Preparation Theorem in o-minimal structures. Episode III.

Adam Parusiński

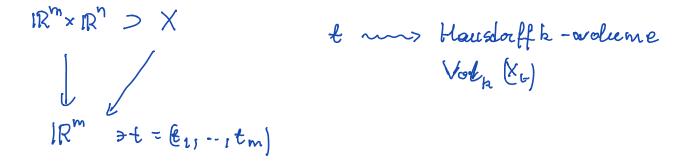
Université Côte d'Azur

Volumes and densities of subanalytic sets.

Theorem (Lion-Rolin §7, Combe - Lion-Rolin 100) Consider globally subanalytic $X \subset \mathbb{R}^m \times \mathbb{R}^n$ as a family $X_t \subset \mathbb{R}^n$, parameterized by $t \in \mathbb{R}^m$, s.t. dim $X_t \leq k$ for all t. Then the set of t where $Vol_k(X_t) < \infty$ is globally subanalytic and on this set

$$Vol_k(X_t) = P(A_1(t), \ldots, A_r(t), \log A_1(t), \ldots, \log A_r(t)),$$

where A_i are globally subanalytic and P is a polynomial.



Volumes and densities of subanalytic sets.

Corollary

Let $X \subset \mathbb{R}^n$, dim $X \leq k$ be subanalytic global. Then the local k-density of X is of the form

$$\Theta_k X(x) = P(A_1(x), \ldots, A_r(x), \log A_1(x), \ldots, \log A_r(x)),$$

-11

where A_i are globally subanalytic and P is a polynomial.

$$\mathcal{X}_{\mathrm{c}} \times -\mathrm{density} \quad \Theta_{\mathrm{k}} \times (\mathrm{x}) = \lim_{\varepsilon \to 0} \frac{\mathrm{Vol}_{\mathrm{k}} (\mathrm{X} \cap \mathrm{B}(\mathrm{x}, \varepsilon))}{\sigma_{\mathrm{k}} \cdot \varepsilon^{\mathrm{k}}}$$
This limit alway excists Kurchyke-Raby.

$$\mathcal{X} \longrightarrow \Theta_{\mathrm{k}} \times (\mathrm{x}) \quad \text{is nof necessarily subanalyhic.}$$

Theorem

Let f(t, x), $t = (t_1, ..., t_m)$, $x = (x_1, ..., x_n)$, be a bounded subanalytic function defined on subanalytic $X \subset \mathbb{R}^m \times \mathbb{R}^n$. Suppose that the fibres $X_t = X \cap (\{t\} \times \mathbb{R}^n)$ are bounded and of dimension at most k. Then the integral with parameter

$$\varphi(t) = \int_{X_t} f(t, x) \operatorname{dvol}_k$$

with respect to the k-dimensional volume is of the form

$$P(\widetilde{t}_1,\ldots,\widetilde{t}_d,\log\widetilde{t}_1,\ldots,\log\widetilde{t}_d),$$

where $\tilde{t}_1, \ldots, \tilde{t}_d$ are subanalytic functions in t and P is a real polynomial of degree at most k with respect to the logarithms.

 $\mathfrak{lR}^{m} \mathfrak{F} \mathfrak{t} \longrightarrow \mathfrak{X}_{\mathfrak{t}} \subset \mathfrak{R}^{n}$

 $\gamma_{1}(\alpha) < \gamma < \gamma_{n}(\alpha)$ I lea of the proof - Important case k=n X - For induction we consider finite sams of forth la filter. 4) Integrating with respect to y does not change the bong but in modeces (maybe) one more logarithm. prepare fi, and work on the 'blow-space' in local coordinates. obtained from Usin, Un-s(t,x), y, = y - O(t,x) by a combinatorcal argument. 411 ..., 4n-2, 4+ = Y1/a(E12), 4- = b(1,2)/42, · fi une brachand normal avassings in these wordinates. fi = 400 · Yr · cenit() la fi = la AGo + v la y f la unit() We can suppose $f = A(t, x) \cdot h(\varphi(t, x, y)) \cdot [I] \ln y_{L}$ fractional power series

$$\frac{Splitting Lemma}{g \in R \{u, w_{1}, w_{p}\}} \text{ if splits.}$$

$$g [u, w_{-}, w_{p}] = g_{\bullet} (u_{1}, w_{-}, w_{p}) + w_{-} g_{0} (u_{1}, w_{-}, w_{p}) = g_{\bullet} (u_{1}, w_{-}, w_{p}) + w_{-} g_{0} (u_{1}, w_{-}, w_{p}) + g_{-} (u_{1}, w_{-}, w_{p}) +$$

Proposition

The asymptotic expansion of $vol_k(X \cap B(x_0, r))$ is of the form

$$\operatorname{vol}_k(X \cap B(x_0, r)) = \sum_{j=0}^{l_0} a_{p_0, j} r^{p_0} (\ln r)^j + \dots, \qquad a_{p_0, l_0} \neq 0,$$

where either $p_0 = k$ and $l_0 = 0$ or $p_0 > k$ and then $l_0 \le k - 2$.

$$\frac{Example}{X \subset IR^3}; X = \{(X, 4, z); 0 \le x \le \frac{1}{2}, x^2 \le y \le x, 0 \le z \le \frac{x^d}{y}\}, d \ge 4$$

$$Volume = -(d \le 1)^{-\frac{1}{2}} \frac{r^{d+1} \ln r}{1 \ln r} + \cdots$$

$$\frac{Remerk}{N} \text{ using nested preparation.}$$

$$One \max \text{ may show that a compact subenalyhic}$$

$$\text{ set can be decomposed into cells}$$

$$bi-Lipschitz equivalent to cells qiven by monomials$$

$$irequalihie$$

$$7/14$$

A definable cell of dimension d of \mathbb{R}^{n+1} is called *L*-regular (with respect to a given system of coordinates) if

- If d = 0 then C is a point.
- If d = n + 1 then C = {(x, y) | x ∈ B, η₁(x) < y < η₂(x)}, where η_i are C² definable with bounded first order derivatives and B is L-regular.
- If d < n + 1 then C is the graph of $\phi : D \to \mathbb{R}^{n-d+1}$, where ϕ is C^2 definable with bounded first order derivatives, and $D \subset \mathbb{R}^d$ is L-regular.

L-regular decomposition

Theorem (Kurdyke '90, A.P. '88, Kurdyke -96., Pawlucki '98) Given finite family Y_i of definable subsets of \mathbb{R}^{n+1} there is a finite decomposition of \mathbb{R}^{n+1} in L-regular cells, each with respect to a suitable linear system of coordinates, s.t. every Y_i is a union of cells.

This theorem holds in every, not necessarily polynomially bounded, o-minimal structure.

Lifting of Lipschitz vector fields.

Theorem (Theorem C)

For a function f(x, y) definable in a polynomially bounded o-minimal structure $\exists C$ and a definable stratification of \mathbb{R}^{n+1} such that \forall Lipschitz vector field v on \mathbb{R}^{n+1} with Lipschitz constant L and tangent to strata

$$\left|\frac{\partial f}{\partial \mathsf{v}}(x,y)\right| \leq CL|f(x,y)|.$$

generalization of Theorem A $|qredt| \cdot click(r,t) \leq C |f(r,q)|$ $X = \frac{1}{click(r,t)}$ -7 Criterion for lifting of Lipschitz vector fields

$$\frac{Proof}{With extra property: the translation \Theta}$$

$$\frac{Proof}{With extra property: the translation \Theta}$$

$$\frac{Proof}{Proof} = \frac{Proof}{Proof} = \frac{Proof}{Proof}$$

Similar for the units.

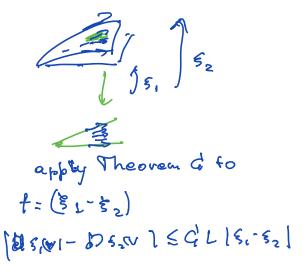
Lipschitz stratification

Let $X \subset \mathbb{R}^n$ be subanalytic closed. We say that a filtration

$$X = X^d \supset X^{d-1} \supset \cdots \supset X^l \neq \emptyset,$$

induces a **Lipschitz stratification** of X if

 $\dot{X}^{\dot{\delta}} = \chi^{\dot{\delta}} \chi^{\dot{\delta}-1}$ is non-singular $[C^2]$ and Lipschitz vector fields tangent to strata can be extended to strata can be extended to many $\chi^{\dot{\delta}} = W C \chi^{\dot{\delta}}$ to X, with the control on the Lipschit constant of the extension.



Existence Theorem

Theorem

Any compact definable (in a polynomially bounded o-minimal structure) subset of \mathbb{R}^n admits a definable Lipschitz stratification.

Mostowski's Definition of Lipschitz stratification

Let $P_q : \mathbb{R}^n \to T_q \dot{X}^j$ denote the orthogonal projection onto the tangent space and $P_q^{\perp} = I - P_q$ the orthogonal projection onto the normal space $T_q^{\perp} \dot{X}^j$. We say that the stratification $\{X^j\}$ satisfies Mostowski's Conditions if there is a constant C > 0 such that for all chains $\{q_m\}_{m=1,...,r}$ and all $2 \le k \le r$:

$$|P_{q_1}^{\perp}P_{q_2}\cdots P_{q_k}|\leq C|q-q_2|/\operatorname{dist}(q,X^{j_k-1}).$$

If, further, $q' \in \mathring{X}^j$ and $|q - q'| \leq (rac{1}{2c}) \operatorname{dist} (q, X^{j-1})$ then

$$|(P_q - P_{q'})P_{q_2}\cdots P_{q_k}| \leq C|q-q'|/\operatorname{dist}(q,X^{j_k-1}),$$

in particular,

$$|P_q - P_{q'}| \le C|q - q'| / \operatorname{dist}(q, X^{j_1 - 1}),$$

where dist $(\cdot, \emptyset) \equiv 1$.