

Dark Energy Phenomenology with Euclid (and Planck)

> Martin Kunz University of Geneva

Dark Energy

Physics Nobel prize 2011: "for the discovery of the accelerating expansion of the Universe through observations of distant supernovae"

accelerating expansion: w < -1/3

- we know that for Λ : w = -1
- data is consistent with Λ
- Λ is unique natural extension (Lovelock) – should be there

why look elsewhere?

Possible explanations

- It is a cosmological constant, and there is no problem ('anthropic principle', 'string landscape')
- 2. The (supernova) data is wrong
- 3. We are making a mistake with GR (aka 'backreaction') or the Copernican principle is violated ('LTB')
- It is something evolving, e.g. a scalar field ('dark energy')
- GR is wrong and needs to be modified ('modified gravity')

LTB and Backreaction

Two large classes of models:

- Inhomogeneous cosmology: Copernican Principle is wrong, Universe is not homogeneous (and we live in a special place).
- Backreaction: GR is a nonlinear theory, so averaging is non-trivial. The evolution of the 'averaged' FLRW case may not be the same as the average of the true Universe.

average and evolution

the average of the evolved universe is in general not the evolution of the averaged universe!

Buchert equations

- Einstein eqs, irrotational dust, 3+1 split (as defined by freely-falling observers)
- averaging over spatial domain D
- $a_D \sim V_D^{1/3}$ [<-> enforce isotropic & homogen. coord. sys.]
- set of effective, averaged, local eqs.:

$$\frac{\dot{a}_D}{a_D} = \frac{8\pi G}{3} \langle \rho \rangle_D - \frac{1}{6} \left(\mathscr{Q} + \langle \mathscr{R} \rangle_D \right) \quad 3\frac{\ddot{a}_D}{a_D} = -4\pi G \langle \rho \rangle_D + \mathscr{Q}$$

$$\mathscr{Q} = \frac{2}{3} \left\langle \left(\theta - \langle \theta \rangle_D \right)^2 \right\rangle_D - \langle \sigma_{ij} \sigma^{ij} \rangle_D$$
if this is positive then
it looks like dark energy!

(θ expansion rate, σ shear, from expansion tensor Θ)

- <ρ> ~ a⁻³
- looks like Friedmann eqs., but with extra contribution!

deviation from FLRW background in gevolution

$$ds^{2} = -(1+2\psi)dt^{2} + a^{2}(1-2\phi)dx^{2}$$

arXiv:1408.2741 arXiv:1604.06065 arXiv:1812.04336

- absorb Ψ zero mode into time redefinition
- interpret Φ zero mode as correction to chosen background evolution a(t)
- can check if background evolves differently than in FLRW → not possible in Newtonian simulations!

'geometric' backreaction

Earlier k_{eq} should increase effect (\rightarrow Clarkson & Umeh arXiv:1105.1886)

True at early times, but correction stops increasing when density perturbations go non-linear!

(Perturbation theory diverges there, can't predict what happens)

Is backreaction self-limiting? Can we understand this?

Layzer-Irvine equation & virialization

correction to expansion rate from zero mode:

$${\cal H} o {\cal H} - \Phi_0' = n^\mu_{;\mu}/3$$
 ,

equation for evolution of zero mode:

$$2\Phi_0' + 3\mathcal{H}\Omega_m\Phi_0 = -\mathcal{H}\Omega_mrac{T+U}{M}$$

(In a 'Newtonian interpretation', using $2T = \Sigma m_i v_i^2$ and $2U = \Sigma m_i \psi(x_i)$)

Newtonian gravity:

Layzer-Irvine equation virialization: 2T = -U

 \rightarrow zero mode approaches a constant value

$$T' + U' + \mathcal{H}\left(2T + U\right) = 0$$

$$\Phi_0 \rightarrow -(T+U)/(3M)$$

ightarrow correction to expansion rate $\Delta \mathcal{H} = -\Phi_0'$ goes to zero in the virial limit!

Nice... but is this relevant? In the end, need to consider *observations*!

gevolution light-cone simulations

- relativistic N-body simulation from gevolution
- 4.5×10^{11} 'particles' in volume of (2.4 Gpc/h)³ , 2.6x10⁹ M_o/h per particle
- metric sampled on Cartesian 7680³ grid [resolution 312.5 kpc/h]
- light-cone saved for circular 450 deg² beam to distance 4.5 Gpc/h
- ray-traced with exact GR Sachs equations for scalar sector (and leading order for vector sector, GW neglected)

how important is 'generalized backreaction' for supernovae?

analysing a 'super-supernova' sample with ~500k standard candles assuming standard Gaussian likelihood:

Possible explanations

- It is a cosmological constant, and there is no problem ('anthropic principle', 'string landscape') – unsatisfactory but agrees with data
- 2. The (supernova) data is wrong unlikely [?]
- 3. We are making a mistake with GR (aka 'backreaction') or the Copernican principle is violated ('LTB') – unlikely [?]
- 4. It is something evolving, e.g. a scalar field ('dark energy')
- GR is wrong and needs to be modified ('modified gravity')
- why bother?
- we should test assumptions
- problems of Λ
- we saw a kind of DE before

Euclid science requirements doc

Table 1: Euclid Primary Science Objectives – see RD10 for a full description.

Sector	Euclid Targets
	• Measure the cosmic expansion history to better than 10% for several redshift bins from $z = 0.7$ to $z = 2$.
Dark Energy	• Look for deviations from $w = -1$, indicating a dynamical dark energy.
	 Euclid <i>alone</i> to give FoM_{DE}≥400 (roughly corresponding to 1-sigma errors on w_p, & w_a of 0.02 and 0.1 respectively)
	• Measure the growth index, γ , to a precision better than 0.02
Test of Gravity	• Measure the growth rate to better than 0.05 for several redshift bins between $z = 0.5$ and $z = 2$
	• Separately constrain the two relativistic potentials φ and ψ
	Test the cosmological principle
	• Detect dark matter halos on a mass scale between 10^8 and $>10^{15}$ M _{Sun}
Dark Matter	 Measure the dark matter mass profiles on cluster and galactic scales.
	• Measure the sum of neutrino masses, the number of neutrino species and the neutrino hierarchy
	with an accuracy of a few hundredths of an eV
	• Measure the matter power spectrum on a large range of scales in order to extract values for the
Initial	parameters σ_8 and n_s to 0.01.
Conditions	• For extended models, improve constraints on n_s and α with respect to Planck alone by a factor 2.
	• Measure the non-Gaussianity parameter f_{NL} for local-type models with an error better than ± 2 .

a hierarchy of DE modelling

more general

more physical

phenomenology of the dark side $G_{\mu\nu} = 8\pi G T_{\mu\nu}$ stuff (determined by _____ geometry (what is it?) the metric) your favourite theory distances $d \sim \int_0^\infty \frac{dz}{H(z)}$ $\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3}\rho$ $\dot{\rho} = -3\frac{\dot{a}}{a}(1+w)\rho$ δ

the background case

$$ds^2 = -dt^2 + a(t)^2 dx^2$$
 metric "template"

Einstein eq'n $H^2 = \left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3}\left(\rho_1 + \rho_2 + \ldots + \rho_n\right)$ conservation $\dot{\rho}_i = -3H(\rho_i + \rho_i) = -3H(1 + w_i)\rho_i$ $i = 1, \ldots, n$

- w_i describe the fluids
- normally all but one known
- H|a describe observables (distances, ages, etc)

link w(z) $\leftrightarrow d_L(z)$

flat universe:
$$H^{2} = \frac{8\pi G}{3}\rho \quad \dot{\rho} + 3H(\rho + p) = 0 \qquad p = w\rho$$
$$\int \frac{d\rho}{\rho} = 3\int (1+w)\frac{da}{a}$$
$$H^{2} = H_{0}^{2}\exp\left\{\int_{0}^{z}\frac{3(1+w)}{(1+z')}dz'\right\} \qquad d_{L} = (1+z)\int_{0}^{z}\frac{du}{H(u)}$$

- double integral: strong smoothing
- here for total 'fluid' but can of course include multiple constituents (→ degeneracies)

example: w(a) = $w_0 + w_1 a + w_2 a^2$

how should one parameterize w(a)?

what are w and $\Omega_{\rm m}$?

astro-ph/0702615

- all models have the same expansion history for different Ω_m
- this extends to linear perturbation theory when c_s is unknown

reminder: perturbation theory

basic method:

- set $g_{\mu\nu} = \bar{g}_{\mu\nu} + a^2 h_{\mu\nu}$ $T^{\nu}_{\mu} = \bar{T}^{\nu}_{\mu} + \delta T^{\nu}_{\mu}$
- stick into Einstein and conservation equations
- linearize resulting equation (order 0 : "background evol.")
- \Rightarrow two 4x4 symmetric matrices -> 20 quantities
- ⇒ we have 4 extra reparametrization d.o.f. -> can eliminate some quantities ("gauge freedom")
- ⇒ at linear level, perturbations split into "scalars", "vectors" and "tensors", we will mostly consider scalar d.o.f.

$$ds^{2} = -(1+2\psi)dt^{2} + a^{2}(1-2\phi)dx^{2}$$

 \Rightarrow do it yourself as an exercise \bigcirc

scalar perturbation equations

Einstein equations:

r.h.s. summed over "stuff" in universe

 $\delta = \delta \rho / \rho$ density contrast V divergence of velocity field

$$k^{2}\phi = -4\pi Ga^{2}\sum_{i}\rho_{i}\left(\delta_{i}+3Ha\frac{V_{i}}{k^{2}}\right)$$
$$k^{2}(\phi-\psi) = 12\pi Ga^{2}\sum_{i}(1+w_{i})\rho_{i}\sigma_{i}$$

conservation equations: one set for each type (matter, radiation, DE, ...)

$$\delta_i' = 3(1+w_i)\phi' - \frac{V_i}{Ha^2} - \frac{3}{a}\left(\frac{\delta p_i}{\rho_i} - w_i\delta_i\right)$$
$$V_i' = -(1-3w_i)\frac{V_i}{a} + \frac{k^2}{Ha}\left(\frac{\delta p_i}{\rho_i} + (1+w_i)(\psi - \sigma_i)\right)$$

w, δp , σ : determines physical nature, e.g. cold dark matter: w= δp = σ =0

$$\delta'_m = 3\phi' - \frac{V_m}{Ha^2} \quad V'_m = -\frac{V_m}{a} + \frac{k^2}{Ha}\psi$$

perturbations

 $ds^2 = -(1+2\psi)dt^2 + a^2(1-2\phi)dx^2$ metric (gauge fixed, scalar dof) conservation eq's fluid metric fluid perturbations evolution Einstein eq's $k^{2}\phi = -4\pi Ga^{2}\sum_{i}\rho_{i}\left(\delta_{i}+3Ha\frac{V_{i}}{k^{2}}\right), k^{2}(\phi-\psi) = 12\pi Ga^{2}\sum_{i}(1+w_{i})\rho_{i}\sigma_{i}$ $\delta_i' = 3(1+w_i)\phi' - \frac{V_i}{Ha^2} - \frac{3}{a} \left(\frac{\delta p_i}{\rho_i} - w_i \delta_i \right) \\ V_i' = -(1-3w_i) \frac{V_i}{a} + \frac{k^2}{Ha} \left(\frac{\delta p_i}{\rho_i} + (1+w_i)(\psi - \sigma_i) \right)$

neutrino properties

Parameter	TT+lowP	TT+lowP+BAO	TT, TE, EE+lowP	TT,TE,EE+lowP+BAO
$\sigma: c_{vis}^2$	$0.47\substack{+0.26\\-0.12}$	$0.44^{+0.15}_{-0.10}$	0.327 ± 0.037	0.331 ± 0.037
δp : <i>c</i> _{eff}	0.312 ± 0.011	0.316 ± 0.010	0.3240 ± 0.0060	0.3242 ± 0.0059

- significant detection of "neutrino anisotropies"
- compatible with expected values

general dark phenomenology

Does this make sense for 'modified gravity models'?!

modified "Einstein" eq: $X_{\mu\nu} = -8\pi G T_{\mu\nu}$ (projection to 3+1D)

$$G_{\mu\nu} = -8\pi G T_{\mu\nu} - Y_{\mu\nu} \quad Y_{\mu\nu} \equiv X_{\mu\nu} - G_{\mu\nu}$$

 $\textbf{Y}_{\mu\nu}$ can be seen as an effective DE energy-momentum tensor.

Is it conserved?

Yes, since $T_{\mu\nu}$ is conserved, and since $G_{\mu\nu}$ obeys the Bianchi identities!

Cosmology can measure total effective dark EMT

a hierarchy of DE modelling

more physical

phenomenological parameters

Slide from Filippo Vernizzi AES 2020

Post-Newtonian Parametrization (PPN): $g_{00} = -(1+2\Phi)$, $g_{ij} = \delta_{ij} (1-2\Psi)$

slip parameter $\gamma=\Psi/\Phi$

$$\gamma = 1$$
 is the GR value, $\gamma = 0$ is the Newtonian value

Light bending

$$\theta = 2(1+\gamma)\frac{GM_{\odot}}{r} = \frac{1+\gamma}{2}\theta_{\rm GR}$$

$$\gamma - 1 = (-1.7 \pm 4.5) \times 10^{-4}$$

Shapiro time-delay

$$\Delta t = 2(1+\gamma)GM_{\odot} \left[\ln \left(4\frac{r_p r_e}{r_0} \right) + 1 \right]$$
$$\gamma - 1 = (2.1 \pm 2.3) \times 10^{-5}$$

WARNING -- many conventions:

1. Q(a, k), which modifies the relativistic Poisson equation through extra DE clustering according to

$$-k^2 \Phi \equiv 4\pi G a^2 Q(a, \mathbf{k}) \rho \Delta, \qquad (3)$$

where Δ is the comoving density perturbation;

2. $\mu(a, \mathbf{k})$ (sometimes also called $Y(a, \mathbf{k})$), which modifies the equivalent equation for Ψ rather than Φ :

$$-k^{2}\Psi \equiv 4\pi G a^{2} \mu(a, \mathbf{k}) \rho \Delta; \qquad (4)$$

3. $\Sigma(a, \mathbf{k})$, which modifies lensing (with the lensing/Weyl potential being $\Phi + \Psi$), such that

$$-k^{2}(\Phi + \Psi) \equiv 8\pi G a^{2} \Sigma(a, \mathbf{k}) \rho \Delta; \qquad (5)$$

4. $\eta(a, \mathbf{k})$, which reflects the presence of a non-zero anisotropic stress, the difference between Φ and Ψ being equivalently written as a deviation of the ratio²

$$\eta(a, \mathbf{k}) \equiv \Phi/\Psi.$$
 (6)

you can pick any two as independent

model predictions for pheno

precision predictions

- Analysis of DE/MG models with Euclid will require precise predictions, also on non-linear scales! (Linear Boltzmann code is only starting point)
- But MG models have often a complicated behaviour (scale dependence, screening, ...)
- Easiest example: k-essence [here from Hassani et al, arXiv:1910.01104 and arXiv:1910.01105]
 - Dark matter clustering is highly non-linear on small scales
 - Dark energy follows DM outside of its sound horizon
 - Small sound speed: DE clustering can become non-linear too

Non-linear DE clustering

It turns out that in GR the Poisson equation is a good approximation on *all* scales relevant for cosmology, down to milli-parsec!

(Possibly even more exciting: in higher-order EFT calculations an instability is hiding for low sound speeds...)

general idea

- We want to probe expansion rate and clustering properties (2 grav. potentials $\phi,\psi)$
- H(z): BAO directly (and most other probes)
- Lensing probes $\phi + \psi$
- Velocity / RSD probe ψ
- The Euclid primary probes provide all of these, but there also others (eg. clusters, SL)
- 30 million spectra (RSD, BAO) and 1.5 billion photo-z/shapes (weak lensing, BAO)

DE/MG constraints w/ current data

(Planck 2015 paper XIV, 2018 paper VI)

- **Planck CMB data** (temperature + polarization)
- 'background' (BSH): constrain H(z) ↔ w(z)
 - supernovae: JLA (2015) / Pantheon (2018)
 - Baryon acoustic oscillations (BAO) 2018: BOSS DR12 consensus, SDSS-MGS, 6dFGS
 - H₀: not used in 2018
- redshift space distortions (BAO/RSD)
 - sensitive to velocities from gravitational infall
 - acceleration of test-particles (galaxies) come from grad $\psi \sim \mu$
 - usually given as limit on $f\sigma_8$ (continuity eq.)
 - 2018: we use BOSS DR12 consensus
- gravitational lensing (WL and CMB lensing)
 - deflection of light governed by $\phi + \psi \sim \Sigma$
 - galaxy weak lensing: CFHTLenS (2015) / DES (2018)
 - CMB lensing: lensing of Planck CMB map
 - extracted from map trispectrum
 - power spectrum is also lensed!

Beth Reid

Oslo: Beyond ACDM

effective field theory of DE

→ lots of parameters: $\alpha_M(t)$, $\alpha_T(t)$, $\alpha_K(t)$, $\alpha_B(t)$, $\alpha_H(t)$ and H(t) → action also predicts equation for gravitational waves

$$h_{ij}'' + (2+\nu)Hh_{ij}' + c_{\rm T}^2 k^2 h_{ij} + a^2 \mu^2 h_{ij} = a^2 \Gamma \gamma_{ij}$$

→ joint GW / counterpart observation: $c_T = c ! \rightarrow \alpha_T = 0$ [at least today] → further `naturalness' constraints: $\alpha_M = -\alpha_B$ or `non-MG dark energy' → `beyond-Horndeski' constrained by astrophysical tests $\rightarrow \alpha_H = 0$ → sound speed not strongly constrained, pick convenient α_K

$$\Omega(a) = \exp\left\{\frac{\alpha_{\rm M0}}{\beta}a^{\beta}\right\} - 1$$

 $\begin{array}{l} \mathsf{H}(\mathsf{t}): \mathsf{LCDM} \text{ background} \\ \boldsymbol{\alpha}_{\mathsf{T}} = \boldsymbol{\alpha}_{\mathsf{H}} {=} 0, \, \boldsymbol{\alpha}_{\mathsf{M}}, \, \boldsymbol{\alpha}_{\mathsf{B}}, \, \boldsymbol{\alpha}_{\mathsf{K}} {=} \mathsf{f}(\Omega) \end{array}$

→ non-minimally coupled k-essence model

(same as 2015)

EFT of DE (2018)

 \rightarrow non-minimally coupled *k*-essence model

$$\Omega^{\text{EFT}}(a) = \exp\left\{\frac{\alpha_{M0}}{\beta}a^{\beta}\right\} - 1 = \exp\left\{\Omega_{0}^{\text{EFT}}a^{\beta}\right\} - 1$$

phenomenological approach (2018)

parameterisation of late-time perturbations:

 $-k^{2}\Psi \equiv 4\pi G a^{2}\mu(a, \mathbf{k})\rho\Delta^{-1}$ $\eta(a, \mathbf{k}) \equiv \Phi/\Psi \qquad 0.$

functions ~ $\Omega_{DE}(a)$ ACDM background

 no scale dependence – used (data not good enough) _

 deviation driven by CMB, deg. w/ A_L

 $\Delta \chi^2 = -11$: Planck + BAO/SNe – similar to EFT $\Delta \chi^2 \sim -1$: Planck + (lensing) + BAO/RSD + WL

MG impact on observables (2015)

lensing and MG

Similar conclusions:

- Planck likes higher lensing
- WL and CMB lensing pull it down
- BAO/RSD shrink µ uncertainty a bit

We see that 'lensing modification' Σ varies in direction orthogonal to banana

 \rightarrow `tension' is lensing related?

(plots by Antony Lewis and Matteo Martinelli)

Cosmology vs PPN

Table 4. Current minus on the LLIN parameter	Table 4:	Current	limits of	on the	PPN	parameters
--	----------	---------	-----------	--------	-----	------------

Parameter	Effect	Limit	Remarks	_
$\gamma - 1$	time delay	$2.3 imes 10^{-5}$	Cassini tracking	=
	light deflection	2×10^{-4}	VLBI	
eta-1	perihelion shift	8×10^{-5}	$J_{2\odot} = (2.2 \pm 0.1) \times 10^{-7}$	
	Nordtvedt effect	$2.3 imes 10^{-4}$	$\eta_{\rm N} = 4\beta - \gamma - 3$ assumed	
ξ	spin precession	4×10^{-9}	millisecond pulsars	
$lpha_1$	orbital polarization	10^{-4}	Lunar laser ranging	
		7×10^{-5}	PSR J1738+0333	
α_2	spin precession	2×10^{-9}	millisecond pulsars	
α_3	pulsar acceleration	4×10^{-20}	pulsar \dot{P} statistics	
ζ_1	_	2×10^{-2}	combined PPN bounds	
ζ_2	binary acceleration	4×10^{-5}	$\ddot{P}_{\rm p}$ for PSR 1913+16	
ζ_3	Newton's 3rd law	10^{-8}	lunar acceleration	C
ζ_4			not independent (see Eq. (71))	З

- Σ: (Φ+Ψ) → lensing Limit: ~ 0.05
- μ: Ψ → acceleration of massive particles Limit: ~ 0.25

	Clifford Will, LRR,
)	arXiv:1403.7377

Euclid MG forecasts (Casas et al, 2017)

- forecasts for Euclid (Redbook) WL and GC
- phenomenological DE model

$$-k^2 \Psi(a,k) \equiv 4\pi G a^2 \mu(a,k) \rho(a) \Delta(a,k)$$

 $\eta(a,k) \equiv \Phi(a,k) / \Psi(a,k)$.

- functions in bins (w/ PCA) or proportional to $\Omega_{DE}(a)$
- background is ΛCDM
- nonlinear treatment: interpolate between 'MG' and ΛCDM (both with halofit applied) based on k³P(k), to mimic screening
- we also included a Planck 'prior'

Euclid (Redbook)	Ω_c	Ω_b	n_s	$\ell \mathcal{A}_s$	h	μ	η	Σ	MG FoM
Fiducial		0.048	0.969	3.060	0.682	1.042	1.719	1.416	relative
GC(lin)		6.4%	3%	2.8%	4.5%	17.1%	1030%	641%	0
GC(nl-HS)		2.5%	1.3%	0.8%	1.7%	1.7%	475%	291%	2.9
GC(nl-HS)+Planck		0.6%	0.3%	0.2%	0.3%	1.7%	16.8%	10.3%	6.3
WL(lin)	7.8%	25.7%	9.9%	10.3%	19.1%	58.2%	106%	9.3%	3.2
WL(nl-HS)	6.3%	20.7%	4.6%	5.8%	13.8%	23.3%	40.9%	4.6%	4.5
WL(nl-HS)+Planck	2.1%	1.1%	0.4%	0.7%	0.7%	11.8%	21.8%	2.8%	5.7
GC+WL(lin)	1.8%	5.9%	2.8%	2.3%	4.2%	7.1%	10.6%	2%	6.6
$\mathbf{GC} + \mathbf{WL}(\mathbf{lin}) + Planck$	1.0%	0.7%	0.4%	0.4%	0.4%	6.2%	9.8%	1.5%	7.0
GC+WL(nl-HS)	0.8%	2.2%	0.8%	0.7%	1.5%	1.6%	2.4%	1.0%	8.8
GC+WL(nl-HS)+Planck		0.6%	0.2%	0.2%	0.3%	1.6%	2.4%	0.9%	8.9
GC+WL(nl-Halofit)+Planck		0.5%	0.2%	0.2%	0.2%	0.8%	1.7%	0.8%	9.6

Parametrisation ~ $\Omega_{DE}(a)$

- WL best for Σ , GC for μ (no surprise)
- non-linear scales important
- Planck strongly helps GC and WL, but less important in GC+WL
- WL here as powerful or more than GC, in binned case GC more powerful
- combined constraints O(1%)

Parametrisation ~ $\Omega_{DE}(a)$, using mildly non-linear scales

- shows degeneracies in WL and GC
- adding all breaks also degeneracies in parameters that aren't shown

synergy Euclid - HIRAX

Just one example, from arXiv:1907.00071:

Galaxy number counts have a lensing contribution ('magnification'):

 $\Delta_g(\mathbf{n}, z) = b_g(z)\,\delta(\mathbf{n}, z) + (2 - 5s(z))\,\phi(\mathbf{n}, z)$

Φ: lensing potential, s: slope of luminosity function **BUT**: radio intensity mapping (like CMB) has no first-order lensing contribution

(photon conservation) \rightarrow we can use this to isolate $\Phi \rightarrow$ reduce variance and systematics: IM $(z_f) \times \text{galaxy}(z_b) - \text{galaxy}(z_f) \times \text{IM}(z_b)$

summary

- The standard ACDM model is composed of
 - an homogeneous & isotropic background metric, FLRW
 - dark matter & cosmological constant
 - other ingredients (perturbations, radiation, neutrinos, ...)
- We want to test all assumptions
- We want to understand the physical nature / origin of the dark components, especially of the cosmological constant
- The space of possible models is very large
 - effective field theory of dark energy
 - phenomenological models (fluid / metric)
- Observations currently indicate no clear deviation from Λ CDM (but keep eye on σ_8 , H_0 , large-scale anomalies, ...)
- Euclid combines probes to test a wide range of models, e.g. phenomenological metric parameters to percent-level.

Thank you

COL