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Preparation Theorem for subanalytic functions

Theorem

Let f(x,y) be a global subanalytic function on R"™1 3 (x1,...,xn, y).
Then f is reducible.

A function f(x, y) is reducible if on cells of a cellular decomposition C of
R+ it is reduced with translation 6

fx,y) = Ax) ly = 0(x)[" Ulx,y) = A(x) In|” V(d(x,y)),

where A(x) and 6(x) are subanalytic, v € Q, and V(¥(x,y)) is a reduced
unit, i.e. Y(x, y) called reduction morphism is of the form

Y(x,y) = (61(x), -, ds(x), [P /a(x), b(x)/ Iy *'P),

and V is non-vanishing and real analytic on a neighbourhood of the

closure of the image of v, that is bounded.
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Remarks and additional properties.

We may suppose that A(x) and 6(x) are also reducible (nested

reducible) BJZ’)‘%
The cells (cylinders) are of the form: | oC

{(y)lx € B,m(x) <y <m(x)}or{(x,y)|x € B,y =n(x)}.

one may assume that on each cell either 8§ =0 or y and @ are
comparable.

we may reduce simultaneously, with the same translation and
reduction morphism, and the same cell decomposition, a finite
number of functions.

The reduced form is far from being unique, we may often replace the
translation by a different one.
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Strategy of the analytic proof.

@ Theorem is local (on a correct compactification).

@ Suppose IF(x,y,w), monic polynomial in w, s.t. F(x,y,f(x)) =0,
and s.t. the discriminant Ag(x, y) times the last coefficient is regular
in y. Then the proof follows from a version of Jung's strategy of
resolution of singularities.
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© The general case can by reduced to the above one by the local
flattening theorem of Hironaka.
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Theorem (Local flattening theorem in real analytic settings)

Let ® : X — W be a morphism of real analytic spaces, with W' reduced.
Fix p € W and a compact L C ®~1(p).

Then there is a covering family o, : U, — U of a neighborhood U of p,
where o, are compositions of local blowings-up with nonsingular analytic
centers, such that

the stricts transforms &, : X, — U, of (complexifications of) ® by
(complexifications of) o, are flat at every point of X, corresponding to L.
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Motivation of Lion & Rolin

© Elimination of quantifiers: Projection of a subanalytic set is
subanalytic.

© Preparation Theorem for logarithmic-analytic functions and for
logarithmic-exponential functions, that imply, in particular, the
elimination of quantifiers in these classes.
(proven before by Model Theory by van den Dries, Maclntire and
Marker)

@ Preparation Theorem for x*-functions that implies the elimination of
quantifiers for this class.
(proven before by Model Theory by Miller)
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Motivation of Lion & Rolin

@ Elimination of quantifiers: Projection of a subanalytic set is

subanalytic.
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Proof of Lion & Rolin

Follows the approach of Denef & van den Dries.
© Blowings- up are replaced by the D-operator: D(x,y) = x/y.

© Flattening is replaced by Finiteness Lemma.
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Preparation Theorem for functions definable in a
polynomially bounded o-minimal structures

Theorem (van den Dries, Speissegger)

Let S be a polynomially bounded o-minimal structure and let f(x,y) be
an S-definable function.

Then there is a definable cellular decomposition C of R"T1, compatible
with a cellular decomposition of R", such that on each cell of C

f(x,y) = Alx) ly — 0(x)|" unit(x, y),

where A(x) and 0(x) are definable, v € A, and |u(x,y) — 1] < 3.

Proof by Model Theory.

(Proof of Addendum on the unit by Nguyen & Valette is a fairly
elementary, though not entirely trivial, application of the above theorem.)
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Are the proofs constructive 7

© Lion & Rolin’s proof is constructive.
@ Model Theory proof is not.

© Analytic proof a priori not, but it is.
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