
Categorical Semantics of Linear Logic

Paul-André Melliès

Institut de Recherche en Informatique Fondamentale (IRIF)
CNRS & Université de Paris

Linear Logic Winter School
Logic & Interaction 2022 � CIRM, Luminy

24 −→ 30 January 2022

Representations in group theory

Imagine that one wants to study the properties of a specific group G.

One well-known and important technique is to look at

the representations of the group G

where a representation is defined as:

B a finite (or infinite) dimensional vector space V,

B a linear action

− • − : G × V V

. of the group G on the vector space V.

Linear actions

Definition. A linear action is a function

− • − : G × V V

defining an action of the group (G, ·, e) on the vector space V

∀g, g′ ∈ G,∀v ∈ V (g′ · g) • v = g′ • (g • v) e • u = u

such that the action of any element g ∈ G

g • − : V V

defines a linear map from the vector space V to itself:

∀v,w ∈ V, g • (v + w) = (g • v) + (g • w) g • 0 = 0

Linear actions

Equivalently, a linear action

λ : G × V V

is a family of linear maps from the vector space V to itself

λg : V V

parameterized by g ∈ G and satisfying the two equations:

λg′·g = λg′ ◦ λg λe = idV

Linear actions

Equivalently, a linear action

λ : G × V V

is a family of linear maps from the vector space V to itself

λg : V V

parameterized by g ∈ G and making the two diagrams commute:

V

V V

λg′λg

λg′·g

V V

λe

idV

Illustration

The group of rotations of the three-dimensional Euclidean space V = R3

G = SO (3)

where a rotation
M : R3 R3

is an isometry preserving the origin as well as the orientation of V = R3.

Equivalently, a rotation is a real-valued 3 × 3-matrix

M =

 a11 a12 a13
a21 a22 a23
a31 a32 a33


satisfying the equation:

〈Mv,Mw〉 = 〈v,w〉

Illustration

The group of rotations of the three-dimensional Euclidean space V = R3

G = SO (3)

where a rotation
M : R3 R3

is an isometry preserving the origin as well as the orientation of V = R3.

Equivalently, a rotation is a real-valued 3 × 3-matrix

M =

 a11 a12 a13
a21 a22 a23
a31 a32 a33


satisfying the equation:

〈v,Mt M w〉 = 〈v,w〉

Illustration

The group of rotations of the three-dimensional Euclidean space V = R3

G = SO (3)

where a rotation
M : R3 R3

is an isometry preserving the origin as well as the orientation of V = R3.

Equivalently, a rotation is a real-valued 3 × 3-matrix

M =

 a11 a12 a13
a21 a22 a23
a31 a32 a33


satisfying the equation:

Mt M = M Mt = IdV

Illustration

A fruitful observation in algebra:

The natural representation in the algebra C[X,Y,Z] of polynomials

SO (3) × C[X,Y,Z] C[X,Y,Z]

defined by the algebra maps induced from the rotation g ∈ SO(3)

λg : C[X,Y,Z] C[X,Y,Z]

can be decomposed as an infinite sum of representations

C[X,Y,Z] �
⊕

i∈I Vi

which contains all the irreducible representations of SO(3).

Denotational semantics

What is traditionally called

denotational semantics of proofs and programs

can be seen as

a representation theory for proofs and programs

based on the three fundamental concepts of

1. category 2. functor 3. natural transformation

A brief introduction to
Categories
Functors
Natural transformations

First steps in the functorial language

Categories

A category A is an oriented graph

B whose nodes are called objects

B whose edges are called maps or arrows or morphisms

Given two objects A and A′, we write

HomA (A,A′) or more simply Hom(A,A′)

for the set of maps from the object A to the object A′ in the category A .

Categories

A category A is moreover equipped with

a composition law

defined as a family of functions:

◦A1 ,A2 ,A3 : Hom(A2,A3) ×Hom(A1,A2) Hom(A1,A3)

indexed by objects A1,A2,A3 of the category A .

Diagrammatically:

A3

A2

A1

g

f

g◦ f

Categories

A category A is moreover equipped with

an identity law

defined as a family of maps:

idA ∈ Hom(A,A)

indexed by the objects A of the category A . Diagrammatically:

A

A

idA

Categories

Finally, one requires the following two properties:

Associativity: the following equation is satisfied

(h ◦ g) ◦ f = h ◦ (g ◦ f)

for every path of length 3 in the category, as depicted below:

A2 A3

A1 A4

g

hf

g◦ f

h◦(g◦ f)

A2 A3

A1 A4

g

h◦g
hf

(h◦g)◦ f

Categories

Neutrality: the two equations

f ◦ idA = f = idA′ ◦ f

are satisfied for every map

A A′
f

in the category, as depicted below:

A A A′ A′
idA

f◦idA = f

f

idA′◦ f = f

idA′

Large categories

A bestiary of examples given by large categories such as:

B the category Set with sets as objects and functions as maps

B the category Rel with sets as objects and relations as maps

B the category Grp of groups and group homomorphisms

B the category Vec of vector spaces and linear maps

B the category Top of topological spaces and continuous functions

B the category Coh of coherence spaces and linear maps

B the category Stab of coherence spaces and stable maps

Preorders as small categories

There is also a wide variety of small categories defined as preorders:

B a category A such that

the set Hom(A,A′) is empty or singleton for all objects A,A′

. is the same thing as a preorder ≤A on the objects of A .

The preorder relation ≤A on the objects of A is defined as follows:

A ≤A A′ precisely when there exists a map f : A→ A′ in A

Monoids as small categories

B every monoid M = (M , ·M , e M) may be equivalently seen as

a category Σ M with one single object noted ∗

. whose maps ∗ → ∗ are the elements of the monoid:

Hom Σ M (∗ , ∗) = M

. equipped with the induced composition and identity laws:

m ◦Σ M n := m ·M n id ∗ := e M

.

Diagrammatically:

∗

∗ ∗

m

m ·M n

n ∗ ∗

id ∗

e

— a little exercise just for the fun of it —

Definition A map in a category A

f : A B

is called an isomorphism when there exists a pair of maps

u , v : B A

such that the two equations hold:

B A B Au

f◦u = idB

f

v ◦ f = idA

v

Exercise: Show that the two maps u and v are equal in that case.

Functors

A functor between categories A and B

F : A B

is an operation

B which transports every object A ∈ A to an object F(A) ∈ B

B which transports every map

f : A A′

. of the category A to a map

F(f) : F(A) F(A′)

. of the category B.

Functors

One requires moreover that

the image of the composite = the composite of the images

which means diagrammatically that

A3

A2

A1

g

f

g◦ f is mapped into

FA3

FA2

FA1

F(g)

F(f)

F(g◦ f) = Fg◦F f

Functors

One also requires that

the image of the identity map = the identity map of the image

which means diagrammatically that

A

A

idA is mapped into

FA

FA

F(idA) = idFA

Natural transformations

A natural transformation

θ : F G : A B

between two functors F and G of the same source and target:

F , G : A B

is a family of maps in the category B

θA : FA GA

indexed by the objects of the category A .

Natural transformations

One also requires that the diagram commutes in the category B

FA GA

FA′ GA′

θA

F f G f

θA′

in the sense that the equation below holds:

θA′ ◦ F f = G f ◦ θA

for every map f : A→ A′ of the category A .

The 2-category Cat of categories

Categories, functors and natural transformations organize themselves into

a 2-category Cat

where every natural transformation

θ : F G : A B

defines a 2-dimensional cell between functors

A B

F

G

θ

seen themselves as 1-dimensional cells between categories.

An intermezzo on 2-categories

Second steps in the functorial language

The notion of 2-category in four slides

A 2-category K is defined just as a category except that the set

Hom(A,B)

is now replaced by a category whose objects are 1-dimensional cells

f , g : A B

and whose maps θ : f → g are 2-dimensional cells

A B

f

g

θ

between the 1-dimensional cells f , g : A→ B of the 2-category K .

Vertical composition

This equips the 2-category with a vertical composition

A B

f

h

θ2•θ1 := A B

f

g

h

θ1

θ2

where we write θ2 • θ1 for the composite of the two maps

θ1 : f g θ2 : g h

in the category Hom(A,B) of 1- and 2-dimensional cells from A to B.

Horizontal composition

The composition law is defined as a family of functors

◦A1 ,A2 ,A3 : Hom(A2,A3) ×Hom(A1,A2) Hom(A1,A3)

between hom-categories of the 2-category.

This equips the 2-category with a horizontal composition

A C

g1◦ f1

g2◦g2

ψ◦ϕ := A B C

f1

f2

g1

g2

ϕ ψ

moreover compatible with vertical composition in the following sense.

The interchange law

Horizontal and vertical composition are compatible in the sense that

(ψ2 • ψ1) ◦ (ϕ2 • ϕ1) = (ψ2 ◦ ϕ2) • (ψ1 ◦ ϕ1)

whenever we are in the following situation:

A B C

f1

f2

f3

g1

g2

g3

ϕ1

ϕ2

ψ1

ψ2

in the 2-category K .

In the specific case of categories and functors

The interchange law of the 2-category K = Cat ensures that

(ψ2 • ψ1) ◦ (ϕ2 • ϕ1) = (ψ2 ◦ ϕ2) • (ψ1 ◦ ϕ1)

whenever we have natural transformations of the following shape:

A B C

F1

F2

F3

G1

G2

G3

ϕ1

ϕ2

ψ1

ψ2

A brief [pictorial] introduction to
Categories
Functors
Natural transformations

First steps in the language of string diagrams

A brief [pictorial] introduction to
Categories
Functors
Natural transformations

First steps in the language of string diagrams

Categories in string diagrams

The basic idea is to represent a map in a given category A

f : A B

as a process or as a causal flow going from bottom to top

transforming an input string A into an output string B .

Categories in string diagrams

The composite of two maps in the category A

A B C
f g

is represented by composing vertically the two string diagrams:

Categories in string diagrams

Accordingly, the identity map

idA : A A

is represented by the trivial string on which « nothing » happens:

Functors in string diagrams

By definition, a functor

F : A B

transports every map of the category A

f : A A′

to a map of the category B

F f : FA FA′

How shall we represent this operation using string diagrams?

Functors in string diagrams

In the language of string diagrams, a functor

F : A B

behaves in the following way:

Functorial boxes

In the language of string diagrams, a functor

F : A B

may be thus depicted as a functorial box in this way:

Functorial boxes

In the language of string diagrams, a functor

F : A B

may be thus depicted as a functorial box in this way:

Functorial boxes

Functorial boxes satisfy the following pictorial equations:

F(g ◦ f) = Fg ◦ F f F idA = id FA

Natural transformations in string diagrams

What about natural transformations

θ : F G : A B

which are (as we have just seen) defined as a family of maps

θA : FA GA

making the diagram commute:

FA GA

FA′ GA′

θA

F f G f

θA′

Natural transformations in string diagrams

Natural transformations
θ : F G : A B

thus satisfy the pictorial equation in string diagrams:

θA′ ◦ F f = G f ◦ θA

Back to representation theory

On our way to the mathematical interpretation of linear logic

Representation theory for groups

We have seen that a linear action of a group G = (G , ·G , e G)

λ : G × V V

is a family of linear maps from the vector space V to itself

λg : V V

parameterized by g ∈ G and satisfying the two equations:

λg′·g = λg′ ◦ λg λe = idV

Representation theory for groups

We have just seen that a linear action of a group G = (G , ·G , e G)

λ : G × V V

is a family of linear maps from the vector space V to itself

λg : V V

parameterized by g ∈ G and making the two diagrams commute:

V

V V

λg′λg

λg′·g

V V

λe

idV

A functorial way to look at representation theory

Key observation: a linear action

λ : G × V V

is the same thing as a functor

F : Σ G Vec

from the category Σ G with one object ∗ to the category Vec.

The functor F : Σ G→ Vec associated to the linear action λ : G × V → V

B transports the single object ∗ ∈ Σ G to the vector space V ∈ Vec

B transports every map g : ∗ → ∗ to the linear map λg : V → V.

Key insight

In order to define

a functorial interpretation of linear logic (as a whole!)

we need to pick in a consistent way:

B a mathematical interpretation for every formula and every proof.

To that purpose, we will design and investigate

categorified notions of boolean algebras

provided by notions of monoidal categories with dualities:

star-autonomous categories compact-closed categories

Key insight

Every boolean algebra defines a partial order.

For that reason, there exists at most one map between two formulas:

A implies B ⇐⇒ A ≤ B

Categories will enable us to have different maps for different proofs:

π
·
·
·

A ` B

⇒ A π
−→ B

Proof theory appears here as a categorification of algebraic semantics!

Proof-nets and proof-structures

The distinction between proof-structures and proof-nets is at the heart

of categorical semantics with the unifying idea of free constructions.

Indeed, as we will see very soon:

the free star-autonomous category

has formulas of linear logic (MLL) as objects and proof-nets as maps,

the free compact-closed category

has sequences of atoms as objects and proof-structures as maps.

The free star-autonomous category

Key idea: construct a category star-autonomous of a syntactic nature

B whose objects A,B,C are the formulas of linear logic,

B whose maps between formulas

π : A B

are the proofs of linear logic, defined as derivation trees

π
·
·
·

A ` B

modulo an equational equivalence extending cut-elimination:

π � π′

A few examples of equations

The derivation tree

π1
·
·
·

Γ ` A

π2
·
·
·

∆ ` BRight ⊗
Γ,∆ ` A ⊗ B

π3
·
·
·

Υ1,A,B,Υ2 ` C
Left ⊗Υ1,A ⊗ B,Υ2 ` C
CutΥ1,Γ,∆,Υ2 ` C

is equivalent to the derivation tree

π1
·
·
·

Γ ` A

π2
·
·
·

∆ ` B

π3
·
·
·

Υ1,A,B,Υ2 ` C
CutΥ1,A,∆,Υ2 ` C

CutΥ1,Γ,∆,Υ2 ` C

A few examples of equations

The derivation tree
π1
·
·
·

A1, · · · ,An ` BExchange Aσ(1), . . . ,Aσ(n) ` B

π2
·
·
·

Υ1,B,Υ2 ` C
CutΥ1,Aσ(1), . . . ,Aσ(n),Υ2 ` C

is equivalent to the derivation tree

π1
·
·
·

A1, · · · ,An ` B

π2
·
·
·

Υ1,B,Υ2 ` C
CutΥ1,A1, · · · ,An,Υ2 ` C Exchange

Υ1,Aσ(1), . . . ,Aσ(n),Υ2 ` C

Proof invariants

Key property. Every functor to a star-autonomous category D

X D

lifts uniquely (?) to a functor of star-autonomous categories

[−] : star-autonomous(X) D

defining a proof invariant modulo cut-elimination:

star-autonomous(X) D

X

[−]

interpretation of atomsatoms

(?) up to a unique iso

Translating proof-nets into proof-structures

In particular, the canonical functor from proof-nets to proof-structures

star-autonomous(X) compact-closed(X)

transports the two different maps (= proof-nets) in star-autonomous(X)

id,sym : ⊥ ⊗ ⊥ ⊥ ⊗ ⊥

represented by the derivation trees of linear logic:

id =
` 1,⊥ axiom

` 1,⊥
⊗-intro

` 1, 1,⊥ ⊗ ⊥
M-intro

` 1M 1,⊥ ⊗ ⊥
sym =

` 1,⊥ axiom
` 1,⊥

⊗-intro
` 1, 1,⊥ ⊗ ⊥ exchange
` 1, 1,⊥ ⊗ ⊥

M-intro
` 1M 1,⊥ ⊗ ⊥

to the very same map (= proof-structure) in compact-closed(X).

Cartesian categories

A categorification of the notion of semilattice in order theory

Cartesian products

Suppose given two objects A and B in a category C .

Definition. The cartesian product of A and B is a triple

(A × B , fst , snd)

consisting of an object A × B together with a pair of maps

A A × B Bfst snd

which is universal among all such spans (= pairs of maps)

A X B
f g

in the category C .

Universal property of the cartesian product

Property. For every object X ∈ A equipped with a span

f : X A g : X B

there exists a unique map

h : X A × B

making the diagram below commute:

A B

A × B

X

fst snd

hf g

fst ◦ h = f
snd ◦ h = g

Terminal object

Definition.

An object 1 is terminal in a category A when for every object A,
there exists a unique map

A 1

from the object A to the object 1.

Cartesian categories

Definition.

A cartesian category is a category C equipped with

B a cartesian product

A A × B Bfst snd

. for every pair of objects A and B of the category,

B a terminal object 1 .

A bestiary of cartesian categories

B the category Set with the cartesian product A,B 7→ A × B

B the category Rel with the disjoint sum A,B 7→ A + B

B the category Grp with the cartesian product G,H 7→ G ×H

B the category Vec with the sum V,W 7→ V ⊕W

B the category Top with the cartesian product X,Y 7→ X × Y

B the category Coh with the with product A,B 7→ A&B

B the category Stab with the cartesian product D,E 7→ D × E

Functoriality of the cartesian product

Key structural property.

The cartesian product of a cartesian category C induces a functor

C × C C

(A,B) A × B

times

which transports every pair

(A,B) ∈ C × C

to the cartesian product

A × B ∈ C

in the cartesian category.

Functoriality of the cartesian product

Sketch of the proof: every pair of maps

hA : A A′ hB : B B′

induces a map
hA × hB : A × B A′ × B′

defined as the unique map making the diagram below commute:

A′ B′

A′ × B′

A B

A × B

fst snd

hA hB

hA×hB

fst snd

Symmetry maps

Key structural property.

In a cartesian category, every pair A,B comes equipped with a map

symA,B : A × B B × A

defined as the unique map making the diagram commute:

B A

B × A

A × B

fst snd

symA,B
snd fst

fst ◦ symA,B = snd
snd ◦ symA,B = fst

Symmetry maps = braiding = exchange

The family of symmetry maps defines a natural transformation

C × C

C × C C

C × C

times(12)

(21) times

sym

depicted as a symmetry in the language of string diagrams:

Diagonal maps

Key structural property.

In a cartesian category, every object A comes equipped with a map

∆A : A A × A

defined as the unique map making the diagram commute:

A A

A × A

A

fst snd

∆A
idA idA

fst ◦ ∆A = idA
snd ◦ ∆A = idA

Diagonal maps = duplication = contraction

The family of diagonal maps defines a natural transformation

C C

C × C

Id

diag times
∆

depicted as a duplicator in the language of string diagrams:

Eraser maps

Key structural property.

In a cartesian category, every object A comes equipped with a map

A 1eraser

to the terminal object of the cartesian category C .

Eraser maps = garbage collect = weakening

The family of eraser maps defines a natural transformation

C C

1

Id

collapse terminal
eraser

depicted as an eraser in the language of string diagrams:

Eraser maps = garbage collect = weakening

The family of eraser maps defines a natural transformation

C C

1

Id

collapse terminal
eraser

depicted as an eraser in the language of string diagrams:

Monoidal categories

The linear counterpart of cartesian categories

Monoidal categories

A monoidal category is a category C equipped with a functor

⊗ : C × C C

together with an object I ∈ C and three natural transformations:

(A ⊗ B) ⊗ C A ⊗ (B ⊗ C)α

I ⊗ A Aλ A ⊗ I A
ρ

satisfying a series of coherence properties.

String diagrams in monoidal categories

A map in the monoidal category

f : A ⊗ B ⊗ C D ⊗ E

is depicted as a process taking three inputs and producing two outputs:

f

A B C

D E

Composition

The map A
f
−→ B

g
−→ C is depicted as

AA

C

g ◦ f =

g

f

A

C

B

Vertical composition

Tensor product

The map (A
f
−→ B) ⊗ (C

g
−→ D) is depicted as

A⊗ C

B ⊗D

f ⊗ g = gf

A

B

C

D

Horizontal tensor product

Example

f

A

B D

D

f ⊗ idD

Example

g

f

A

B

C

D

(f ⊗ idD) ◦ (idA ⊗ g)

Example

g

f

A

B

C

D

(idB ⊗ g) ◦ (f ⊗ idC)

Meaning preserved by deformation

g

f

A

B

C

D

=
g

f

A

B

C

D

(f ⊗ idD) ◦ (idA ⊗ g) = (idB ⊗ g) ◦ (f ⊗ idC)

Ribbon categories

The functorial approach to knot invariants

Braided categories

A monoidal category C equipped with a family of isomorphisms

γA,B : A ⊗ B −→ B ⊗ A

natural in A and B, represented pictorially as the positive braiding

B

BA

AB

Braided categories

As expected, the inverse map

γ−1
A,B : B ⊗ A −→ A ⊗ B

is represented pictorially as the negative braiding

AB

BA

Coherence diagram for braids [1]

A ⊗ (B ⊗ C) (B ⊗ C) ⊗ A

(A ⊗ B) ⊗ C B ⊗ (C ⊗ A)

(B ⊗ A) ⊗ C B ⊗ (A ⊗ C)

γ
γα

γ⊗C
α

B⊗γ

Same coherence diagram in string diagrams

A B C

AB C

=

A B C

AB C

Coherence diagram for braids [2]

(A ⊗ B) ⊗ C C ⊗ (A ⊗ B)

A ⊗ (B ⊗ C) (C ⊗ A) ⊗ B

A ⊗ (C ⊗ B) (A ⊗ C) ⊗ B

γ

α−1α−1

A⊗γ
α−1

γ⊗B

Same coherence diagram in string diagrams

A B C

A BC

=

A B C

A BC

Balanced categories

A braided monoidal category C equipped with a twist

θA : A −→ A

defined as a natural family of isomorphisms, and depicted as

A

A

Coherence for twists

The twist θ is required to satisfy the equality

θ I = id I

and to make the diagram

A ⊗ B B ⊗ A

A ⊗ B B ⊗ A

γA,B

θA⊗B θB⊗θA

γB,A

commute for all objects A and B.

Coherence for twists

θA⊗B =

A B

A B

Duality

A dual pair A a B is defined as a pair of maps

η : I −→ A ⊗ B ε : B ⊗ A −→ I

which are depicted as

BA

η B A

ε

Coherence for duality

The two maps η and ε should satisfy the “zig-zag” equalities:

A

A

ε

η

=

A

A

B

B

η

ε

=

B

B

In that case, the object A is called a right dual of the object B.

Ribbon categories

Definition. A ribbon category is a balanced category C where

B every object A has a right dual A∗

B the diagram
A∗ ⊗ A

A∗ ⊗ A A∗ ⊗ A

I

θA∗ ⊗A A∗⊗θA

εA εA

commutes for all objects A.

Ribbon categories

Remark. In a ribbon category, the object A∗ is also a left dual of A.

=

A*A

η’

A*A

η A

=

*AA *A

εε’

Ribbon categories

Hence, the equations below are satisfied in every ribbon category

η

ε’

=

A

*A

A

A

A

ε

η’

*A

A

A

=

The free ribbon category

The next theorem offers a bridge between algebra and ribbon topology:

Theorem [Shum 1994]

The free ribbon category free-ribbon(X) generated by a category X has

B objects: the signed sequences (Aε1
1 , . . . ,A

εk
k) of objects of X ,

B maps: the framed tangles with links labelled by maps in X .

The free ribbon category

So, a typical map in the category free-ribbon(X)

(A+) (B+,C−,D+)

looks like this:

g

f

D+C−B+

A+

where f : A −→ B and g : C −→ D are maps in the original category X .

Knot invariants

Theorem. Every functor to a ribbon category R

X R

lifts uniquely (?) to a functor of ribbon categories

[−] : ribbon(X) R

defining a knot invariant modulo topological deformation:

free-ribbon(X) R

X

[−]

interpretation of linkslinks

(?) up to a unique iso

The Jones polynomial invariant

2
x2 + 1

x4 +
y2

x2 2x2
− x4 + x2y2

Symmetries

A symmetry in a monoidal category is a braiding

γA,B : A ⊗ B B ⊗ A

satisfying the additional equation

A ⊗ B B ⊗ A A ⊗ B
γA ,B γB ,A

= A ⊗ B A ⊗ B
idA⊗B

The equation may be depicted in string diagrams:

Symmetric monoidal categories

Definition.

A symmetric monoidal category is a monoidal category

equipped with a symmetry:

γA,B : A ⊗ B B ⊗ A

Observation: a symmetric monoidal category is the same thing as

a balanced category whose twist is trivial

Compact-closed categories

Definition.

A compact-closed category is a symmetric monoidal category

where every object A has a right dual B as depicted below:

A

A

ε

η

=

A

A

B

B

η

ε

=

B

B

Observation: a compact-closed category is the same thing as

a ribbon category whose twist is trivial

Proof invariants

Theorem. Every functor to a star-autonomous category D

X D

lifts uniquely (?) to a functor of star-autonomous categories

[−] : star-autonomous(X) D

defining a proof invariant modulo cut-elimination:

star-autonomous(X) D

X

[−]

interpretation of atomsatoms

(?) up to a unique iso

Symmetric monoidal closed categories

Crossing the boundary between topology and logic

Symmetric monoidal closed categories (smcc)

Definition.

A symmetric monoidal closed category is

a symmetric monoidal category

together with, for all objects A and B:

B an object A(B

B a map
evalA,B : A ⊗ (A(B) B

. satisfying a universal property described in the next slide.

Universal property of the linear implication

For every object X and for every map

f : A ⊗ X B

there exists a unique map

h : X A(B

making the diagram below commute:

A ⊗ (A(B)

A ⊗ X B

evalA,B
A⊗h

f

Monoidal exponentiation

Suppose given an object A of a symmetric monoidal category C .

Definition.

A monoidal exponentiation of A is a pair consisting of a functor

A(− : C C

and of a family of bijections

φA,B,C : Hom(A ⊗ B,C) Hom(B,A(C)�

natural in the parameters B and C.

Alternative definition

Definition.

A symmetric monoidal closed category is

a symmetric monoidal category

together with a monoidal exponentiation

A ⊗ B −→ C
B −→ A(C

φA,B,C

for all objects A of the category.

The evaluation map

In that formulation, the map

evalA,B : A ⊗ (A(B) −→ B

is defined in the following way:

A(B
id
−→ A(B

A ⊗ (A(B) −→ B
φ−1

A(B,A,B

Multiplicative intuitionistic linear logic

A,B ::= 1 | A ⊗ B | A(B | α

Axiom
A ` A

(left
∆ ` A Γ,B ` C

Γ,∆,A(B ` C
(right

Γ,A ` B
Γ ` A(B

⊗ left
Γ,A,B ` C

Γ,A ⊗ B ` C
⊗ right Γ ` A ∆ ` B

Γ,∆ ` A ⊗ B

1 left
Γ, 1 ` A
Γ ` A

1 right
` 1

Cut
∆ ` A Γ,A ` B

Γ,∆ ` B

Exchange
Γ,A1,A2,∆ ` B
Γ,A2,A1,∆ ` B

From symmetric monoidal closed categories

to star-autonomous categories

The joys and marvels of classical linear duality

A general observation

Every pair of objects A,⊥ in a smcc comes with an identity

idA(⊥ : A(⊥ A(⊥

which is transported by the bijection φ−1
A(⊥,A,⊥ to the map

evalA,⊥ : A ⊗ (A(⊥) ⊥

then becomes by precomposing with symmetry:

(A(⊥) ⊗ A ⊥

and is finally transported by the bijection φA(⊥,A,⊥ to the map

A (A(⊥)(⊥

Star-autonomous categories

Definition

An object ⊥ is called dualizing when the canonical map

∂A : A (A(⊥)(⊥

is an isomorphism for every object A.

Definition

A star-autonomous category is a smcc with a dualizing object.

The category Coh is star-autonomous

The dualizing object ⊥ = 1∗ is the singleton coherence space.

e = idA(⊥ : A(⊥ −→ A(⊥ = { ((a , ∗) , (a , ∗)) | a ∈ |A| }

f = φ−1
A(⊥,A,⊥(e) : A ⊗ (A(⊥) −→ ⊥ = { ((a , (a , ∗)) , ∗) | a ∈ |A| }

g = f ◦ γA,A(⊥ : (A(⊥) ⊗ A −→ ⊥ = { (((a , ∗) , a) , ∗) | a ∈ |A| }

∂A = φA(⊥,A,⊥(g) : A −→ (A(⊥)(⊥ = { (a , ((a , ∗) , ∗)) | a ∈ |A| }

The resulting map is an isomorphism

∂A : A (A(⊥)(⊥

with inverse defined as

∂−1
A = { ((a , ∗) , ∗) , a) | a ∈ |A| }

Multiplicative linear logic (MLL)

A,B ::= A ⊗ B | 1 | AMB | ⊥ | α

Axiom
` A⊥,A

⊗
` Γ,A ` ∆,B
` Γ,∆,A ⊗ B

M
` Γ,A,B
` Γ,AMB

1
` 1

⊥
` Γ

` Γ,⊥

I MLL can be interpreted in every star-autonomous category.

Multiplicative additive linear logic (MALL)

A,B ::= A ⊕ B | A ⊗ B | 0 | 1 | A&B | AMB | > | ⊥ | α

⊕ left
` Γ,B
` Γ,A ⊕ B

⊕ right
` Γ,A
` Γ,A ⊕ B

&
` Γ,A ` Γ,B
` Γ,A&B

0 no rule

>
` Γ,>

I MALL can be interpreted in every
{

star-autonomous
and cartesian

}
category.

The exponential modality

The alchimy of combining additives and multiplicatives

A new ingredient: the exponential

The exponential modality

A 7→ !A

transports a coherence space A to the coherence space ! A

B whose web | ! A | is the set of finite cliques of A,

B u _̂ ! A v iff the union u ∪ v is a finite clique of A.

The coherence space ? A is defined by de Morgan duality:

? A = (! A⊥)⊥

The exponential alchimy

The exponential modality transmutes the additives into multiplicatives

The terminology « exponential » is justified by the isomorphisms:

! (A & B) � ! A⊗ ! B !> � 1

which are reminiscent of the set-theoretic bijections:

℘ (A + B) � ℘ (A) × ℘ (B)

The exponential alchimy

We will study the formal properties of the exponential required by

a Seely category

in order to define a model of linear logic.

B every object ! A defines a commutative comonoid (! A , dA , eA),

B the exponential modality defines a comonad (! , δ , ε)

B the cartesian diagonal

A −→ A & A

is transported to the comonoidal diagonal

! A −→ ! A⊗ ! A.

Linear logic (LL)

A,B ::= A ⊕ B | A ⊗ B | !A | 0 | 1 | A&B | AMB | ?A | > | ⊥ | α

contraction
` Γ , ? A , ? A
` Γ , ? A

weakening ` Γ

` Γ , ? A

dereliction
` Γ , A
` Γ , ? A

digging
` ? Γ , A
` ? Γ , ! A

Monoids

A monoid in a monoidal category (C ,⊗, 1) is a triple

1 A A ⊗ Au m

consisting of an object A and of two maps making the diagrams commute:

A ⊗ (A ⊗ A) (A ⊗ A) ⊗ A A ⊗ A

A ⊗ A A

α

A⊗m

m⊗A

m

m

1 ⊗ A A ⊗ A A ⊗ 1

A A A

u⊗A

λ m

A⊗u

ρ

Comonoids

Dually, a comonoid in a monoidal category (C ,⊗, 1) is a triple

1 A A ⊗ Ae d

consisting of an object A and of two maps making the diagrams commute:

A A ⊗ A

A ⊗ A A ⊗ (A ⊗ A) (A ⊗ A) ⊗ A

d

d

d⊗A

A⊗ d α

A A A

1 ⊗ A A ⊗ A A ⊗ 1

dλ

e⊗A A⊗ e

ρ

Commutative comonoid

A comonoid in a symmetric monoidal category

1 A A ⊗ Ae d

is commutative when the diagram below commutes:

A

A ⊗ A A ⊗ A

d d

γA,A

Comonad

A comonad (K , δ , ε) in a category C is the data of

B a functor K : C C

B two natural transformations

δ : K K ◦ K ε : K IdC

such that the following diagrams commute:

K K ◦ K

K ◦ K K ◦ K ◦ K

δ

δ K◦δ

δ◦K

K

K K ◦ K K

idid
δ

K◦ε ε◦K

Seely categories

Definition. A Seely category is

a star-autonomous and cartesian category (L ,⊗, 1)

equipped with a comonad

(! , δ , ε) : L L

and two natural isomorphisms

mA,B : ! A⊗ ! B � ! (A & B) m : 1 � !>

defining a symmetric monoidal functor

(! , m) : (L ,&,>) (L ,⊗, 1)

from the cartesian structure of L to its symmetric monoidal structure.

Seely categories

One asks in addition that the diagram

! A⊗ ! B ! (A & B)

! ! (A & B)

! ! A⊗ ! ! B ! (! A & ! B)

m

δA⊗ δB

δA & B

! 〈 !π1 , !π2 〉

m

commutes in the category L for all objects A and B.

The polychromatic interpretation of linear logic

Definition.

A model of linear logic is a symmetric monoidal adjunction

M ⊥ L .

Lin

Mult

M cartesian L star-autonomous

! = Lin ◦Mult

Equivalently: an adjunction whose left adjoint Lin is strong monoidal

Lax monoidal functor

A lax monoidal functor is a box with many inputs - one output.

f

F

FA1 FAk

FB

AkA1

B

F(f) ◦m [A1,···,Ak] : FA1 ⊗ · · · ⊗ FAk FB

Functorial equalities (on lax functors)

g

F

f

C

FAk

A1

B

Ak

FAj

AjAi

FAiFA1

FC

=

F

F

g

f

FA1

FC

C

B

FB

AkA1

FAj FAk

AjAi

FAi

B

Strong monoidal functors

A strong monoidal functor is a box with many inputs - many outputs

Functorial equalities (on strong functors)

g

F

f

B1

FCkFC1

Ck

FAi

AiA1

FA1

C1

Bj =

g

F

f

F

FCkFC1

Ck

FAi

AiA1

FA1

C1

FBjFB1

Functorial equalities (on strong functors)

g

F

f

FD1

FCk

CkC1

FC1

DlBjB1

FBkFB1

FAi

AiA1

FA1

D1

FDl

=
F

g

F

f

FD1

FCk

CkC1

FC1

DlBjB1

FBkFB1

FAi

AiA1

FA1

D1

FDl

Natural transformations

About one hour ago, we have seen that a natural transformation

θ : F G : A B

satisfies the pictorial equation in string diagrams:

θ

f

F

FA

B

FB

GB

A

=

θ

f

G

FA

B

GA

GB

A

Monoidal natural transformations

Similarly, a monoidal natural transformation

θ : F G : A B

satisfies the pictorial equation:

θ

f

F

FAk
FA1

B

FB

Ak

GB

A1

=

θθ

f

G

FAkFA1

GAkGA1

B

A1

GB

Ak

Decomposition of the exponential box

!

f

!B

B

Ak

!Ak!A1

A1

=

L

M

f

MB

MAkMA1

B

LMAk

AkA1

LMA1

LMB

Decomposition of the contraction node

c

!A

!A !A

=
∆

L

MA

MA

LMA

LMA LMA

MA

Illustration: duplication of the exponential box

L

∆

M

L

f

MB

LMB

MB

LMB

MAkMA1

LMB

B

LMAk

AkA1

LMA1

MBMB

Duplication (step 1)

L

∆

M

f

MB

MB

LMB

MAkMA1

LMB

B

LMAk

AkA1

LMA1

MB

Duplication (step 2)

M

L

ff

∆

M

∆

MB

MA1
MAk

MA1

LMAk

AkA1

LMA1

MAk

MAkMA1

MB

LMB LMB

B

AkA1

B

Duplication (step 3)

L

f

L

M

L

f

M

∆ ∆

MA1

MB

MAk

MA1

B

LMAk

AkA1

LMA1

MAk

MAkMA1

MB

LMB LMB

B

AkA1

MAk
MA1

Duplication (step 4)

f

M

L

f

L

M

∆∆

MAkMA1

MB

MA1 MAk

B

LMAk

AkA1

LMA1

LMB

MAkMA1

MB

LMB

LMA1

B

AkA1

LMAk

Duplication (step 5)

L

L

f

L

M

f

L

M

∆ ∆

MB

MAk

MA1

B

LMAk

Ak

A1

LMA1

LMB

MA1

MB

MAk

LMB

B

Ak

A1

LMA1 LMAk

Five polychromatic steps!

The five diagrammatic steps follow very carefully

the categorical proof of soundness

for linear-non-linear models of linear logic.

Thank you !

