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Volumes and densities of subanalytic sets.

Theorem
Consider globally subanalytic X ⇢ Rm ⇥ Rn as a family Xt ⇢ Rn,
parameterized by t 2 Rm, s.t. dimXt  k for all t. Then the set of t
where Volk(Xt) < 1 is globally subanalytic and on this set

Volk(Xt) = P(A1(t), . . . ,Ar (t), logA1(t), . . . , logAr (t)),

where Ai are globally subanalytic and P is a polynomial.
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Volumes and densities of subanalytic sets.

Corollary

Let X ⇢ Rn, dimX  k be subanalytic global. Then the local k-density of
X is of the form

⇥k X (x) = P(A1(x), . . . ,Ar (x), logA1(x), . . . , logAr (x)),

where Ai are globally subanalytic and P is a polynomial.
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Theorem

Let f (t, x), t = (t1, . . . , tm), x = (x1, . . . , xn), be a bounded subanalytic
function defined on subanalytic X ⇢ Rm ⇥ Rn. Suppose that the fibres
Xt = X \ ({t}⇥ Rn) are bounded and of dimension at most k . Then the
integral with parameter

'(t) =

Z

Xt

f (t, x) dvolk

with respect to the k-dimensional volume is of the form

P(et1, . . . , etd , log et1, . . . , log etd),

where et1, . . . , etd are subanalytic functions in t and P is a real polynomial
of degree at most k with respect to the logarithms.
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Proposition

The asymptotic expansion of volk(X \ B(x0, r)) is of the form

volk(X \ B(x0, r)) =
l0X

j=0

ap0,j r
p0(ln r)j + . . . , ap0,l0 6= 0,

where either p0 = k and l0 = 0 or p0 > k and then l0  k � 2.
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L-regular cells
A definable cell of dimension d of Rn+1 is called L-regular (with respect
to a given system of coordinates) if

If d = 0 then C is a point.
If d = n + 1 then C = {(x , y)| x 2 B , ⌘1(x) < y < ⌘2(x)}, where ⌘i
are C 2 definable with bounded first order derivatives and B is
L-regular.
If d < n + 1 then C is the graph of � : D ! Rn�d+1, where � is C 2

definable with bounded first order derivatives, and D ⇢ Rd is
L-regular.
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L-regular decomposition

Theorem

Given finite family Yi of definable subsets of Rn+1 there is a finite
decomposition of Rn+1 in L-regular cells, each with respect to a suitable
linear system of coordinates, s.t. every Yi is a union of cells.

This theorem holds in every, not necessarily polynomially bounded,
o-minimal structure.
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Lifting of Lipschitz vector fields.

Theorem (Theorem C)

For a function f (x , y) definable in a polynomially bounded o-minimal
structure 9C and a definable stratification of Rn+1 such that 8 Lipschitz
vector field v on Rn+1 with Lipschitz constant L and tangent to strata

|@f
@v

(x , y)|  CL|f (x , y)|.
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Lipschitz stratification

Let X ⇢ Rn be subanalytic closed. We say that a filtration

X = X d � X d�1 � · · · � X l 6= ;,

induces a Lipschitz stratification of X if
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Existence Theorem

Theorem

Any compact definable (in a polynomially bounded o-minimal structure)
subset of Rn admits a definable Lipschitz stratification.
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Mostowski’s Definition of Lipschitz stratification

Let Pq : Rn ! TqX̊ j denote the orthogonal projection onto the tangent
space and P?

q = I � Pq the orthogonal projection onto the normal space

T?
q X̊ j . We say that the stratification {X j} satisfies Mostowski’s

Conditions if there is a constant C > 0 such that for all chains
{qm}m=1,...,r and all 2  k  r :

|P?
q1Pq2 · · ·Pqk |  C |q � q2|/ dist (q,X jk�1).

If, further, q0 2 X̊ j and |q � q0|  ( 1
2c ) dist (q,X

j�1) then

|(Pq � Pq0)Pq2 · · ·Pqk |  C |q � q0|/ dist (q,X jk�1),

in particular,

|Pq � Pq0 |  C |q � q0|/ dist (q,X j1�1),

where dist (·, ;) ⌘ 1.
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