Murmurations of Arithmetic *L*-functions

Andrew V. Sutherland

Massachusetts Institute of Technology

May 17, 2023

Simons Collaboration in Arithmetic Geometry, Number Theory, and Computation

Arithmetic statistics of Frobenius traces of elliptic curves over $\mathbb Q$

Three conjectures from the 1960s and 1970s (the first is now a theorem):

- 1. **Sato–Tate**: The sequence $x_p := a_p(E)/\sqrt{p}$ is equidistributed with respect to the pushforward of the Haar measure of the Sato-Tate group of E (typically SU(2)).
- 2. Birch and Swinnerton-Dyer:

$$\lim_{x\to\infty}\frac{\log x}{2\sqrt{x}}\sum_{p< x}\frac{a_p(E)}{\sqrt{p}}=\frac{1}{2}-r_{\rm an}(E).$$

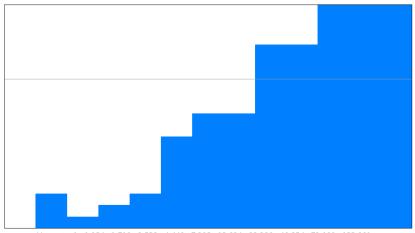
3. **Lang-Trotter**: For every nonzero $t \in \mathbb{Z}$ there is a real number $C_{E,t}$ for which

$$\#\{p \leq x : a_p(E) = t\} \sim C_{E,t} \frac{\sqrt{x}}{\log x}.$$

These depend only on $L_E(s) = \sum a_n n^{-s}$ and generalize to other *L*-functions.

Example: Elkies' curve of rank \geq 28 (= 28 under GRH).

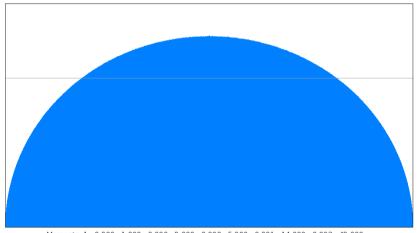
a1 histogram of y ^2 + xy + y = x ^3 - x ^2 - 20667762415575526585033208209338542750930230312178956502x + 34481611795030556467032985690390720374855944359319180361266008296291939448732243429 for p <= 2 ^10 172 data points in 13 buckets, z 1 = 0.023, out of range data has area 0.250



Moments: 1 1.034 1.716 2.532 4.446 7.203 13.024 22.220 40.854 72.100 133.961

Example: Elkies' curve of rank \geq 28 (= 28 under GRH).

a1 histogram of $y^2 + xy + y = x^3 - x^2 - 2067762415575526585033208209338542750930230312178956502x + 34481611795030556467032985690390720374855944359319180361266008296291939448732243429 for <math>p <= 2^40$ 41203088796 data points in 202985 buckets



Moments: 1 0.000 1.000 0.000 2.000 0.000 5.000 0.001 14.000 0.003 42.000

How rank effects trace distributions

One formulation of the BSD conjecture implies that

$$\lim_{x \to \infty} \frac{1}{\log x} \sum_{p \le x} \frac{a_p(E) \log p}{p} = -r + \frac{1}{2},\tag{1}$$

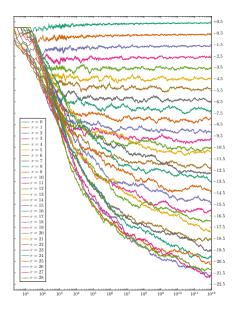
and sums of this form (Mestre-Nagao sums) are often used as a tool when searching for elliptic curves of large rank (which necessarily have large conductor N).¹

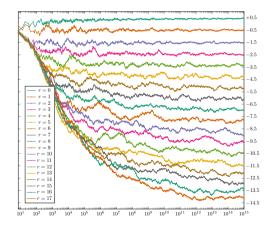
Theorem (Kim-Murty 2023)

If the limit on the LHS of (1) exists then it equals the RHS with r the analytic rank, and the L-function of E satisfies the Riemann hypothesis.

¹See Sarnak's 2007 letter to Mazur.

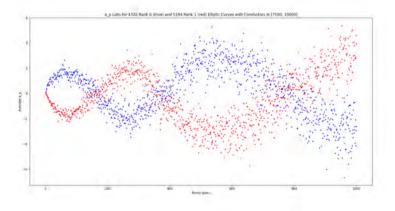
²See the preprint of Kazalicki-Vlah for some recent machine-learning work on this topic.





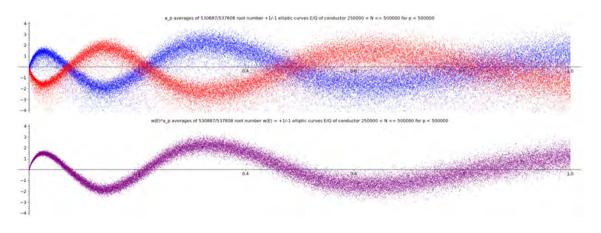
Murmurations of elliptic curves

In their 2022 preprint *Murmurations of elliptic curves*, Yang-Hui He, Kyu-Hwan Lee, Thomas Oliver, and Alexey Pozdnyakov observed a curious fluctuation in average Frobenius traces of elliptic curves in a given conductor interval depending on the rank.



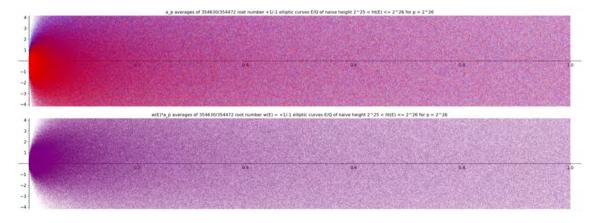
Murmurations of elliptic curves

Elliptic curve *L*-functions of conductor $N \in (M, 2M]$ for $M = 2^{12}, 2^{13}, \dots, 2^{17}, 250000$. The *x*-axis range is [0, 2M]. A blue/red (or purple) dot at (p, \bar{a}_p) shows the average \bar{a}_p of $a_p(E)$ (or $w_p(E)a_p(E)$) over even/odd rank (or all) E/\mathbb{Q} with $N_E \in (M, 2M]$.



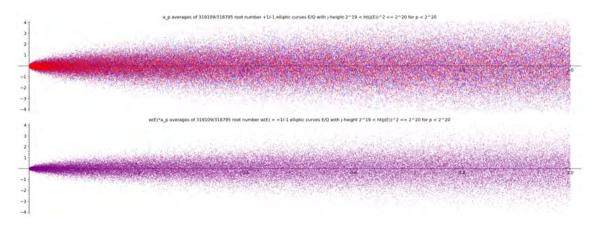
Ordering by naive height

Elliptic curves with $ht(E) := \max(4|A|^3, 27|B|^2)$ in (M, 2M] for $M = 2^{16}, \dots, 2^{25}$. The x-axis range is [0, 2M]. A blue/red (or purple) dot at (p, \bar{a}_p) shows the average \bar{a}_p of $a_p(E)$ (or $w_p(E)a_p(E)$) over even/odd rank (or all) E/\mathbb{Q} with $ht(E) \in (M, 2M]$.



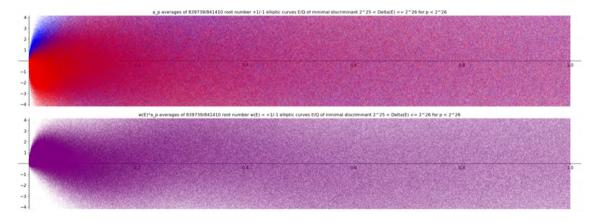
Ordering by *j*-invariant

Elliptic curves with $\operatorname{ht}(j(E))^2$ in (M, 2M] for $M = 2^{10}, \dots, 2^{19}$. The x-axis range is [0, 2M]. A blue/red (or purple) dot at (p, \bar{a}_p) shows the average \bar{a}_p of $a_p(E)$ (or $w_p(E)a_p(E)$) over even/odd rank (or all) E/\mathbb{Q} with $\operatorname{ht}(j(E)) \in (M, 2M]$.



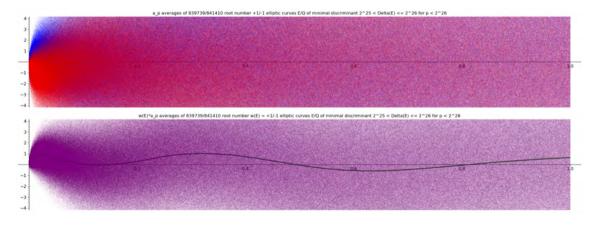
Ordering by minimal discriminant

Elliptic curves with minimal discriminant $\Delta(E)$ in (M,2M] for $M=2^{16},\ldots,2^{25}$. The x-axis range is [0,2M]. A blue/red (or purple) dot at (p,\bar{a}_p) shows the average \bar{a}_p of $a_p(E)$ (or $w_p(E)a_p(E)$) over even/odd rank (or all) E/\mathbb{Q} with $\Delta((E)) \in (M,2M]$.



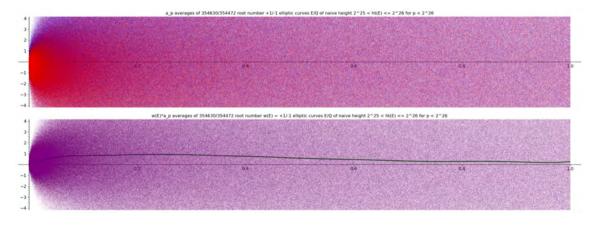
Ordering by minimal discriminant

Elliptic curves with minimal discriminant $\Delta(E)$ in (M, 2M] for $M = 2^{16}, \ldots, 2^{25}$. The x-axis range is [0, 2M]. A blue/red (or purple) dot at (p, \bar{a}_p) shows the average \bar{a}_p of $a_p(E)$ (or $w_p(E)a_p(E)$) over even/odd rank (or all) E/\mathbb{Q} with $\Delta((E)) \in (M, 2M]$.



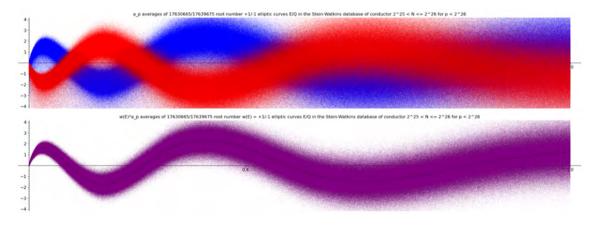
Ordering by naive height (redux)

Elliptic curves with $\operatorname{ht}(E) := \max(4|A|^3, 27|B|^2)$ in (M, 2M] for $M = 2^{16}, \ldots, 2^{25}$. The x-axis range is [0, 2M]. A blue/red (or purple) dot at (p, \bar{a}_p) shows the average \bar{a}_p of $a_p(E)$ (or $w_p(E)a_p(E)$) over even/odd rank (or all) E/\mathbb{Q} with $\operatorname{ht}(E) \in (M, 2M]$.



Ordering by conductor in the Stein-Watkins database (SWDB)

Elliptic curves in the SWDB of conductor $N \in (M, 2M]$ for $M = 2^{12}, \ldots, 2^{25}$. The x-axis range is [0, 2M]. A blue/red (or purple) dot at (p, \bar{a}_p) shows the average \bar{a}_p of $a_p(E)$ (or $w_p(E)a_p(E)$) over even/odd rank (or all) E/\mathbb{Q} with $N_E \in (M, 2M]$.



Arithmetic *L*-functions

An *L*-function is said to be analytic if it satisfies the properties that every good *L*-function should (analytic continuation, functional equation, Euler product, temperedness, central character); see Farmer–Pitale–Ryan–Schmidt 2018 for details.

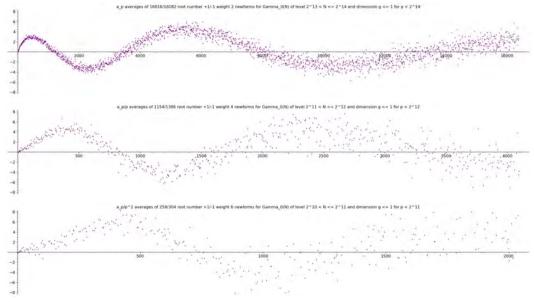
We that an analytic *L*-function $L(s) = \sum a_n n^{-s}$ is arithmetic if there is an integer w for which $a_n n^{w/2} \in \mathcal{O}_K$ for some number field K. The least such w is the motivic weight.

L-functions of abelian varieties have motivic weight w=1. *L*-functions of weight-k modular forms have motivic weight w=k-1.

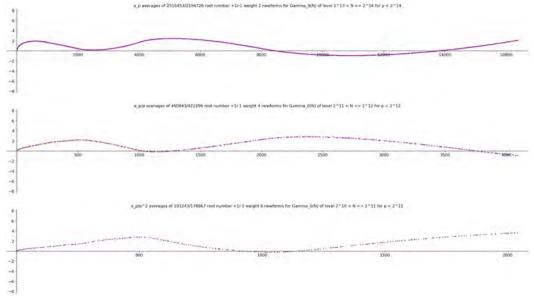
In what follows we consider families of arithmetic L-functions that are Galois closed, meaning that if we average Dirichlet coefficients a_p over L-functions of a given conductor we get integers. We also assume that analytic rank is Galois-invariant.

When averaging a_p 's in motivic weight w > 1 we normalize via: $a_p \mapsto a_p/p^{(w-1)/2}$.

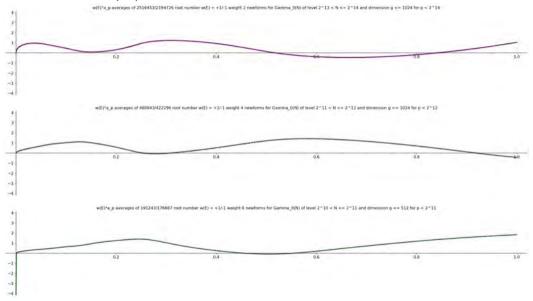
Newforms for $\Gamma_0(N)$ of weight k=2,4,6 with rational coefficients.



Newforms for $\Gamma_0(N)$ of weight k = 2, 4, 6.

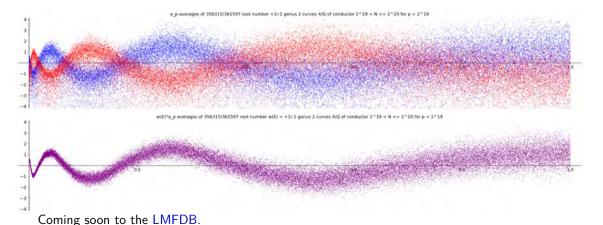


Newforms for $\Gamma_0(N)$ of weight k=2,4,6 and varying dimension.



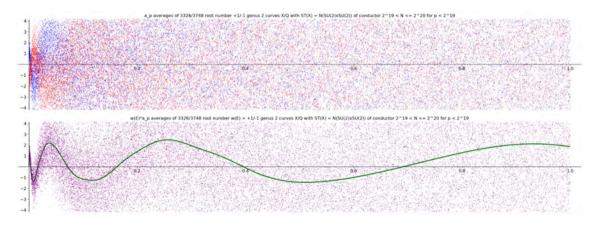
L-functions of genus 2 curves over \mathbb{Q} with Sato-Tate group USp(4).

Recently constructed database of more than 5 million genus 2 curves X/\mathbb{Q} of conductor at most 2^{20} includes 1,440,894 isogeny classes with ST group USp(4). Conductor in (M,2M] for $M=2^{12},\ldots,2^{19}$ with x-axis range [0,M].



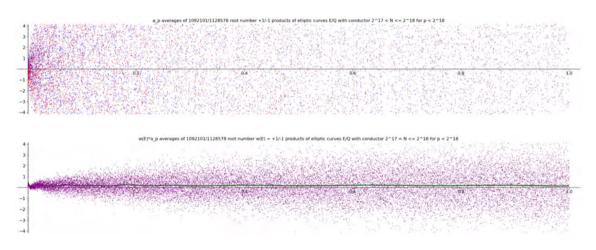
L-functions of genus 2 curves over \mathbb{Q} , Sato-Tate group $N(SU(2) \times SU(2))$.

These are primitive *L*-functions arising from Hilbert or Bianchi modular forms. Conductor in (M, 2M] for $M = 2^{12}, \dots, 2^{19}$ with *x*-axis range [0, M].



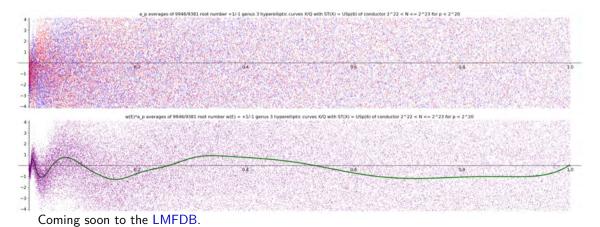
L-functions of products of E/\mathbb{Q} , Sato-Tate group $SU(2) \times SU(2)$.

Conductor in (M, 2M] for $M = 2^{12}, \dots, 2^{17}$ with x-axis range [0, M].

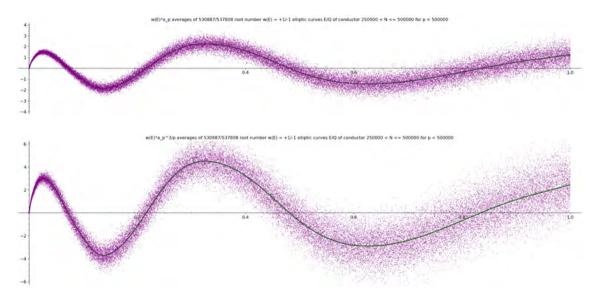


L-functions of genus 3 curves over \mathbb{Q} with Sato-Tate group USp(3).

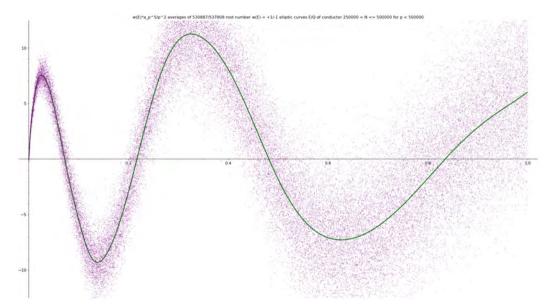
Recently constructed database of genus 3 curves X/\mathbb{Q} of conductor at most 2^{20} includes 59,214 isogeny classes of hyperelliptic curves with ST group USp(6). Conductor in (M,2M] for $M=2^{12},\ldots,2^{19}$ with x-axis range [0,M].



Higher moments $(w_p(E)a_p(E))$ and $w_p(E)a_p(E)^3/p$



Higher moments $(w_p(E)a_p(E)^5/p^2)$



Local averaging

Rather than averaging a_p 's for L-functions with conductor in an interval, we may instead compute local averages of a_p for each L-function in our family with p/N varying over some interval, and then average these local averages.

For example, we may divide the interval [0,1] into n intervals $(x,x+\frac{1}{n}]$, with $x=0,\frac{1}{n},\frac{2}{n},\ldots,\frac{n-1}{n}$. For each L-function in our family we compute a_p for all primes $p\leq N$, and then for $x=0,\frac{1}{n},\ldots,\frac{n-1}{n}$ we compute the average $\alpha_x(E)$ of $a_p(E)$ for

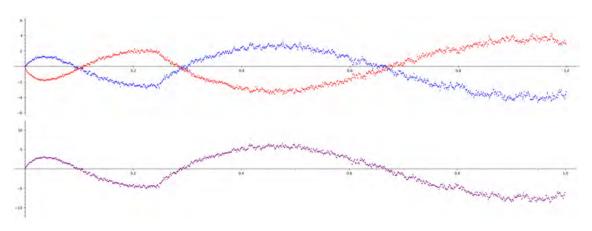
$$\frac{p}{N} \in \left(x, x + \frac{1}{n}\right],$$

yielding a vector of n real numbers. We then average these vectors over all L-functions in our family of a given root number or rank, up to an increasing bound $X \to \infty$.

With this setup, we do not need to order by conductor, but the order matters.

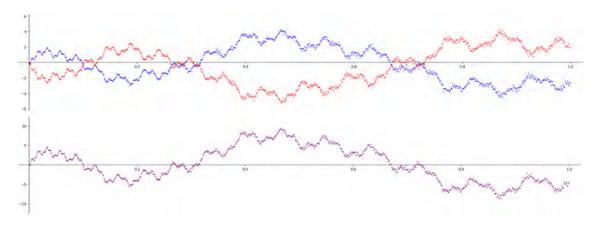
Local averaging: elliptic curves ordered by conductor

Elliptic curve *L*-functions of conductor $N \leq M$ for $M = 2^{12}, 2^{13}, \ldots, 2^{17}, 2^{18}$. The *x*-axis range is [0,1]. A blue/red (or purple) dot at $(x,\bar{\alpha}_x)$ shows the average $\bar{\alpha}_x$ of $\alpha_x(E)$ (or $w_p(E)\alpha_x(E)$) over even/odd rank (or all) E/\mathbb{Q} with $N_E \leq M$.

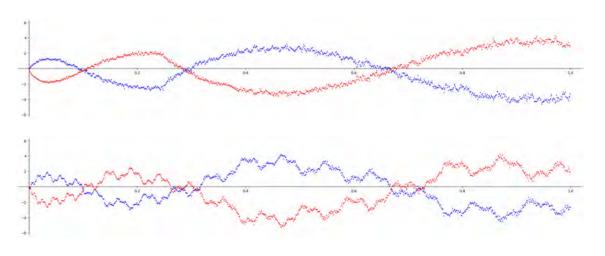


Local averaging: elliptic curves ordered by naive height

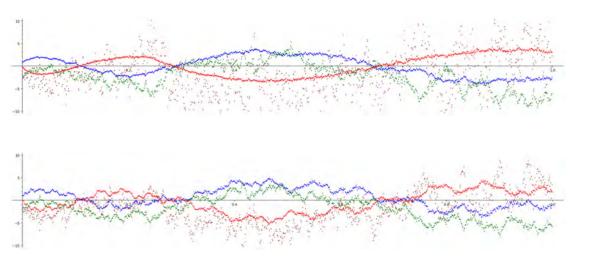
Elliptic curves with $\operatorname{ht}(E) := \max(4|A|^3, 27|B|^2) \leq M$ for $M = 2^{18}, \dots, 2^{27}$. The x-axis range is [0,1]. A blue/red (or purple) dot at $(x,\bar{\alpha}_x)$ shows the average $\bar{\alpha}_x$ of $\alpha_x(E)$ (or $w_p(E)\alpha_x(E)$) over even/odd rank (or all) E/\mathbb{Q} with $\operatorname{ht}(E) \leq M$.



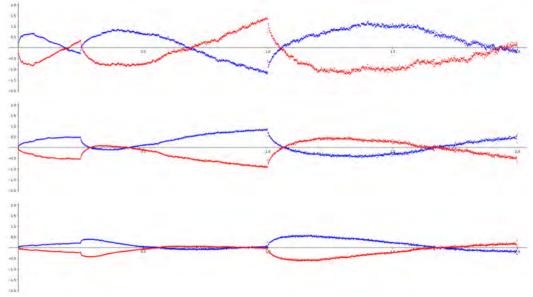
Local averaging: elliptic curves ordered by conductor vs height



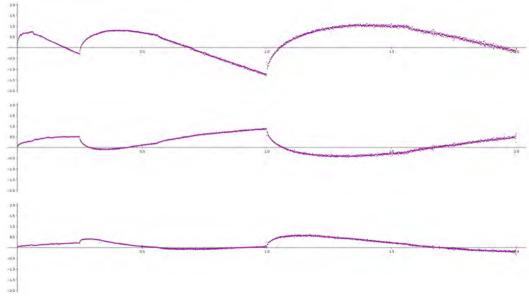
Local averaging: elliptic curves ordered by conductor vs height (rank)



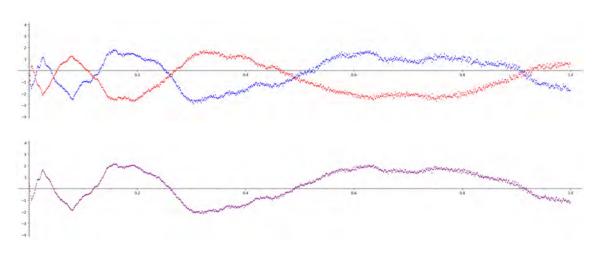
Local averaging: newforms for $\Gamma_0(N)$ of weight k=2,4,6



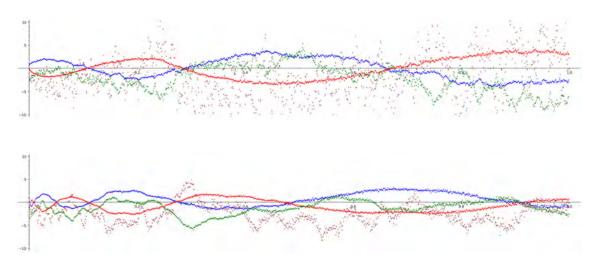
Local averaging: newforms for $\Gamma_0(N)$ of weight k=2,4,6



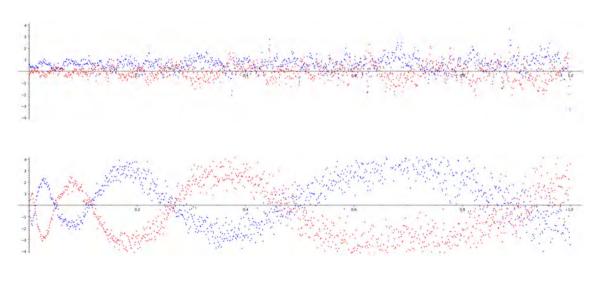
Local averaging: genus 2 USp(4) *L*-functions



Local averaging: SU(2) and USp(4) L-functions (rank)

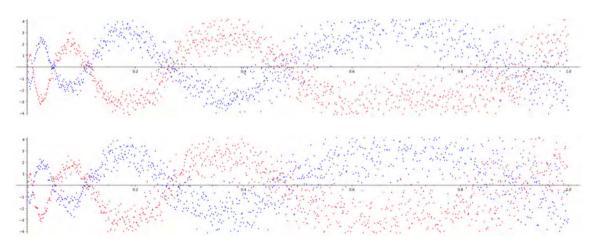


Local averaging genus 2 SU(2) \times SU(2) and N(SU(2) \times SU(2)) L-functions



Local averaging: genus 2 $N(SU(2) \times SU(2))$ *L*-functions

Abelian surfaces with Sato-Tate group $N(SU(2) \times SU(2))$ have L-functions that correspond to a Hilbert or Bianchi modular form.



Local averaging: twists of 11a1

Local averaging also allows us to consider thinner families of L-functions.

For example, consider the *L*-functions of quadratic twists of a fixed elliptic curve E/\mathbb{Q} . The conductor grows like X^2 and the naive height grows like X^6 .

