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Geometric motivation. Metric properties of singular spaces.

Given a singular (e.g. subanalytic) X ⇢ Rn or f : Rn ! R.

Can we study metric properties of X or f by means of the resolution of
singularities?

Di�culty: A blowing-up destroys the distance and during the resolution
process it is di�cult to keep track of it.
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Theorem

Let P 2 C[Z ]. Then

|P 0(z)| dist (z ,V (P))  C |P(z)|.

Question. Does it still hold for

complex polynomials of many variables

real polynomials or real analytic functions

subanalytic functions

functions definable in o-minimal structures

with parameters, etc. ?
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Theorem (Theorem A)

Let f : Rn ! R be a function definable in a polynomially bounded
o-minimal structure. Then there is a constant C and a definable X ⇢ Rn,
dimX  n � 1, such that f is C 1 on Rn \ X and for all x 2 Rn \ X

k grad f (x)k dist (x ,X )  C |f (x)|.

Theorem (Theorem B)

Let f (x , y) : Rn+1 ! R be a function definable in a polynomially bounded
o-minimal structure. Then there is a constant C and a definable
X ⇢ Rn+1, dimX  n, such that f is C 1 on Rn+1 \ X and for all
(x , y) 2 Rn+1 \ X

|f 0y (x , y)| dist y ((x , y),X )  C |f (x , y)|.
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Rectilinearization of subanalytic functions.

Theorem
Let f : U ⇢ Rn ! R be a continuous subanalytic function. Then there is a
covering family �↵ : U↵ ! U, where �↵ are compositions of local
blowings-up with nonsingular analytic centers and local substitutions of
powers

 (x1, . . . , xn) = (±x r11 , . . . ,±x rnn ),

such that each f � �↵ is a normal crossing.
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Keeping track of one fixed variable.
Suppose now that f (x , y) satisfies an equation

F (x , y , f (x , y)) = 0,

polynomial with respect to the last variable, and let D(x , y) be the
discriminant of F times the last coe�cient.

1 Using additional blowings-up in x we may assume D is regular in y
and then, by Weierstrass Preparation Theorem, that it is a monic
polynomial in y (times a function of x).

2 Then rectilinearize the discriminant of D times the last coe�cient.
Substitute the powers. We get (in new x variables)

D(x , y) = A(x)
Y

i

(y � ✓i (x))

3 D(x , y) is not yet normal crossings but a purely combinatorial
resolution algorithm makes it normal crossings.
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Coordinates on this ”blow-up” space

The local coordinates on the blow up space are of the form

functions of x ,

functions of x times a power of one of y � ✓i (x).
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Preparation Theorem for subanalytic functions

Theorem

Let f (x , y) be a global subanalytic function on Rn+1 3 (x1, . . . , xn, y).
Then f is reducible.

A function is reducible if it is piecewise of the form

f (x , y) = A(x) |y � ✓(x)|⌫ unit(x , y).

Comments:

No preliminary change of variables is required.

⌫ 2 Q but negative exponents ⌫ may appear and cannot be avoided.
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Precise definition of a reducible function.

A function f (x , y) is reducible if there is a subanalytic cellular
decomposition C of Rn+1, compatible with a cellular decomposition of Rn,
such that on each cell of C

f (x , y) = A(x) |y1|⌫ U(x , y),

where y1 = y � ✓(x), A(x) and ✓(x) are subanalytic, ⌫ 2 Q, and U(x , y) is
a reduced unit, i.e. , that is

U(x , y) = V ( (x , y)),

with

 (x , y) = (�1(x), . . . ,�s(x), a(x)|y1|1/p, b(x)/|y1|1/p).

V is non-vanishing and real analytic on a neighbourhood of the closure of
the image of  , that is bounded.
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Preparation Theorem =) Theorem B.

Theorem (Theorem B)

For a function f (x , y) definable in a polynomially bounded o-minimal
structure 9C and 9X , dimX  n, such that

|f 0y (x , y)| dist y ((x , y),X )  C |f (x , y)|.
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Preparation Theorem for functions definable in a
polynomially bounded o-minimal structures

Theorem (van den Dries, Speissegger)

Let S be a polynomially bounded o-minimal structure and let f (x , y) be
an S-definable function.
Then there is a definable cellular decomposition C of Rn+1, compatible
with a cellular decomposition of Rn, such that on each cell of C

f (x , y) = A(x) |y � ✓(x)|⌫ unit(x , y),

where A(x) and ✓(x) are definable, ⌫ 2 ⇤, and |u(x , y)� 1| < 1
2 .
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Addendum by Nguyen and Valette

Theorem

A function f (x , y) definable in a polynomially bounded o-minimal
structure S is S-reducible.

that is it is piecewise of the form

f (x , y) = A(x) |y1|⌫ U(x , y),

where y1 = y � ✓(x), with a reduced unit, i.e. , that is

U(x , y) = V ( (x , y)),

with  (x , y) = (�1(x), . . . ,�s(x), b1(x)|y1|1/p1 , . . . , bk(x)/|y1|1/pk ).

The map V is non-vanishing and C 2 with bounded derivative on a
neighbourhood of the closure of the image of  , that is bounded.

14 / 16

2016



Theorem (Theorem C)

For a function f (x , y) definable in a polynomially bounded o-minimal
structure 9C and a definable stratification of Rn+1 such that 8 Lipschitz
vector fields v on Rn+1 with Lipschitz constant L and tangent to strata

|@f
@v

(x , y)|  CL|f (x , y)|.
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