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Introduction.
Our main result.

Definitions.
Overview.

The setting of our work.

We consider:
a system of two ODEs:

(SF )

{
y1
′ = f1(x , y1, y2)

y2
′ = f2(x , y1, y2)

where F = (f1, f2) : Ω→ R2 is C1 on some open
Ω ⊂ R+ × R2 with (0,0,0) ∈ Ω;

two distinct C1-maps γ = (γ1, γ2) : (0,a)→ R2 and
δ = (δ1, δ2) : (0,a)→ R2 that are solutions
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Introduction.
Our main result.

Definitions.
Overview.

The setting of our work.

Corresponds after possible reparameterization by x if dx(ξ) > 0
to the case of:

a vector field
ξ : U → T0R3

of class C1 in a neighborhood U of 0 ∈ R3;

two distinct trajectories Γ and ∆ (i.e. images Γ = c((0,a))
and ∆ = d((0,a)) of integral curves c : (0,a)→ R3 and
d : (0,a)→ R3)
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Introduction.
Our main result.

Definitions.
Overview.

The setting of our work.

(SF )

{
y1
′ = f1(x , y1, y2)

y2
′ = f2(x , y1, y2)

We consider F = (f1, f2) : Ω→ R2 definable in a polynomially
bounded o-minimal structure R expanding R .
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Overview.

The setting of our work.

o-minimal structure: definable subsets of R are finite union
of intervals→ see O. Le Gal’s course;

definable function: it’s graph is definable in R
 germs of 1-var definable function = Hardy field of R

polynomially bounded: any 1-var definable function is
ultimately bounded by a power of x ;
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Introduction.
Our main result.

Definitions.
Overview.

The setting of our work.

o-minimal structure: definable subsets of R are finite union
of intervals→ see O. Le Gal’s course;

definable function: it’s graph is definable in R
 germs of 1-var definable function = Hardy field of R

polynomially bounded: any 1-var definable function is
ultimately bounded by a power of x ;

expanding R: the real constant functions are definable.
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Our main result.

Definitions.
Overview.

Context and motivation.

General problem.
Describe the local dynamics of a vector field at a singular point.

 study the behavior of a trajectory

↙ ↘
oscillating vs non-oscillating
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Definitions.
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Context and motivation.

General problem.
Describe the local dynamics of a vector field at a singular point.

↘
non-oscillating
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Introduction.
Our main result.

Definitions.
Overview.

Context and motivation.

General problem.
Describe the local dynamics of a vector field at a singular point.

non-oscillating case study the relative behavior of pairs of
trajectories

↙ ↘
interlacement vs separation

M. Matusinski Non oscillating trajectories in dim 3.



Introduction.
Our main result.

Definitions.
Overview.

Context and motivation.

General problem.
Describe the local dynamics of a vector field at a singular point.

non-oscillating case relative behavior of pencils of
trajectories
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non-oscillating = has a tangent,
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Introduction.
Our main result.

Definitions.
Overview.

Known results.

Dimension 2.

oscillating = spiraling

vs

non-oscillating = has a tangent,
in fact o-minimal (Lion-Rolin 1998, Speissegger 1999)
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Introduction.
Our main result.

Definitions.
Overview.

Known results.

Dimension 3, real analytic case.
For 1 trajectory having iterated tangents:

oscillating = twisting around an analytic axis Γ0

vs

non-oscillating = has a tangent,
in fact generates a Hardy field

H := {h(t) := (f/g) ◦ Γ(t) : (f/g) ∈ Fr(R{x , y , z})}.
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Introduction.
Our main result.

Definitions.
Overview.

Known results.

In the oscillating case, Γ ( Sing(ξ) is a twisting axis.
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Introduction.
Our main result.

Definitions.
Overview.

Known results.

Dimension 3, real analytic case.
For a pair of non-oscillating trajectories
(Cano-Moussu-Sanz 2004):

interlaced = twisting around each other with formal axis Γ̂

vs

non-interlaced = separated by a sub-analytic projection
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Introduction.
Our main result.

Definitions.
Overview.

Known results.

Dimension 3, real analytic case.
For a pair of non-oscillating trajectories
(Cano-Moussu-Sanz 2004):

interlaced = twisting around each other with formal axis Γ̂
in fact each is o-minimal (Le Gal-Sanz-Speissegger 2017)

vs

non-interlaced = separated by a sub-analytic projection
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Introduction.
Our main result.

Definitions.
Overview.

Known results.

O-minimal case for a linear system of two
ODEs.
(Le Gal-Sanz-Speissegger 2012)

Pair of solutions :

interlaced

vs

non-interlaced = belong to an o-minimal expansion ofR
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Introduction.
Our main result.

Definitions.
Overview.

Known results.

O-minimal case for a linear system of two
ODEs.
(Le Gal-Sanz-Speissegger 2012)

Pair of solutions :

interlaced

vs

non-interlaced = belong to an o-minimal expansion ofR
In fact, true for all the solutions together;
O-minimality⇒ they all generate a Hardy field over
the Hardy field of R = Hardy-compatible.

H := {h(x) := f ◦ (x , γ(x)) : f dfble inR, γ solution}.
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Introduction.
Our main result.

Definitions.
Overview.

Open problems

Real analytic vector field with a pair of non-oscillating separated
trajectories.

Is there a common Hardy field for both trajectories?
Is there an o-minimal structure in which one or possibly
both are definable?
Same questions for all the trajectories of the integral pencil.

O-minimal polynomially bounded vector field with a pair of
non-oscillating trajectories.

What kind of dichotomy?
Same questions as above.
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Introduction.
Our main result.

Statement.
Sketch of proof.

Our main result.

We consider a system of ODEs:

(SF )

{
y1
′ = f1(x , y1, y2)

y2
′ = f2(x , y1, y2)

with F = (f1, f2) : Ω→ R2 is C1 and definable in R polynomially
bounded o-minimal expansion of R
and two distinct solutions γ, δ : (0,a)→ R2 such that: .

γ, δ have flat contact: ‖γ(x)− δ(x)‖ < xn for some n
ultimately;
γ has the regular separation property: ∀f : R3 → R
definable, f (x , γ(x)) ≡ 0 or |f (x , γ(x))| > xn for some n
ultimately.
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Introduction.
Our main result.

Statement.
Sketch of proof.

Regular separation property.

Regular separation property = Łojasiewicz inequality:

∀f : R3 → R definable, either f (x , γ(x)) ≡ 0 or |f (x , γ(x))| > xn

for some n ultimately.

 Holds in poly. bdd. o-minimal structures (see Ta Lê Loi 1995,
van den Dries-Miller 1996).

 Implies non-oscillation wrt R.
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Introduction.
Our main result.

Statement.
Sketch of proof.

Our main result.

Theorem (Le Gal-M.-Sanz, Arxiv 2020).

We consider a system of ODEs C1 and definable in R:

(SF )

{
y1
′ = f1(x , y1, y2)

y2
′ = f2(x , y1, y2)

and two distinct solutions γ, δ : (0,a)→ R2 such that: .

γ, δ have flat contact;
γ has the regular separation property.

Then γ and δ are either interlaced,
or Hardy-compatible.
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Introduction.
Our main result.

Statement.
Sketch of proof.

Idea of proof.

Consider:
ε := γ − δ;

Ψ := graph(γ, ε) = {(x , γ(x), ε(x)), x ∈ (0,a)} ⊂ R5,

trajectory of a definable vector field in R5:

ξ =
∂

∂x
+ F (x , y)

∂

∂y
+ (F (x , y)− F (x , y − z))

∂

∂z
.
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Introduction.
Our main result.

Statement.
Sketch of proof.

Idea of proof.

It suffices to prove that:

either ε(x) indefinitely rotates;

or, for any definable f (x , y , z), x 7→ f (x , γ(x), ε(x))
ultimately has a constant sign.
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Introduction.
Our main result.

Statement.
Sketch of proof.

Idea of proof.

Let f : R5 → R be definable.

Key tool: definable cell decomposition of (the corresponding
nbhd of 0 in) R5 adapted :

to z1, z2 and f ;
to the vector field ξ: for any cell, either ξ is tangent to it,
or it is transverse to it.

Observations:
- by regular separation, ∃! (induced) cell C ⊆ R3 s.t.

graph(γ) ⊆ C;

- C × {(0,0)} is a cell and γ, δ are distinct⇒

Ψ ∩ C × {(0,0)} = ∅.
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Introduction.
Our main result.

Statement.
Sketch of proof.

Idea of proof.

Consider the (induced) cells over C in R4:
Σ+ and Σ− in z2 = 0;
(e.g. Σ+ = {(x , y , z1,0) : (x , y) ∈ C, 0 < z1 < ϕ+(x , y)})
∆+ and ∆− in z1 = 0.
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Introduction.
Our main result.

Statement.
Sketch of proof.

Idea of proof.

Lemma: Ψ ⊆ (Σ+ ∪ (C × {0}) ∪ Σ−)× R
and

Ψ ∩ ((C × {0})× R) ⊆ ∆+ ∪∆−.

(Indeed, by regular sep + flatness: ϕ+(x , γ(x)) > xN > ε1(x)...)
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Introduction.
Our main result.

Statement.
Sketch of proof.

Idea of proof.

Claim 1. If ε1(x) has ultimately a constant sign, then so does
f (x , γ, ε).

Proof.
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Introduction.
Our main result.

Statement.
Sketch of proof.

Idea of proof.

Claim 1. If ε1(x) has ultimately a constant sign, then so does
f (x , γ, ε).

Proof. If ε1(x) ≡ 0, then Ψ ⊆ ∆+ × 0 or Ψ ⊆ ∆− × 0.
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Introduction.
Our main result.

Statement.
Sketch of proof.

Idea of proof.

Claim 1. If ε1(x) has ultimately a constant sign, then so does
f (x , γ, ε).

Proof. If e.g. ε1(x) > 0, then Ψ cannot cross twice any cell of
type "graph over Σ+.
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Our main result.

Statement.
Sketch of proof.

Idea of proof.

Proof of the theorem.
Suppose that ε1(x) has not ultimately a constant sign.

M. Matusinski Non oscillating trajectories in dim 3.



Introduction.
Our main result.

Statement.
Sketch of proof.

Idea of proof.

Proof of the theorem.
Suppose that ε1(x) has not ultimately a constant sign.
⇒ Ψ intersects ∆+ ∪∆− infinitely many times and
transversely.
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Introduction.
Our main result.

Statement.
Sketch of proof.

Idea of proof.

Proof of the theorem.
Suppose that ε1(x) has not ultimately a constant sign.
⇒ Ψ intersects ∆+ ∪∆− infinitely many times and
transversely.
⇒ the vector field ξ has opposite orientation in ∆+ and in ∆−.
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Introduction.
Our main result.

Statement.
Sketch of proof.

Idea of proof.

Proof of the theorem.
Suppose that ε1(x) has not ultimately a constant sign.
⇒ Ψ intersects ∆+ ∪∆− infinitely many times and
transversely.
⇒ the vector field ξ has opposite orientation in ∆+ and in ∆−.
⇒ ε(x) rotates around 0, qed.
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Statement.
Sketch of proof.

Applications.

Vector fields in R3 definable over R.

Analytic vector fields in R3: separated pencils of with
formal non-degenerate axis.

→ Existence of trajectories with regular separation;

→ Case of a subanalytically transcendental formal axis.

→ Several examples.
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Statement.
Sketch of proof.

An example.

ξ = 2x2 ∂

∂x
+ 2(y − x)

∂

∂y
+ (z − 2x)

∂

∂z
has a formal curve subanalytically transcendental:

Γ̂ = {(x ,E(x),E(2x))} where E(x) :=
∑

n

n!xn+1.
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Thank you for your attention!

...and hoping to see you at the Fields in Toronto!

Thematic Program on
Tame Geometry, Transseries and

Applications to Analysis and Geometry
(Fields Inst., January–June, 2022)
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