — A

satisfying a series of coherence properties.



String diagrams in monoidal categories

A map in the monoidal category

f + A®B®C —— DQ®EL

is depicted as a process taking three inputs and producing two outputs:




Composition

The map ALBiC IS depicted as
— - _
g
gof _
f
| A |

Vertical composition




Tensor product

The map (ALB)@(CLD) is depicted as
B®D B
f®g _ f
AR C A

Horizontal tensor product




Example

f®idp




Example

A

(f ®idp)o(idy ®g)



Example

(idp®g) o (f ®idc)



Meaning preserved by deformation

(idp® g) o (f ®1id()

(f®idp) o (idy®3g)




Ribbon categories

The functorial approach to knot invariants



Braided categories

A monoidal category 4 equipped with a family of isomorphisms

YAB A®RB — B®A

natural in A and B, represented pictorially as the positive braiding

B A



Braided categories

As expected, the inverse map
Vs BRA — A®B
is represented pictorially as the negative braiding

A B



Coherence diagram for braids [1]

/?//§A®w®C) (B®Q®A\\\<\(

(A®B)®C B®(C®A)

y@& (B®A)®C B®<A®C>%;

2\

N



Same coherence diagram in string diagrams



Coherence diagram for braids [2]

C®(A®B) \“_1/

A®B®C) (C®A)®B

kA@(C@B) >(A®C)®B%;

-1 (A®B)®C

~




Same coherence diagram in string diagrams



Balanced categories

A braided monoidal category ¢ equipped with a twist
GA . A E— A
defined as a natural family of isomorphisms, and depicted as

A




Coherence for twists

The twist 0 is required to satisfy the equality

O = idj
and to make the diagram
A®B —* 3 BoA
O4sB Op®04
Vi
A®B < i B®A

commute for all objects A and B.



Coherence for twists

A B

0 42B =

S
Sy



Duality

A dual pair A 4 B is defined as a pair of maps

n:1 — AQ®B ¢ : BRA — 1

which are depicted as

A B 5



Coherence for duality

The two maps n and ¢ should satisfy the “zig-zag” equalities:

A A B B

In that case, the object A is called a right dual of the object B.



Ribbon categories
Definition. A ribbon category is a balanced category % where
> every object A has a right dual A*

> the diagram
A'®A

QA*V \A’?QA

A*®A A"®A

I

commutes for all objects A.



Remark.

A* A

=~

\—/

Ribbon categories

In a ribbon category, the object A* is also a left dual of A.

A*

A

> L

87

ﬁ

A*



Ribbon categories

Hence, the equations below are satisfied in every ribbon category

A A A

|

4% _ d _




The free ribbon category
The next theorem offers a bridge between algebra and ribbon topology:
Theorem [Shum 1994]
The free ribbon category free-ribbon(.2") generated by a category 2" has
>~ objects: the signed sequences (A’ . ..,Al‘ik) of objects of 2,

> maps: the framed tangles with links labelled by maps in 2.



The free ribbon category

So, a typical map in the category free-ribbon( .2 )

(AY) —— (B*,C—,D%)

looks like this:

A+

where f : A — B and ¢ : C — D are maps in the original category .2 .



Knot invariants
Theorem. Every functor to a ribbon category #
X — Z
lifts uniquely (%) to a functor of ribbon categories
[-] : ribbon(%) — #
defining a knot invariant modulo topological deformation:

[-]
free-ribbon(2") > X
S interpretation of links
A

(%) up to a unique iso



The Jones polynomial invariant

S+ S+ 2x2—x4+x2y2



Symmetries

A symmetry in a monoidal category is a braiding

VA,B

A®B

satisfying the additional equation

AoB — 2P poa LB AgB

> BQA

d
A®B —2%8y A B

The equation may be depicted in string diagrams:

A

B

A

—

| B




Symmetric monoidal categories

Definition.
A symmetric monoidal category is a monoidal category

equipped with a symmetry:

yag : A®B > BRA

Observation: a symmetric monoidal category is the same thing as

a balanced category whose twist is trivial




Compact-closed categories

Definition.

A compact-closed category is a symmetric monoidal category

where every object A has a right dual B as depicted below:

A A B B
£ H £ # H

n
! A A B B

Observation: a compact-closed category is the same thing as

a ribbon category whose twist is trivial




Proof invariants

Theorem. Every functor to a star-autonomous category &
X —> 9
lifts uniquely (%) to a functor of star-autonomous categories
[-] : star-autonomous(Z) —— ¥

defining a proof invariant modulo cut-elimination:

star-autonomous(.2")

atoms interpretation of atoms

(%) up to a unique iso



Symmetric monoidal closed categories

Crossing the boundary between topology and logic



Symmetric monoidal closed categories (smcc)

Definition.
A symmetric monoidal closed category is

a symmetric monoidal category
together with, for all objects A and B:

> anobject A —oB

> amap
evalyp : A®A —oB) —— B

satisfying a universal property described in the next slide.



Universal property of the linear implication

For every object X and for every map

f + A®X —— B
there exists a unique map

h : X — A—oB

making the diagram below commute:

A®(A — B)

Ao l
eval A,B

ARX > B




Monoidal exponentiation
Suppose given an object A of a symmetric monoidal category %
Definition.

A monoidal exponentiation of A is a pair consisting of a functor

A—o—- : € ——F

and of a family of bijections
¢apc : Hom(A®B,C) —— Hom(B,A — C)

natural in the parameters B and C.



Alternative definition

Definition.
A symmetric monoidal closed category is
a symmetric monoidal category

together with a monoidal exponentiation

A®B— C &
B—A-—-oC '4BC

for all objects A of the category.



The evaluation map
In that formulation, the map
evalpp: A® (A —-B) — B

is defined in the following way:

A-B-L A B o1
A®(A—oB)— B T"A—<BAB




Multiplicative intuitionistic linear logic

A B = 1|A®B|A —oB|a
Axiom
X10 ArA
oft AFA I'B+C ight I''A+B
—0 —o0
© TAA—oBrC 9 TrA—oB
I'A, B+ C . '-A A+ B
lef h
@ left TA®BFC @ right T ArA®B
1A .
1 left A 1 right —7

AL A I'' A+ B
I'’\+B

Cut

I'A1,A, A+ B
I'Ay, A1, A+ B

Exchange



From symmetric monoidal closed categories

to star-autonomous categories

The joys and marvels of classical linear duality



A general observation

Every pair of objects A, L in a smcc comes with an identity

dyo, : A—oL —> A—ol
which is transported by the bijection ¢! . to the map
evaly ;, : A®A—ol1l) — L

then becomes by precomposing with symmetry:
Ao L1l)®A — L

and is finally transported by the bijection ¢ 4., 4 , to the map

A—> (A—ol1l)—o L



Star-autonomous categories

Definition

An object L is called dualizing when the canonical map

dg : A—> (A—ol)—ol
is an isomorphism for every object A.

Definition

A star-autonomous category is a smcc with a dualizing object.



The category Coh is star-autonomous

The dualizing object L. =17 is the singleton coherence space.

e=idgo, 1 Aol—A—oL = {((a,*),(a,+)|aclAl]
f=¢ule 4@ @ A®A—L)— L = {((a,(a,x)), ) aclAl])
g:foyA,A—oJ_ : (A_OJ-)®A_>J- — {(((ﬂ/*)/ﬂ),*)WElAl}

da=hPpao1,41(8) + A—A—oLl)—oL = {(a,((a,*),*))lacl|Al}
The resulting map is an isomorphism
dg ¢ A—> (A—o1l)—ol

with inverse defined as

It = {((a,#),%),a) | ac|Al)



Multiplicative linear logic (MLL)

AB:=AQB|1|A®B | L |«

Axiom
FAL A
% FI,A FA,B
FT,A,A®B
2 FI,A,B
FI,A®B
1 -
F1
FT
1
FT, L

» MLL can be interpreted in every star-autonomous category.



Multiplicative additive linear logic (MALL)

A B:=A®B|A®B|0|1|A&B|A®B | T | 1|«

& left 1,5
FI,A®B
@ right 1A
9 ‘T A®B
FI,A FI,B
&
F I, A&B
0 no rule
-
FI, T

» MALL can be interpreted in every { st:;—:tétacﬂ::::nus } category.



The exponential modality

The alchimy of combining additives and multiplicatives



A new ingredient: the exponential
The exponential modality
A A
transports a coherence space A to the coherence space ! A
> whose web |!A]| is the set of finite cliques of A,

> u 4 viff the union u U v is a finite clique of A.

The coherence space ? A is defined by de Morgan duality:

A = (1AL)L



The exponential alchimy
The exponential modality transmutes the additives into multiplicatives
The terminology «exponential » is justified by the isomorphisms:
((A&B) = !A®!B T =1
which are reminiscent of the set-theoretic bijections:

P(A+B) = p(A)Xxp(B)



The exponential alchimy
We will study the formal properties of the exponential required by
a Seely category
in order to define a model of linear logic.

> every object ! A defines a commutative comonoid (!A, d4, es),
> the exponential modality defines a comonad (!, 6, €)
> the cartesian diagonal

A — A&A

is transported to the comonoidal diagonal

A — TARQ!A.



Linear logic (LL)

A B:=A®B|A®B|!A|0|1|A&B|A®B |?A | T | 1L |«

contraction n1,24,74
FI,?A
weakenin L
9 " T 2A
dereliction - A
FI,?A
L F?I, A

digging

F?I, 1A



Monoids

A monoid in a monoidal category (4,®,1) is a triple

u m

1 > A < A®A

consisting of an object A and of two maps making the diagrams commute:

ARARA) > (ARA)®A > AQA
o !
A®A i > A
104 —"24 v A9A « 2% Ag1
il J» |
A A A




Comonoids

Dually, a comonoid in a monoidal category (4,®,1) is a triple

1% A% s axA

consisting of an object A and of two maps making the diagrams commute:

d

A > AQA
dl lm
A®d o
AR®A > ARA®A) > (ARA)®A




Commutative comonoid

A comonoid in a symmetric monoidal category

1% A% s axA

Is commutative when the diagram below commutes:




Comonad

Acomonad (K, o6,¢) inacategory % isthe data of
> afunctor K : ¢ — €%

>  two natural transformations
O : K— KoK € : K — Idyg

such that the following diagrams commute:

K ° » KoK K

I~ N

KoK KoKoK K

oK Koe €0




Seely categories

Definition. A Seely category is
a star-autonomous and cartesian category (., ®,1)
equipped with a comonad
(',6,¢) : ¥ — &
and two natural isomorphisms
map : 'A®!B =!(A&B) m 1 =!T
defining a symmetric monoidal functor
(!,m) : (£ &T)— (Z,®1)

from the cartesian structure of .Z to its symmetric monoidal structure.



Seely categories

One asks in addition that the diagram

IAQ®!B > 1(A&B)

\LéA&B

54 ®0p IM(A&B)
\l/!(!nl,!nz)

!!A;;!!B 7 > 1(lA&!B)

commutes in the category .« for all objects A and B.



The polychromatic interpretation of linear logic

Definition.

A model of linear logic is a symmetric monoidal adjunction

Mult

./ cartesian ¥ star-autonomous

' = Lin o Mult

Equivalently: an adjunction whose left adjoint Lin is strong monoidal



Lax monoidal functor

A lax monoidal functor is a box with many inputs - one output.

FB

F(f)om[Alf“/Ak] . FA1®---®FA, —— FB



Functorial equalities (on lax functors)




Strong monoidal functors

A strong monoidal functor is a box with many inputs - many outputs



Functorial equalities (on strong functors)

Q
(5
Q
J
E—
Q
5 2
-

oy}
oy
Il
S
os}
Ty
oS!

b
$
B
N
Epman
S
b
-



Functorial equalities (on strong functors)




Natural transformations
About one hour ago, we have seen that a natural transformation

0 : F—G : o — A

satisfies the pictorial equation in string diagrams:

GB GB
(o)
FB
— —
i B | B
() _ Cr)
F A G A
a GA
(o)
FA FA




Monoidal natural transformations

Similarly, a monoidal natural transformation

0 : F—G : o — A

satisfies the pictorial equation:

[ 1GB B
Co)
FB
~ -
B B

|
~]

GA, GAg
FAI L) FAk; FA; l o000 FAk:



Decomposition of the exponential box

Ay

LMB
MB )
4 B )
M| A Ay )
MA,; M Ay, D
LMA, LM A,



Decomposition of the contraction node

LMA l_l H LMA

o MA)

L MA Y,
LMA




lllustration: duplication of the exponential box

I_l H LMB

o

LMB
/MB

L MB T
LMB
4 MB )
4 B
O\
M | Aq Ay,
L MA,; M Aj, )
LMA; | | vee _JLMAk




Duplication (step 1)

LMB |_| ﬂ LMB
VB MB
MB
4 B )
M| A Ag )
MAl MAk j
LM A, || LM Ay,




Duplication (step 2)




Duplication (step 3)

LMB

LMB

MB

|

MB

:

B B |
/
Ay

Ay
/

M Ay,

?

M Ay,

LMA, I_I




Duplication (step 4)

LMB LMB

MB MB

i
Ay 11 | As
Tl MA; ce e \vAk MAJ/ s o0 MA,; P

N
A

LMA1|_| so 0 ULMAk




Duplication (step 5)

LMB ||

MB

B
f Ay,

M| Ay
. \
LMA,
MA,

LMB

~ |

.

M Ay

LM Ay,




Five polychromatic steps!

The five diagrammatic steps follow very carefully
the categorical proof of soundness

for linear-non-linear models of linear logic.



Thank you !



