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Preparation Theorem for subanalytic functions

Theorem

Let f (x , y) be a global subanalytic function on Rn+1 3 (x1, . . . , xn, y).
Then f is reducible.

A function f (x , y) is reducible if on cells of a cellular decomposition C of

Rn+1
, it is reduced with translation ✓

f (x , y) = A(x) |y � ✓(x)|⌫ U(x , y) = A(x) |y1|⌫ V ( (x , y)),

where A(x) and ✓(x) are subanalytic, ⌫ 2 Q, and V ( (x , y)) is a reduced
unit, i.e.  (x , y) called reduction morphism is of the form

 (x , y) = (�1(x), . . . ,�s(x), |y1|1/p/a(x), b(x)/|y1|1/p),

and V is non-vanishing and real analytic on a neighbourhood of the

closure of the image of  , that is bounded.
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Remarks and additional properties.

We may suppose that A(x) and ✓(x) are also reducible (nested

reducible)

The cells (cylinders) are of the form:

{(x , y)| x 2 B , ⌘1(x) < y < ⌘2(x)} or {(x , y)| x 2 B , y = ⌘(x)}.

one may assume that on each cell either ✓ = 0 or y and ✓ are

comparable.

we may reduce simultaneously, with the same translation and

reduction morphism, and the same cell decomposition, a finite

number of functions.

The reduced form is far from being unique, we may often replace the

translation by a di↵erent one.

. . .
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Strategy of the analytic proof.
1 Theorem is local (on a correct compactification).

2 Suppose 9F (x , y ,w), monic polynomial in w , s.t. F (x , y , f (x)) = 0,

and s.t. the discriminant �F (x , y) times the last coe�cient is regular

in y . Then the proof follows from a version of Jung’s strategy of

resolution of singularities.

3 The general case can by reduced to the above one by the local

flattening theorem of Hironaka.
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Theorem (Local flattening theorem in real analytic settings)

Let � : X ! W be a morphism of real analytic spaces, with W reduced.
Fix p 2 W and a compact L ⇢ �

�1
(p).

Then there is a covering family �↵ : U↵ ! U of a neighborhood U of p,
where �↵ are compositions of local blowings-up with nonsingular analytic
centers, such that

the stricts transforms �↵ : X↵ ! U↵ of (complexifications of) � by
(complexifications of) �↵ are flat at every point of X↵ corresponding to L.

5 / 12

Flat morphism weak algebraic hroiality
Ic Mat equidimensional fibers

Example bbc.gl Zai c cgi s.t.ee 1 0 We
can43X f D o

d l IT
see Cl 1 1 a



Blow up the ideal F ai ie

o I Eh f T is locallyprincipal
rim in local coordinates I X 0 I

DC rats g ai lot IIIaYa y
exceptional Qiof

ejtOelicrssov.Localblowiugs

upe0aEIo.a.it Et

t.to



Motivation of Lion & Rolin

1 Elimination of quantifiers: Projection of a subanalytic set is

subanalytic.

2 Preparation Theorem for logarithmic-analytic functions and for

logarithmic-exponential functions, that imply, in particular, the

elimination of quantifiers in these classes.

(proven before by Model Theory by van den Dries, MacIntire and

Marker)

3 Preparation Theorem for x�-functions that implies the elimination of

quantifiers for this class.

(proven before by Model Theory by Miller)
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Motivation of Lion & Rolin

Elimination of quantifiers: Projection of a subanalytic set is

subanalytic.
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Proof of Lion & Rolin

Follows the approach of Denef & van den Dries.

1 Blowings- up are replaced by the D-operator: D(x , y) = x/y .

2 Flattening is replaced by Finiteness Lemma.
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Preparation Theorem for functions definable in a
polynomially bounded o-minimal structures

Theorem (van den Dries, Speissegger)

Let S be a polynomially bounded o-minimal structure and let f (x , y) be
an S-definable function.
Then there is a definable cellular decomposition C of Rn+1, compatible
with a cellular decomposition of Rn, such that on each cell of C

f (x , y) = A(x) |y � ✓(x)|⌫ unit(x , y),

where A(x) and ✓(x) are definable, ⌫ 2 ⇤, and |u(x , y)� 1| < 1
2 .

Proof by Model Theory.

(Proof of Addendum on the unit by Nguyen & Valette is a fairly

elementary, though not entirely trivial, application of the above theorem.)
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Are the proofs constructive ?

1 Lion & Rolin’s proof is constructive.

2 Model Theory proof is not.

3 Analytic proof a priori not, but it is.
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Hironaka's proof of local flattening theorem
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