Centre International de Rencontres Mathématiques (CIRM) Theory of Gravitation and Variation in Cosmology

Theory of Gravitational Waves

and

Approximation Methods in General Relativity

Luc Blanchet

Gravitation et Cosmologie ($\mathcal{GR} \in \mathbb{CO}$) Institut d'Astrophysique de Paris

15-16 Avril 2021

Outline of the lectures

- Gravitational wave events
- 2 Methods to compute gravitational waves
- 3 Einstein quadrupole formalism
- Gravitational-wave generation formalism
- 5 Post-Newtonian parameters
- 6 Finite-size effects in compact binaries
- Synergy with the effective field theory
- 8 Radiation reaction and balance equations

GRAVITATIONAL WAVE EVENTS

A new messenger to explore the Universe

Binary black-hole event GW150914 [LIGO/Virgo 2016]

Binary black-hole events [LIGO/Virgo 2018-2020]

- For BH binaries the detectors are mostly sensitive to the merger phase
- Detected total BH masses range from $\sim 20\,M_{\odot}$ to $\sim 140\,M_{\odot}$!
- One object $\sim 2.5\,M_{\odot}$ is either the lightest known BH or the heaviest NS
- The signals match perfectly the waveform predicted by GR

Binary neutron star event GW170817

- The signal is observed during $\sim 100\,{\rm s}$ and ~ 3000 cycles and is the loudest gravitational-wave signal yet observed with a combined SNR of 32.4
- The chirp mass is accurately measured to ${\cal M}=\mu^{3/5}M^{2/5}=1.98\,M_{\odot}$
- The distance is measured from the gravitational signal as R = 40 Mpc

Post-merger waveform of neutron star binaries

[Dietrich, Bernuzzi, Bruegmann, Ujevic & Tichy 2018]

The advent of multi-messenger astronomy

- The gamma-ray burst has been detected 1.7 second after the instant of merger
- This is the closest gamma-ray burst whose distance is known and is probably seen off-axis with respect to the relativistic jet

Speed of gravitational waves versus speed of light

• The observed time delay between GW170817 and GRB170817A gives a strong constraint

$$|\mathbf{c_g} - \mathbf{c_{em}}| \lesssim 10^{-15} c$$

• This eliminated a series of alternative theories

Test of the strong equivalence principle [Desai & Kahya 2016]

- The test involves the cumulative Shapiro time delay due to the gravitational potential of the dark matter distribution
- The violation of the equivalence principle is quantified by a PPN like parameter γ_a depending on the type of radiation a = GW, EM. For a spherical mass distribution

$$\Delta t^a_{\mathsf{Shapiro}} = ig(1+oldsymbol{\gamma_a}ig) rac{GM}{c^3} \lnigg(rac{D}{b}igg)$$

- The main contributions come from the galaxy NGC4993 and our own Galaxy with mass $M_{\rm MW}=5.6\,10^{11}\,M_\odot$
- \bullet Assuming an isothermal density profile for dark matter this yields about $400\,{\rm days}$ delay in GR
- The observed difference in arrival time $\Delta t = 1.7\,\mathrm{s}$ yields

$$|\gamma_{\rm GW}-\gamma_{\rm EM}| \lesssim 10^{-7}$$

METHODS TO COMPUTE GRAVITATIONAL WAVES

The gravitational chirp of binary black holes

The gravitational chirp of binary black holes

Methods to compute GW templates

Methods to compute GW templates

Methods to compute GW templates

Post-Newtonian versus gravitational self-force (GSF)

PN predictions for the conservative dynamics are consistent with linear GSF calculations up to high order [Detweiler 2008; Blanchet, Detweiler, Le Tiec & Whiting 2010]

() Suppose we know a solution $\overline{g}(x)$ of the second-order PDE

 $\mathcal{E}\big[\overline{g}(x)\big] = 0$

• Assume a one-parameter family of solutions $g(x,\lambda)$ with $g(x,0) = \overline{g}(x)$. $\mathcal{E}[g(x,\lambda)] = 0$

 \odot Defining $h(x)\equiv (\partial g/\partial\lambda)(x,0)$ we obtain the linear second-order PDE

$$\left[h\frac{\partial \mathcal{E}}{\partial g}\left[\overline{g}\right] + \partial h\frac{\partial \mathcal{E}}{\partial(\partial g)}\left[\overline{g}\right] + \partial^2 h\frac{\partial \mathcal{E}}{\partial(\partial^2 g)}\left[\overline{g}\right] = 0\right]$$

igodot A good approximation to the exact solution $g(x,\lambda)$ for non-zero but small λ is

 $g_{\text{linear}}(x) = \overline{g}(x) + \lambda h(x)$

() Suppose we know a solution $\overline{g}(x)$ of the second-order PDE

$$\mathcal{E}\big[\overline{g}(x)\big] = 0$$

② Assume a one-parameter family of solutions $g(x, \lambda)$ with $g(x, 0) = \overline{g}(x)$

 $\mathcal{E}\big[g(x,\lambda)\big] = 0$

• Defining $h(x) \equiv (\partial g/\partial \lambda)(x,0)$ we obtain the linear second-order PDE

$$\boxed{h\frac{\partial \mathcal{E}}{\partial g}[\overline{g}] + \partial h\frac{\partial \mathcal{E}}{\partial (\partial g)}[\overline{g}] + \partial^2 h\frac{\partial \mathcal{E}}{\partial (\partial^2 g)}[\overline{g}] = 0}$$

igodot A good approximation to the exact solution $g(x,\lambda)$ for non-zero but small λ is

 $g_{\text{linear}}(x) = \overline{g}(x) + \lambda h(x)$

() Suppose we know a solution $\overline{g}(x)$ of the second-order PDE

$$\mathcal{E}\big[\overline{g}(x)\big] = 0$$

 $\textbf{ 3 Assume a one-parameter family of solutions } g(x,\lambda) \text{ with } g(x,0) = \overline{g}(x)$

 $\mathcal{E}\big[g(x,\lambda)\big] = 0$

9 Defining $h(x) \equiv (\partial g/\partial \lambda)(x,0)$ we obtain the linear second-order PDE

$$h\frac{\partial \mathcal{E}}{\partial g} \big[\overline{g} \big] + \partial h \frac{\partial \mathcal{E}}{\partial (\partial g)} \big[\overline{g} \big] + \partial^2 h \frac{\partial \mathcal{E}}{\partial (\partial^2 g)} \big[\overline{g} \big] = 0$$

. A good approximation to the exact solution $g(x,\lambda)$ for non-zero but small λ is

 $g_{\text{linear}}(x) = \overline{g}(x) + \lambda h(x)$

() Suppose we know a solution $\overline{g}(x)$ of the second-order PDE

$$\mathcal{E}\big[\overline{g}(x)\big] = 0$$

2 Assume a one-parameter family of solutions $g(x, \lambda)$ with $g(x, 0) = \overline{g}(x)$

 $\mathcal{E}\big[g(x,\lambda)\big] = 0$

③ Defining $h(x) \equiv (\partial g/\partial \lambda)(x,0)$ we obtain the linear second-order PDE

$$h\frac{\partial \mathcal{E}}{\partial g}\left[\overline{g}\right] + \partial h\frac{\partial \mathcal{E}}{\partial(\partial g)}\left[\overline{g}\right] + \partial^2 h\frac{\partial \mathcal{E}}{\partial(\partial^2 g)}\left[\overline{g}\right] = 0$$

• A good approximation to the exact solution $g(x, \lambda)$ for non-zero but small λ is

$$g_{\rm linear}(x) = \overline{g}(x) + \lambda \, h(x)$$

Reliability of the perturbative equations

- To any one-parameter family of solutions $g(x,\lambda)$ corresponds a solution h(x) of the linear perturbative equations
- But the converse is not necessarily true, *i.e.* given a solution h(x) there does not necessarily exist an exact solution such that $h(x) = (\partial g/\partial \lambda)(x, 0)$
- More generally, an infinite set of solutions $h_n(x)$ (with $n \in \mathbb{N}$) of the perturbation equations to all non-linear orders n does not necessarily come from the Taylor expansion of some exact solution $g(x, \lambda)$ when $\lambda \to 0$

Knowing if it does is the problem of the reliability of the perturbation equations

Einstein field equations as a "Problème bien posé"

• Start with the GR action for the metric $g_{\mu\nu}$ with the matter term

$$S_{\rm GR} = \underbrace{\frac{c^3}{16\pi G} \int d^4 x \sqrt{-g} \, \mathbf{R}}_{\rm Einstein-Hilbert \ action}} + \underbrace{S_{\rm m}[g_{\mu\nu}, \Psi]}_{\rm matter \ fields}$$

> Add the harmonic coordinates gauge-fixing term (where $\mathfrak{g}^{lphaeta}=\sqrt{-g}g^{lphaeta}$)

$$S_{\rm GR} = \frac{c^3}{16\pi G} \int {\rm d}^4 x \left(\sqrt{-g} R \underbrace{-\frac{1}{2} g_{\alpha\beta} \partial_{\mu} g^{\alpha\mu} \partial_{\nu} g^{\beta\nu}}_{\rm gauge-fixing term} \right) + S_{\rm m}$$

o Get a well-posed system of equations (Manager 1932: Choquet-Bruhat 1952

$$\mathfrak{g}^{\mu\nu}\partial^2_{\mu\nu}\mathfrak{g}^{\alpha\beta} = \frac{16\pi G}{c^4}|g|T^{\alpha\beta} + \overbrace{\Sigma^{\alpha\beta}[\mathfrak{g},\partial\mathfrak{g}]}^{\text{non-linear source term}}$$
$$\partial_\mu\mathfrak{g}^{\alpha\mu} = 0$$

Einstein field equations as a "Problème bien posé"

• Start with the GR action for the metric $g_{\mu\nu}$ with the matter term

$$S_{\rm GR} = \underbrace{\frac{c^3}{16\pi G} \int d^4 x \sqrt{-g} \, \mathbf{R}}_{\rm Einstein-Hilbert \ action}} + \underbrace{S_{\rm m}[g_{\mu\nu},\Psi]}_{\rm matter \ fields}$$

• Add the harmonic coordinates gauge-fixing term (where $g^{\alpha\beta} = \sqrt{-g}g^{\alpha\beta}$)

$$S_{\rm GR} = \frac{c^3}{16\pi G} \int d^4x \left(\sqrt{-g} \, R \underbrace{-\frac{1}{2} \mathfrak{g}_{\alpha\beta} \partial_\mu \mathfrak{g}^{\alpha\mu} \partial_\nu \mathfrak{g}^{\beta\nu}}_{\text{gauge-fixing term}} \right) + S_{\rm m}$$

o Get a well-posed system of equations (humanic 1932; Choquet-Bruhat 1952

$$\mathfrak{g}^{\mu\nu}\partial_{\mu\nu}^{2}\mathfrak{g}^{\alpha\beta} = \frac{16\pi G}{c^{4}}|g|T^{\alpha\beta} + \overbrace{\Sigma^{\alpha\beta}[\mathfrak{g},\partial\mathfrak{g}]}^{\text{non-linear source term}} \partial_{\mu}\mathfrak{g}^{\alpha\mu} = 0$$

Einstein field equations as a "Problème bien posé"

• Start with the GR action for the metric $g_{\mu\nu}$ with the matter term

$$S_{\rm GR} = \underbrace{\frac{c^3}{16\pi G} \int \mathrm{d}^4 x \sqrt{-g} \, \mathbf{R}}_{\rm Einstein-Hilbert \ action}} + \underbrace{S_{\rm m}[g_{\mu\nu},\Psi]}_{\rm matter \ fields}$$

• Add the harmonic coordinates gauge-fixing term (where $g^{\alpha\beta} = \sqrt{-g}g^{\alpha\beta}$)

$$S_{\rm GR} = \frac{c^3}{16\pi G} \int d^4x \left(\sqrt{-g} \, R \underbrace{-\frac{1}{2} \mathfrak{g}_{\alpha\beta} \partial_\mu \mathfrak{g}^{\alpha\mu} \partial_\nu \mathfrak{g}^{\beta\nu}}_{\text{gauge-fixing term}} \right) + S_{\rm m}$$

• Get a well-posed system of equations [Hadamard 1932; Choquet-Bruhat 1952]

$$\begin{split} \mathfrak{g}^{\mu\nu}\partial^2_{\mu\nu}\mathfrak{g}^{\alpha\beta} &= \frac{16\pi G}{c^4}|g|T^{\alpha\beta} + \underbrace{\Sigma^{\alpha\beta}[\mathfrak{g},\partial\mathfrak{g}]}_{\partial_\mu}\mathfrak{g}^{\alpha\mu} = 0 \end{split}$$

Perturbation around Minkowski space-time

Assume space-time slightly differs from Minkowski space-time $\eta_{lphaeta}$

$$\eta^{lphaeta} = \eta^{lphaeta} + h^{lphaeta}$$
 with $|h| \ll 1$

$$\label{eq:alphabeta} \begin{split} \Box h^{\alpha\beta} &= \frac{16\pi G}{c^4} |g| T^{\alpha\beta} + \overbrace{\Lambda^{\alpha\beta}[h,\partial h,\partial^2 h]}^{\text{non-linear source term}} \\ &\underbrace{\partial_\mu h^{\alpha\mu} = 0}_{\text{harmonic-gauge condition}} \end{split}$$

where $\Box=\eta^{\mu\nu}\partial_{\mu}\partial_{\nu}$ is the flat d'Alembertian operator

ç

Kirchhoff's formula

For an homogeneous solution of the wave equation $\Box h_{\rm hom}=0$

$$h_{\rm hom}(\mathbf{x},t) = \lim_{|\mathbf{x}'| \to +\infty} \iint \frac{\mathrm{d}\Omega'}{4\pi} \left(\frac{\partial}{\partial r} + \frac{\partial}{c\partial t}\right) (rh_{\rm hom}) \left(\mathbf{x}', t - \frac{|\mathbf{x} - \mathbf{x}'|}{c}\right)$$

No-incoming radiation condition

No-incoming radiation condition

Two-body system formed from freely falling particles

Gravitational motion of initially free particles when $t \to -\infty$ [Eder 1989]

$$\boldsymbol{x}(t) = \boldsymbol{V}t + \boldsymbol{W}\log(-t) + \boldsymbol{X} + o(t^0)$$

where ${\pmb V}$ and ${\pmb X}$ are constant vectors, and ${\pmb W}=GM{\pmb V}/V^3$

Methods to compute gravitational waves

Hypothesis of stationarity in the remote past

In practice all GW sources observed in astronomy (*e.g.* a compact binary system) will have been formed and started to emit GWs only from a finite instant in the past $-\mathcal{T}$

The post-Minkowskian approximation

[Bertotti 1956; Bertotti & Plebanski 1960; Westpfahl et al. 1980, 1985; Bel et al. 1981; Bern et al. 2019]

Appropriate for weakly self-gravitating isolated matter sources

$$\gamma_{\rm PM} \equiv \frac{GM}{c^2 a} \ll 1 \quad \left\{ \begin{array}{l} M \text{ mass of source} \\ a \text{ size of source} \end{array} \right.$$

$$\mathfrak{g}^{\alpha\beta} = \eta^{\alpha\beta} + \underbrace{\sum_{n=1}^{+\infty} G^n h_n^{\alpha\beta}}_{G \text{ labels the PM expansion}}$$

$$\Box h_n^{\alpha\beta} = \frac{16\pi G}{c^4} |g| T_n^{\alpha\beta} + \overbrace{\Lambda_n^{\alpha\beta}[h_1, \cdots, h_{n-1}]}^{\text{known from previous iterations}} \partial_\mu h_n^{\alpha\mu} = 0$$

Post-Newtonian versus post-Minkowskian

The post-Minkowskian 3PM two-body Hamiltonian [Bern, Cheung, Solon et al. 2019] has been checked with the post-Newtonian 4PN two-body equations of motion

Multipolar expansion

[Pirani 1964; Geroch 1970; Hansen 1974; Thorne 1980; Simon & Beig 1983; Blanchet 1998]

Valid in the exterior of any possibly strong field isolated source

$$rac{a}{r} < 1 \qquad \left\{ egin{array}{c} a \ {
m size \ of \ source} \ r \ {
m distance \ to \ source} \ \lambda \sim cP \ {
m wavelength \ of \ radiation} \end{array}
ight.$$

$$\underbrace{I_L \sim Ma^{\ell}}_{\text{mass-type multipole moment}} \qquad \underbrace{J_L \sim Ma^{\ell}v}_{\text{current-type multipole moment}} \qquad (L = i_1 \cdots i_{\ell})$$

Split space-time into near zone $r\ll\lambda$ and wave zone $r\gg\lambda$

$$\underbrace{ \underbrace{h_{\mathsf{NZ}} \sim \frac{G}{c^2} \sum_{\ell} \left[\frac{I_L}{r^{\ell+1}} + \frac{J_L}{cr^{\ell+1}} \right]}_{r \ll \lambda} }_{r \gg \lambda} \quad \underbrace{ \underbrace{h_{\mathsf{WZ}} \sim \frac{G}{c^2 r} \sum_{\ell} \left[\frac{I_L^{(\ell)}}{c^{\ell}} + \frac{J_L^{(\ell)}}{c^{\ell+1}} \right]}_{r \gg \lambda} }_{r \gg \lambda}$$

Multipolar expansion

[Pirani 1964; Geroch 1970; Hansen 1974; Thorne 1980; Simon & Beig 1983; Blanchet 1998]

• The radiative multipolar field in the wave zone

$$h_{\rm WZ} \sim \frac{G}{c^2 r} \sum_{\ell} \left[\frac{I_L^{(\ell)}}{c^{\ell}} + \frac{J_L^{(\ell)}}{c^{\ell+1}} \right]$$

is actually a PN expansion in the case of a PN source

$$\frac{I_L^{(\ell)}}{c^\ell} \sim \frac{Ma^\ell}{\lambda^\ell} \sim M \, \varepsilon_{\rm PN}^\ell$$

o. The quadrupole moment formalism gives the lowest order PN contribution to the radiation field due to the mass type quadrupole moment $(\ell=2)$

$$\begin{split} I_{ij} &= \mathbf{Q}_{ij} + \mathcal{O}(\varepsilon_{\mathsf{PN}}^2) \\ \mathbf{Q}_{ij}(t) &= \int_{\mathsf{PN} \text{ source}} \mathrm{d}^3 \mathbf{x} \underbrace{\rho_{\mathsf{N}}(\mathbf{x}, t)}_{_{\mathsf{Newtonian}}} \left(x_i x_j - \frac{1}{3} \delta_{ij} r^2 \right) \end{split}$$
Multipolar expansion

[Pirani 1964; Geroch 1970; Hansen 1974; Thorne 1980; Simon & Beig 1983; Blanchet 1998]

• The radiative multipolar field in the wave zone

$$h_{\rm WZ} \sim \frac{G}{c^2 r} \sum_{\ell} \left[\frac{I_L^{(\ell)}}{c^{\ell}} + \frac{J_L^{(\ell)}}{c^{\ell+1}} \right]$$

is actually a PN expansion in the case of a PN source

$$\frac{I_L^{(\ell)}}{c^\ell} \sim \frac{Ma^\ell}{\lambda^\ell} \sim M \, \varepsilon_{\rm PN}^\ell$$

• The quadrupole moment formalism gives the lowest order PN contribution to the radiation field due to the mass type quadrupole moment ($\ell = 2$)

$$\begin{split} I_{ij} &= \mathbf{Q}_{ij} + \mathcal{O}(\varepsilon_{\mathsf{PN}}^2) \\ \mathbf{Q}_{ij}(t) &= \int_{\mathsf{PN} \text{ source}} \mathrm{d}^3 \mathbf{x} \underbrace{\rho_{\mathsf{N}}(\mathbf{x}, t)}_{_{\mathsf{Newtonian}}} \left(x_i x_j - \frac{1}{3} \delta_{ij} r^2 \right) \end{split}$$

Methods to compute gravitational waves

Multipolar-Post-Minkowskian expansion

[Bonnor 1959; Blanchet & Damour 1986]

Methods to compute gravitational waves

Multipolar-Post-Minkowskian expansion

[Bonnor 1959; Blanchet & Damour 1986]

EINSTEIN QUADRUPOLE FORMALISM

Quadrupole moment formalism [Einstein 1918; Landau & Lifchitz 1945]

$$4\overline{J} \mathcal{R}^2 \overline{J} = \frac{\chi}{40\overline{J}} \left[\sum_{\mu\nu} \frac{\overline{J}_{\mu\nu}^2}{-\frac{1}{3}} \left(\sum_{\mu\nu} \frac{\overline{J}_{\mu\nu}}{2} - \frac{1}{3} \left(\sum_{\mu\nu} \frac{\overline{J}_{\mu\nu}}{2} \right)^2 \right].$$

Einstein quadrupole formula

$$\left(\frac{\mathrm{d}E}{\mathrm{d}t}\right)^{\mathrm{GW}} = \frac{G}{5c^5} \left\{ \frac{\mathrm{d}^3 Q_{ij}}{\mathrm{d}t^3} \frac{\mathrm{d}^3 Q_{ij}}{\mathrm{d}t^3} + \mathcal{O}\left(\frac{v}{c}\right)^2 \right\}$$

Amplitude quadrupole formula

$$h_{ij}^{\mathsf{TT}} = \frac{2G}{c^4 R} \left\{ \frac{\mathrm{d}^2 \mathbf{Q}_{ij}}{\mathrm{d}t^2} \left(t - \frac{R}{c} \right) + \mathcal{O}\left(\frac{v}{c} \right) \right\}^{\mathsf{TT}} + \mathcal{O}\left(\frac{1}{R^2} \right)$$

Radiation reaction formula [Chandrasekhar & Esposito 1970; Burke & Thorne 1970]

$$F_i^{\text{reac}} = -\frac{2G}{5c^5} \rho \, x^j \frac{\mathrm{d}^5 Q_{ij}}{\mathrm{d}t^5} + \mathcal{O}\left(\frac{v}{c}\right)^7$$

which is a 2.5PN $\sim (v/c)^5$ effect in the source's equations of motion

Application to compact binaries [Peters & Mathews 1963; Peters 1964]

 $\left\{ \begin{array}{l} a \text{ semi-major axis of relative orbit} \\ e \text{ eccentricity of relative orbit} \\ \omega = \frac{2\pi}{P} \text{ orbital frequency} \end{array} \right.$

$$M = m_1 + m_2$$

$$\mu = \frac{m_1 m_2}{M} \qquad \nu = \frac{\mu}{M} \quad 0 < \nu \leqslant \frac{1}{4}$$

Averaged energy and angular momentum balance equations

$$\frac{\mathrm{d}E}{\mathrm{d}t}\rangle = -\langle \mathcal{F}^{\mathrm{GW}}\rangle \qquad \langle \frac{\mathrm{d}J_i}{\mathrm{d}t}\rangle = -\langle \mathcal{G}_i^{\mathrm{GW}}\rangle$$

are applied to a Keplerian orbit (using Kepler's law $GM = \omega^2 a^3$)

$$\begin{split} \langle \frac{\mathrm{d}P}{\mathrm{d}t} \rangle &= -\frac{192\pi}{5c^5} \nu \, \left(\frac{2\pi GM}{P}\right)^{5/3} \, \frac{1 + \frac{73}{24}e^2 + \frac{37}{96}e^4}{(1 - e^2)^{7/2}} \\ \langle \frac{\mathrm{d}e}{\mathrm{d}t} \rangle &= -\frac{608\pi}{15c^5} \nu \frac{e}{P} \, \left(\frac{2\pi GM}{P}\right)^{5/3} \, \frac{1 + \frac{121}{304}e^2}{(1 - e^2)^{5/2}} \end{split}$$

[Dyson 1969; Esposito & Harrison 1975; Wagoner 1975]

O Compact binaries are circularized when they enter the detector's bandwidth

$$E = -\frac{Mc^2}{2}\nu\,x \qquad {\cal F}^{\rm GW} = \frac{32}{5}\frac{c^5}{G}\nu^2 x^5$$

where $x = \left(\frac{GM\omega}{c^3}\right)^{2/3}$ denotes a small PN parameter defined with ω Equating $\frac{dx}{dt} = -\mathcal{F}^{GW}$ gives a differential equation for x

$$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{64}{5} \frac{c^3 \nu}{GM} x^5 \quad \Longleftrightarrow \quad \frac{\dot{\omega}}{\omega^2} = \frac{96\nu}{5} \nu \left(\frac{GM\omega}{c^3}\right)^{5/3}$$

• This permits to solve for the orbital phase

$$\phi = \int \omega \, \mathrm{d}t = \int \frac{\omega}{\dot{\omega}} \, \mathrm{d}\omega$$

[Dyson 1969; Esposito & Harrison 1975; Wagoner 1975]

• Compact binaries are circularized when they enter the detector's bandwidth

$$E = -\frac{Mc^2}{2}\nu\,x \qquad {\cal F}^{\rm GW} = \frac{32}{5}\frac{c^5}{G}\nu^2 x^5$$

where $x = \left(\frac{GM\omega}{c^3}\right)^{2/3}$ denotes a small PN parameter defined with ω 2 Equating $\frac{dE}{dt} = -\mathcal{F}^{GW}$ gives a differential equation for x

$$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{64}{5} \frac{c^3 \nu}{GM} x^5 \quad \Longleftrightarrow \quad \frac{\dot{\omega}}{\omega^2} = \frac{96\nu}{5} \nu \left(\frac{GM\omega}{c^3}\right)^{5/3}$$

O This permits to solve for the orbital phase

$$\phi = \int \omega \, \mathrm{d}t = \int \frac{\omega}{\dot{\omega}} \, \mathrm{d}\omega$$

[Dyson 1969; Esposito & Harrison 1975; Wagoner 1975]

• Compact binaries are circularized when they enter the detector's bandwidth

$$E = -\frac{Mc^2}{2}\nu\,x \qquad {\cal F}^{\rm GW} = \frac{32}{5}\frac{c^5}{G}\nu^2 x^5$$

where $x = \left(\frac{GM\omega}{c^3}\right)^{2/3}$ denotes a small PN parameter defined with ω 2 Equating $\frac{dE}{dt} = -\mathcal{F}^{GW}$ gives a differential equation for x

$$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{64}{5} \frac{c^3 \nu}{GM} x^5 \quad \Longleftrightarrow \quad \frac{\dot{\omega}}{\omega^2} = \frac{96\nu}{5} \nu \left(\frac{GM\omega}{c^3}\right)^{5/3}$$

• This permits to solve for the orbital phase

$$\phi = \int \omega \, \mathrm{d}t = \int \frac{\omega}{\dot{\omega}} \, \mathrm{d}\omega$$

Einstein quadrupole formalism

Orbital phase evolution of compact binaries

[Dyson 1969; Esposito & Harrison 1975; Wagoner 1975]

• The amplitude and phase evolution follow an adiabatic chirp in time

$$\begin{split} a(t) &= \left(\frac{256}{5} \frac{G^3 M^3 \nu}{c^5} (t_c - t)\right)^{1/4} \\ \phi(t) &= \phi_c - \frac{1}{32\nu} \left(\frac{256}{5} \frac{c^3 \nu}{GM} (t_c - t)\right)^{5/8} \end{split}$$

The amplitude and orbital frequency diverge at the instant of coalescence t_c and the merger phase is to be described numerically

[Dyson 1969; Esposito & Harrison 1975; Wagoner 1975]

The amplitude and phase evolution follow an adiabatic chirp in time

$$\begin{split} a(t) &= \left(\frac{256}{5} \frac{G^3 M^3 \nu}{c^5} (t_c - t)\right)^{1/4} \\ \phi(t) &= \phi_c - \frac{1}{32\nu} \left(\frac{256}{5} \frac{c^3 \nu}{GM} (t_c - t)\right)^{5/8} \end{split}$$

② The amplitude and orbital frequency diverge at the instant of coalescence t_c and the merger phase is to be described numerically

• The GW frequency is given in terms of the chirp mass ${\cal M}=\mu^{3/5}M^{2/5}$ by

$$f = \frac{1}{\pi} \left[\frac{256}{5} \frac{G\mathcal{M}^{5/3}}{c^5} (t_{\rm c} - t) \right]^{-3/8}$$

o Therefore the chirp mass is directly measured as

$$\mathcal{M} = \left[rac{5}{96} rac{c^5}{G \pi^{8/3}} f^{-11/3} f
ight]^{3/5}$$

which gives $\mathcal{M}=30M_{\odot}$ thus $M\geqslant70M_{\odot}$

o The GW amplitude is predicted to be^1

$$h_{\rm eff} \sim 4.1 \times 10^{-22} \left(\frac{\mathcal{M}}{M_{\odot}}\right)^{5/6} \left(\frac{100\,{\rm Mpc}}{R}\right) \left(\frac{100\,{\rm Hz}}{f_{\rm merger}}\right)^{-1/6} \sim 1.61 \times 10^{-21}$$

The distance $R=400\,{
m Mpc}$ is measured from the signal itself (solution)

 $^1h_{
m eff}\sim h\sqrt{N}$ where $N\sim \omega^2/\dot{\omega}$ is the number of cycles around frequency ω .

• The GW frequency is given in terms of the chirp mass ${\cal M}=\mu^{3/5}M^{2/5}$ by

$$f = \frac{1}{\pi} \left[\frac{256}{5} \frac{G \mathcal{M}^{5/3}}{c^5} (t_{\rm c} - t) \right]^{-3/8}$$

• Therefore the chirp mass is directly measured as

$$\mathcal{M} = \left[\frac{5}{96} \frac{c^5}{G\pi^{8/3}} f^{-11/3} \dot{f}\right]^{3/5}$$

which gives $\mathcal{M}=30M_{\odot}$ thus $M\geqslant 70M_{\odot}$

• The GW amplitude is predicted to be¹

$$h_{\rm eff} \sim 4.1 \times 10^{-22} \left(\frac{\mathcal{M}}{M_{\odot}}\right)^{5/6} \left(\frac{100\,{\rm Mpc}}{R}\right) \left(\frac{100\,{\rm Hz}}{f_{\rm merger}}\right)^{-1/6} \sim 1.61 \times 10^{-21}$$

) The distance $R=400\,{
m Mpc}$ is measured from the signal itself (solution)

 $^1h_{
m eff}\sim h\sqrt{N}$ where $N\sim \omega^2/\dot{\omega}$ is the number of cycles around frequency ω

• The GW frequency is given in terms of the chirp mass ${\cal M}=\mu^{3/5}M^{2/5}$ by

$$f = \frac{1}{\pi} \left[\frac{256}{5} \frac{G \mathcal{M}^{5/3}}{c^5} (t_{\rm c} - t) \right]^{-3/8}$$

• Therefore the chirp mass is directly measured as

$$\mathcal{M} = \left[\frac{5}{96} \frac{c^5}{G\pi^{8/3}} f^{-11/3} \dot{f}\right]^{3/5}$$

which gives $\mathcal{M}=30M_{\odot}$ thus $M\geqslant 70M_{\odot}$

• The GW amplitude is predicted to be¹

$$h_{\rm eff} \sim 4.1 \times 10^{-22} \left(\frac{\mathcal{M}}{M_{\odot}}\right)^{5/6} \left(\frac{100\,{\rm Mpc}}{R}\right) \left(\frac{100\,{\rm Hz}}{f_{\rm merger}}\right)^{-1/6} \sim 1.6 \times 10^{-21}$$

The distance $R=400\,{
m Mpc}$ is measured from the signal itself (solution)

 $^1h_{\rm eff}\sim h\sqrt{N}$ where $N\sim \omega^2/\dot{\omega}$ is the number of cycles around frequency ω

• The GW frequency is given in terms of the chirp mass ${\cal M}=\mu^{3/5}M^{2/5}$ by

$$f = \frac{1}{\pi} \left[\frac{256}{5} \frac{G \mathcal{M}^{5/3}}{c^5} (t_{\rm c} - t) \right]^{-3/8}$$

• Therefore the chirp mass is directly measured as

$$\mathcal{M} = \left[\frac{5}{96} \frac{c^5}{G\pi^{8/3}} f^{-11/3} \dot{f}\right]^{3/5}$$

which gives $\mathcal{M}=30M_{\odot}$ thus $M\geqslant 70M_{\odot}$

• The GW amplitude is predicted to be¹

$$h_{\rm eff} \sim 4.1 \times 10^{-22} \left(\frac{\mathcal{M}}{M_{\odot}}\right)^{5/6} \left(\frac{100\,{\rm Mpc}}{R}\right) \left(\frac{100\,{\rm Hz}}{f_{\rm merger}}\right)^{-1/6} \sim 1.6 \times 10^{-21}$$

• The distance $R = 400 \, \text{Mpc}$ is measured from the signal itself [Schutz 1986]

 $^1h_{\rm eff} \sim h \sqrt{N}$ where $N \sim \omega^2/\dot{\omega}$ is the number of cycles around frequency ω

③ The ADM energy of space-time is constant and reads (at any time t)

$$E_{\text{ADM}} = (m_1 + m_2)c^2 - \frac{Gm_1m_2}{2r} + \frac{G}{5c^5} \int_{-\infty}^t dt' \left(Q_{ij}^{(3)}\right)^2 (t')$$

 \odot Initially $E_{
m ADM} = (m_1 + m_2)c^2$ while finally (at time $t_{
m c}$)

$$E_{\text{ADM}} = M_{\text{c}}c^2 + \frac{G}{5c^5} \int_{-\infty}^{t_{\text{c}}} \mathrm{d}t' \left(Q_{\text{c}}(3)\right)^2(t')$$

The total energy radiated in GW is

$$\Delta \boldsymbol{L}^{\text{CW}} = (m_1 + m_2 - M_c)c^2 = \frac{G}{5c^5} \int_{-\infty}^{t_c} \mathrm{d}t' (\boldsymbol{Q}_{ij})^3)^2 (t') = \frac{Gm_1m_2}{2r_c}$$

• The total power released is

$${\cal P}^{
m GW} \sim {3 M_{\odot} c^2 \over 0.2 \, {
m s}} \sim 10^{49} \, {
m W} \sim 10^{-3} \, {c^5 \over G}$$

• The ADM energy of space-time is constant and reads (at any time t)

$$E_{\text{ADM}} = (m_1 + m_2)c^2 - \frac{Gm_1m_2}{2r} + \frac{G}{5c^5} \int_{-\infty}^t dt' \left(Q_{ij}^{(3)}\right)^2 (t')$$

Initially $E_{\text{ADM}} = (m_1 + m_2)c^2$ while finally (at time t_c)

$$E_{\rm ADM} = M_{\rm c}c^2 + \frac{G}{5c^5} \int_{-\infty}^{t_{\rm c}} \mathrm{d}t' \left(Q_{ij}^{(3)}\right)^2(t')$$

The total energy radiated in GW is

$$\Delta E^{\text{ew}} = (m_1 + m_2 - M_c)c^2 = \frac{G}{5c^5} \int_{-\infty}^{t_c} \mathrm{d}t' (Q_{ij})^3)^2(t') = \frac{Gm_1m_2}{2r_c}$$

The total power released is

$${\cal P}^{
m GW} \sim {3 M_\odot c^2 \over 0.2 \, {
m s}} \sim 10^{49} \, {
m W} \sim 10^{-3} \, {c^5 \over G}$$

③ The ADM energy of space-time is constant and reads (at any time t)

$$E_{\text{ADM}} = (m_1 + m_2)c^2 - \frac{Gm_1m_2}{2r} + \frac{G}{5c^5} \int_{-\infty}^t dt' \left(Q_{ij}^{(3)}\right)^2 (t')$$

Initially $E_{\rm ADM} = (m_1 + m_2)c^2$ while finally (at time $t_{\rm c}$)

$$E_{\rm ADM} = M_{\rm c}c^2 + \frac{G}{5c^5} \int_{-\infty}^{t_{\rm c}} \mathrm{d}t' \left(Q_{ij}^{(3)}\right)^2 (t')$$

The total energy radiated in GW is

$$\Delta E^{\text{GW}} = (m_1 + m_2 - M_{\text{c}})c^2 = \frac{G}{5c^5} \int_{-\infty}^{t_{\text{c}}} \mathrm{d}t' \left(Q_{ij}^{(3)}\right)^2(t') = \frac{Gm_1m_2}{2r_{\text{c}}}$$

• The total power released is

$${\cal P}^{
m GW} \sim {3 M_\odot c^2 \over 0.2 \, {
m s}} \sim 10^{49} \, {
m W} \sim 10^{-3} \, {c^5 \over G}$$

• The ADM energy of space-time is constant and reads (at any time t)

$$E_{\text{ADM}} = (m_1 + m_2)c^2 - \frac{Gm_1m_2}{2r} + \frac{G}{5c^5} \int_{-\infty}^t dt' \left(Q_{ij}^{(3)}\right)^2 (t')$$

Initially $E_{\rm ADM} = (m_1 + m_2)c^2$ while finally (at time $t_{\rm c}$)

$$E_{\rm ADM} = M_{\rm c}c^2 + \frac{G}{5c^5} \int_{-\infty}^{t_{\rm c}} \mathrm{d}t' \left(Q_{ij}^{(3)}\right)^2 (t')$$

The total energy radiated in GW is

$$\Delta E^{\text{GW}} = (m_1 + m_2 - M_{\text{c}})c^2 = \frac{G}{5c^5} \int_{-\infty}^{t_{\text{c}}} \mathrm{d}t' \left(Q_{ij}^{(3)}\right)^2 (t') = \frac{Gm_1m_2}{2r_{\text{c}}}$$

The total power released is

$$\mathcal{P}^{\rm GW} \sim \frac{3M_{\odot}c^2}{0.2\,{\rm s}} \sim 10^{49}\,{\rm W} \sim 10^{-3}\,\frac{c^5}{G}$$

GRAVITATIONAL-WAVE GENERATION FORMALISM

Gravitational-wave generation formalism

PN-matched Multipolar-post-Minkowskian

 Construct the most general multipolar expansion outside the source in the form of a PM expansion

multipole expansion

$$\widetilde{\mathcal{M}(h)} = \underbrace{G h_1 + G^2 h_2 + \dots + G^n h_n + \dots}_{G n n n}$$

post-Minkowskian expansion

In Match the MPM solution to the PN expansion of the field inside the source

Linearized multipolar vacuum solution [Pirani 1964; Thorne 1980]

Solution of linearized vacuum field equations in harmonic coordinates

$$\Box h_1^{\alpha\beta} = \partial_\mu h_1^{\alpha\mu} = 0$$

$$h_1^{00} = -\frac{4}{c^2} \sum_{\ell=0}^{+\infty} \frac{(-)^\ell}{\ell!} \partial_L \left(\frac{1}{r} I_L\right)$$

$$h_1^{0i} = \frac{4}{c^3} \sum_{\ell=1}^{+\infty} \frac{(-)^\ell}{\ell!} \left\{ \partial_{L-1} \left(\frac{1}{r} I_{iL-1}^{(1)}\right) + \frac{\ell}{\ell+1} \varepsilon_{iab} \partial_{aL-1} \left(\frac{1}{r} J_{bL-1}\right) \right\}$$

$$h_1^{ij} = -\frac{4}{c^4} \sum_{\ell=2}^{+\infty} \frac{(-)^\ell}{\ell!} \left\{ \partial_{L-2} \left(\frac{1}{r} I_{ijL-2}^{(2)}\right) + \frac{2\ell}{\ell+1} \partial_{aL-2} \left(\frac{1}{r} \varepsilon_{ab(i} J_{j)bL-2}^{(1)}\right) \right\}$$

• multipole moments $I_L(u)$ and $J_L(u)$ are arbitrary functions of u = t - r/c

• mass $M \equiv I = \text{const}$, center-of-mass position $G_i \equiv I_i = \text{const}$ linear momentum $P_i \equiv I_i^{(1)} = 0$, angular momentum $J_i = \text{const}$

Linearized multipolar vacuum solution [Pirani 1964; Thorne 1980]

Solution of linearized vacuum field equations in harmonic coordinates

$$\Box h_1^{\alpha\beta} = \partial_\mu h_1^{\alpha\mu} = 0$$

$$h_1^{00} = -\frac{4}{c^2} \sum_{\ell=0}^{+\infty} \frac{(-)^{\ell}}{\ell!} \partial_L \left(\frac{1}{r} I_L\right) \qquad L = i_1 i_2 \cdots i_{\ell}$$

$$h_1^{0i} = \frac{4}{c^3} \sum_{\ell=1}^{+\infty} \frac{(-)^{\ell}}{\ell!} \left\{ \partial_{L-1} \left(\frac{1}{r} I_{iL-1}^{(1)}\right) + \frac{\ell}{\ell+1} \varepsilon_{iab} \partial_{aL-1} \left(\frac{1}{r} J_{bL-1}\right) \right\}$$

$$h_1^{ij} = -\frac{4}{c^4} \sum_{\ell=2}^{+\infty} \frac{(-)^{\ell}}{\ell!} \left\{ \partial_{L-2} \left(\frac{1}{r} I_{ijL-2}^{(2)}\right) + \frac{2\ell}{\ell+1} \partial_{aL-2} \left(\frac{1}{r} \varepsilon_{ab(i} J_{j)bL-2}^{(1)}\right) \right\}$$

• multipole moments $I_L(u)$ and $J_L(u)$ are arbitrary functions of u = t - r/c

• mass $M \equiv I = \text{const}$, center-of-mass position $G_i \equiv I_i = \text{const}$ linear momentum $P_i \equiv I_i^{(1)} = 0$, angular momentum $J_i = \text{const}$

The plug-and-grind MPM algorithm

At n-th post-Minkowskian order we need to solve

$$\partial_{\nu} h_n^{\alpha\beta} = 0$$
$$\Box h_n^{\mu\nu} = \Lambda^{\mu\nu} \left(\underbrace{h_1, \cdots h_{n-1}}_{n-1} \right)$$

known from previous iterations

A particular solution with the required multipole structure reads

$$u_n^{\alpha\beta} = \underset{B=0}{\operatorname{FP}} \square_{\operatorname{Ret}}^{-1} \left[\left(\frac{r}{r_0} \right)^B \Lambda_n^{\alpha\beta} \right]$$

(a) In order to guarantee that the harmonic gauge condition $\partial_{\mu}h_{n}^{\alpha\mu} = 0$ is satisfied we add an homogeneous solution $v_{n}^{\alpha\beta}$ hence

$$h_n^{\alpha\beta} = u_n^{\alpha\beta} + v_n^{\alpha\beta}$$

• The MPM solution is generated as a functional of $I_L(u)$ and $J_L(u)$

The plug-and-grind MPM algorithm

Theorem 1

The MPM solution is the most general solution of Einstein's vacuum equations outside an isolated matter system

Theorem 2

When expanded in the near zone $(r \rightarrow 0)$ the MPM solution yields the general structure of the PN expansion as

$$h_{\mathsf{PN}}^{\alpha\beta}(\mathbf{x}, t, c) = \sum_{p \ge 2 q \ge 0} \frac{(\ln c)^q}{c^p} h_{(p,q)}^{\alpha\beta}(\mathbf{x}, t)$$

Theorem 3

When expanded in the far zone $(r \to \infty, u = \text{const})$ the MPM solution becomes asymptotically flat in Penrose's sense and recovers the Bondi-Sachs formalism

Gravitational-wave generation formalism

Asymptotic structure of radiating space-time

[Bondi et al. 1962; Sachs 1962; Penrose 1963, 1965]

Gravitational-wave generation formalism

Asymptotic structure of radiating space-time

[Bondi et al. 1962; Sachs 1962; Penrose 1963, 1965]

$$M_{\rm B}(u) = M_{\rm ADM} - \frac{G}{5c^7} \int_{-\infty}^{u} du' U_{ij}^{(1)}(u') U_{ij}^{(1)}(u') + \text{higher multipolar contributions}$$

where $U_{ij}(u) = I_{ij}^{(2)}(u) + O(G)$

Problem of the matching

[Lagerström et al. 1967; Burke & Thorne 1971; Kates 1980; Anderson et al. 1982; Blanchet 1998]

Most general multipolar(-post-Minkowskian) solution in the source's exterior

$$\mathcal{M}(h) = \Pr_{B=0} \Box_{\mathsf{ret}}^{-1} \left[\left(\frac{r}{r_0} \right)^B \mathcal{M}(\Lambda) \right] + \sum_{\ell=0}^{+\infty} \partial_L \left\{ \frac{M_L(t-r/c)}{r} \right\}$$

where the homogeneous solution is parametrized by multipole momentsMost general PN solution in the source's near zone

$$\bar{h} = \Pr_{\boldsymbol{B}=0} \Box_{\mathsf{sym}}^{-1} \left[\left(\frac{r}{r_0} \right)^{\boldsymbol{B}} \bar{\tau} \right] + \sum_{\ell=0}^{+\infty} \partial_L \left\{ \frac{A_L(t-r/c) - A_L(t+r/c)}{r} \right\}$$

where the homogeneous solution (regular when $r \to 0)$ is parametrized by "radiation reaction" multipole moments

Gravitational-wave generation formalism

Problem of the matching

[Lagerström et al. 1967; Burke & Thorne 1971; Kates 1980; Anderson et al. 1982; Blanchet 1998]

Problem of the matching

[Lagerström et al. 1967; Burke & Thorne 1971; Kates 1980; Anderson et al. 1982; Blanchet 1998]

Problem of the matching

[Lagerström et al. 1967; Burke & Thorne 1971; Kates 1980; Anderson et al. 1982; Blanchet 1998]

Gravitational-wave generation formalism

Problem of the matching

[Lagerström et al. 1967; Burke & Thorne 1971; Kates 1980; Anderson et al. 1982; Blanchet 1998]

matching equation $\implies \overline{\mathcal{M}(h)} = \mathcal{M}(\bar{h})$

Near-zone expansion of the multipole expansion

Lemma 1

$$\overline{\operatorname{FP}_{B=0}} \square_{\operatorname{ret}}^{-1} \left[\left(\frac{r}{r_0} \right)^B \mathcal{M}(\Lambda) \right] = \operatorname{FP}_{B=0} \square_{\operatorname{sym}}^{-1} \left[\left(\frac{r}{r_0} \right)^B \overline{\mathcal{M}}(\Lambda) \right] \\ - \frac{4G}{c^4} \underbrace{\sum_{\ell=0}^{+\infty} \partial_L \left\{ \frac{\mathcal{R}_L(t-r/c) - \mathcal{R}_L(t+r/c)}{2r} \right\}}_{2r} \right]$$

antisymmetric type homogeneous solution

where the radiation reaction multipole moments are

$$\mathcal{R}_{L}(u) = \Pr_{B=0} \int d^{3}\mathbf{x} \left(\frac{r}{r_{0}}\right)^{B} \hat{x}_{L} \int_{1}^{+\infty} dz \, \gamma_{\ell}(z) \underbrace{\mathcal{M}(\tau)(\mathbf{x}, t - zr/c)}_{\text{multipole expansion of the pseudo-tensor}}$$

The finite part at B = 0 plays the role of an UV regularization $(r \rightarrow 0)$

Far-zone expansion of the PN expansion

Lemma 2

$$\mathcal{M}\left(\underset{B=0}{\operatorname{FP}}\Box_{\operatorname{sym}}^{-1}\left[\left(\frac{r}{r_{0}}\right)^{B}\bar{\tau}\right]\right) = \underset{B=0}{\operatorname{FP}}\Box_{\operatorname{sym}}^{-1}\left[\left(\frac{r}{r_{0}}\right)^{B}\mathcal{M}(\bar{\tau})\right] - \frac{1}{4\pi}\underbrace{\sum_{\ell=0}^{+\infty}\partial_{L}\left\{\frac{\mathcal{F}_{L}(t-r/c) + \mathcal{F}_{L}(t+r/c)}{2r}\right\}}_{-\frac{1}{4\pi}}$$

symmetric type homogeneous solution

$$\mathcal{F}_{L}(u) = \Pr_{B=0} \int \mathrm{d}^{3}\mathbf{x} \left(\frac{r}{r_{0}}\right)^{B} \hat{x}_{L} \int_{-1}^{1} \mathrm{d}z \, \delta_{\ell}(z) \underbrace{\bar{\tau}(\mathbf{x}, t - zr/c)}_{\text{PN expansion of the pseudo-tensor}}$$

The finite part at B=0 plays the role of an IR regularization $(r \to +\infty)$

General solution of the matching equation

In the far zone

$$\mathcal{M}(h) = \underset{B=0}{\operatorname{FP}} \square_{\operatorname{ret}}^{-1} \left[\left(\frac{r}{r_0} \right)^B \mathcal{M}(\Lambda) \right] - \frac{4G}{c^4} \underbrace{\sum_{\ell=0}^{+\infty} \partial_L \left\{ \frac{\mathcal{F}_L(t-r/c)}{r} \right\}}_{\operatorname{source's multipole moments}}$$

In the near zone [Poujade & Blanchet 2002; Blanchet, Faye & Nissanke 2005]

$$\bar{h} = \Pr_{B=0} \Box_{\text{ret}}^{-1} \left[\left(\frac{r}{r_0} \right)^B \bar{\tau} \right] - \frac{4G}{c^4} \underbrace{\sum_{\ell=0}^{+\infty} \partial_L \left\{ \frac{\mathcal{R}_L(t-r/c) - \mathcal{R}_L(t+r/c)}{r} \right\}}_{\text{non-local tail term (4PN order)}}$$

POST-NEWTONIAN PARAMETERS
PN parameters in the orbital phase evolution

• The PN parameters come from a mixture of conservative and dissipative effects through the energy balance equation

PN parameters in the orbital phase evolution

• The PN parameters come from a mixture of conservative and dissipative effects through the energy balance equation

• The orbital phase $\phi = \int \omega \, dt$ is obtained as a function of $x = \left(\frac{GM\omega}{c^3}\right)^{2/3}$ and the mass ratio $\nu = \frac{m_1 m_2}{(m_1 + m_2)^2}$

$$\phi(x) = \phi_0 - \frac{x^{-5/2}}{32\nu} \sum_p \left(\varphi_{p\mathsf{PN}}(\nu) + \varphi_{p\mathsf{PN}}^{(l)}(\nu) \, \log x\right) x^p + \mathcal{O}[(\log x)^2]$$

Post-Newtonian parameters

The inspiral-merger-ringdown (IMR) model

Effective methods that interpolate between the different phases play a crucial role

- The effective-one-body (EOB) approach [Buonanno & Damour 1999]
- The inspiral-merger-ringdown (IMR) [Ajith et al. 2008]

$$\{\underbrace{\mathsf{PN \ parameters}}_{\text{inspiral}}; \underbrace{\beta_2, \beta_3}_{\text{intermediate}}; \underbrace{\alpha_2, \alpha_3, \alpha_4}_{\text{merger-ringdown}}\}$$

The known 3.5PN parameters

They were computed from the MPM-PN approach [Blanchet 2014 for a review]

$\varphi_{\rm OPN} =$	$1 \longleftarrow Einstein \ quadrupole \ formula$
$\varphi_{\rm 1PN} =$	$\frac{3715}{1008} + \frac{55}{12}\nu$
$\varphi_{1.5\rm PN} =$	-10π
$\varphi_{\rm 2PN} =$	$\frac{15293365}{1016064} + \frac{27145}{1008}\nu + \frac{3085}{144}\nu^2$
$\varphi_{\rm 2.5PN}^{(l)} =$	$\left(\frac{38645}{1344} - \frac{65}{16}\nu\right)\pi$
$arphi_{ m 3PN} = +$	$\frac{12348611926451}{18776862720} - \frac{160}{3}\pi^2 - \frac{1712}{21}\gamma_{E} - \frac{3424}{21}\ln 2 \\ \left(-\frac{15737765635}{12192768} + \frac{2255}{48}\pi^2\right)\nu + \frac{76055}{6912}\nu^2 - \frac{127825}{5184}\nu^3$
$\varphi^{(l)}_{\rm 3PN} =$	$-\frac{856}{21}$
$\varphi_{\rm 3.5PN} =$	$\left(\tfrac{77096675}{2032128} + \tfrac{378515}{12096}\nu - \tfrac{74045}{6048}\nu^2\right)\pi$

Post-Newtonian parameters

Measurement of PN parameters [LIGO/Virgo 2017, 2020]

Luc Blanchet $(\mathcal{GR} \in \mathbb{CO})$

Inspiral-Merger-Ringdown consistency test [LIGO/Virgo 2016]

Post-Newtonian parameters

The gravitational wave tail effect [Blanchet & Damour 1988, 1992]

Tail effects in PN parameters

$$\begin{split} \varphi_{0\mathsf{PN}} &= 1 & \text{tail terms} \\ \varphi_{1\mathsf{PN}} &= \frac{3715}{1008} + \frac{55}{12}\nu \\ \varphi_{1.\mathsf{5PN}} &= -10\pi \\ \varphi_{2\mathsf{PN}} &= \frac{15293365}{1016064} + \frac{27145}{1008}\nu + \frac{3085}{144}\nu^2 \\ \varphi_{2.\mathsf{5PN}}^{(l)} &= \left(\frac{38645}{1344} - \frac{65}{16}\nu\right)\pi \\ \varphi_{3\mathsf{PN}} &= \frac{12348611926451}{18776862720} - \frac{160}{3}\pi^2 - \frac{1712}{21}\gamma_{\mathsf{E}} - \frac{3424}{21}\ln 2 \\ &+ \left(-\frac{15737765635}{12192768} + \frac{2255}{48}\pi^2\right)\nu + \frac{76055}{6912}\nu^2 - \frac{127825}{5184}\nu^3 \\ \varphi_{3\mathsf{PN}}^{(l)} &= -\frac{856}{21} \\ \varphi_{3.\mathsf{5PN}} &= \left(\frac{77096675}{2032128} + \frac{378515}{12096}\nu - \frac{74045}{6048}\nu^2\right)\pi \end{split}$$

Tail effects in PN parameters

Luc Blanchet $(\mathcal{GR} \in \mathbb{CO})$

The 4.5PN radiative quadrupole moment

Toward 4.5PN parameters

• The 4.5PN term is also known and due to the 4.5PN tail-of-tail-of-tail integral for circular orbits [Marchand, Blanchet & Faye 2017; Messina & Nagar 2017]

$$\begin{split} \varphi_{4.5\text{PN}} &= \left(-\frac{93098188434443}{150214901760} + \frac{80}{3}\pi^2 + \frac{1712}{21}\gamma_{\text{E}} + \frac{3424}{21}\ln 2 \right. \\ &+ \left[\frac{1492917260735}{1072963584} - \frac{2255}{48}\pi^2 \right]\nu - \frac{45293335}{1016064}\nu^2 - \frac{10323755}{1596672}\nu^3 \right) \pi \\ \varphi_{4.5\text{PN}}^{(l)} &= \frac{856}{21}\pi \end{split}$$
 tail-of-tail terms

. However the 4PN term is only known from perturbative BH theory in the visct-mass limit u o 0 (Tagoshi & construction of the function & Sasaki 1996)

$$\begin{split} \varphi_{4\text{PN}} &= \frac{2550713843998885153}{2214468081745920} - \frac{45245}{756}\pi^2 - \frac{9203}{126}\gamma_{\text{E}} - \frac{252755}{2646}\ln 2 \\ &- \frac{78975}{1568}\ln 3 + \mathcal{O}(\nu) \end{split}$$
$$\varphi_{4\text{PN}}^{(l)} &= -\frac{9203}{252} + \mathcal{O}(\nu) \end{split}$$

Toward 4.5PN parameters

• The 4.5PN term is also known and due to the 4.5PN tail-of-tail-of-tail integral for circular orbits [Marchand, Blanchet & Faye 2017; Messina & Nagar 2017]

$$\begin{split} \varphi_{4.5\text{PN}} &= \left(-\frac{93098188434443}{150214901760} + \frac{80}{3}\pi^2 + \frac{1712}{21}\gamma_{\text{E}} + \frac{3424}{21}\ln 2 \right. \\ &+ \left[\frac{1492917260735}{1072963584} - \frac{2255}{48}\pi^2 \right]\nu - \frac{45293335}{1016064}\nu^2 - \frac{10323755}{1596672}\nu^3 \right) \pi \\ \varphi_{4.5\text{PN}}^{(l)} &= \frac{856}{21}\pi \end{split}$$
 tail-of-tail terms

• However the 4PN term is only known from perturbative BH theory in the test-mass limit $\nu \to 0$ [Tagoshi & Sasaki 1994; Tanaka, Tagoshi & Sasaki 1996]

$$\begin{split} \varphi_{4\mathsf{PN}} &= \frac{2550713843998885153}{2214468081745920} - \frac{45245}{756}\pi^2 - \frac{9203}{126}\gamma_{\mathsf{E}} - \frac{252755}{2646}\ln 2 \\ &- \frac{78975}{1568}\ln 3 + \mathcal{O}(\nu) \end{split}$$
$$\varphi_{4\mathsf{PN}}^{(l)} &= -\frac{9203}{252} + \mathcal{O}(\nu) \end{split}$$

FINITE-SIZE EFFECTS IN COMPACT BINARIES

Constraining the neutron star equation of state [LIGO/Virgo 2017]

 $\Lambda_a = \frac{2}{3} \underbrace{k_a}_{Gm_a} \left(\frac{c^2 R_a}{Gm_a} \right)^{\dagger}$ number

Finite-size effects in compact binaries

Equations of motion of N extended bodies

$$m_{a} = \int_{\mathcal{V}_{a}} d^{3}\mathbf{x} \,\rho(\mathbf{x},t) \qquad \mathbf{x}_{a}(t) = \frac{1}{m_{a}} \int_{\mathcal{V}_{a}} d^{3}\mathbf{x} \,\mathbf{x} \,\rho(\mathbf{x},t) \\ \mathbf{x} = \mathbf{x}_{a}(t) + \mathbf{z}_{a}(\mathbf{x},t) \qquad Q_{a}^{ij} = \int_{\mathcal{V}_{a}} d^{3}\mathbf{z}_{a} \,\rho_{a}(\mathbf{z}_{a},t) \left(z_{a}^{i}z_{a}^{j} - \frac{1}{3}\delta^{ij}z_{a}^{2}\right) \\ \boxed{\alpha \sim \frac{|\mathbf{z}_{a}|}{r_{ab}} \ll 1}$$

Equations of motion of N extended bodies

• The Newtonian equations of motion of extended (spinless) bodies are

$$m_a \frac{\mathrm{d}v_a^i}{\mathrm{d}t} = G \sum_{b \neq a} \left[m_a m_b \frac{\partial}{\partial x_a^i} \left(\frac{1}{r_{ab}} \right) + \underbrace{\frac{1}{2} \left(m_a \, Q_b^{jk} + m_b \, Q_a^{jk} \right) \frac{\partial^3}{\partial x_a^i \partial x_a^j \partial x_a^k} \left(\frac{1}{r_{ab}} \right)}_{\partial x_a^i \partial x_a^j \partial x_a^k} \right]$$

effect of the quadrupole moments

② The conserved energy of the N-body system is the sum of the internal energies E_a and of the orbital contributions

$$E = \sum_{a} \left\{ E_{a} + \frac{1}{2} m_{a} \boldsymbol{v}_{a}^{2} - \frac{G}{2} \sum_{b \neq a} \frac{m_{a} m_{b}}{r_{ab}} - \frac{1}{2} Q_{a}^{ij} \mathcal{G}_{a}^{ij} \right\}$$

③ The tidal quadrupole moment felt by the body a is

$$\mathcal{G}_{a}^{ij} = \frac{\partial^{2}U_{a}}{\partial x_{a}^{i}\partial x_{a}^{j}} \quad \text{where} \quad U_{a} = \sum_{b \neq a} \frac{Gm_{b}}{r_{ab}}$$

Equations of motion of N extended bodies

• The coupling of the quadrupole moments with the external tidal field \mathcal{G}_a^{ij} implies a variation of the internal energy given by

$$\frac{\mathrm{d}E_a}{\mathrm{d}t} = \frac{1}{2}\dot{Q}_a^{ij}\,\mathcal{G}_a^{ij}$$

Over the second seco

$$Q_a^{ij} = \mu_a \, \mathcal{G}_a^{ij}$$

where μ_a is a deformability or polarizability coefficient The conserved energy of the system simplifies in this case

$$E = \sum_{a} \left\{ \frac{1}{2} m_a \boldsymbol{v}_a^2 - \frac{G}{2} \sum_{b \neq a} \frac{m_a m_b}{r_{ab}} - \frac{\mu_a}{4} \,\mathcal{G}_a^{ij} \mathcal{G}_a^{ij} \right\}$$

Very importantly the dynamics admits a Lagrangian formulation

$$L = \sum_{a} \left\{ \frac{1}{2} m_a \boldsymbol{v}_a^2 + \frac{G}{2} \sum_{b \neq a} \frac{m_a m_b}{r_{ab}} + \frac{\mu_a}{4} \, \mathcal{G}_a^{ij} \mathcal{G}_a^{ij} \right\}$$

GW flux of extended two-body systems

• We compute the GW flux using the quadrupole formula, where the total quadrupole moment of the system is $(x^i = x_1^i - x_2^i)$

$$Q^{ij} = \overbrace{m\nu\left(x^{i}x^{j} - \frac{1}{3}\delta^{ij}r^{2}\right)}^{\text{orbital quadrupole moment}} + Q_{1}^{ij} + Q_{2}^{ij}$$

Is For two bodies moving on a circular orbit this yields

$$\mathcal{F}^{\rm GW} = \frac{32G}{5c^5} r^4 \omega^6 m^2 \nu^2 \bigg[1 + 6 \big(m_1^4 \Lambda_1 + m_2^4 \Lambda_2 \big) \frac{G^5 m}{r^5 c^{10}} \bigg]$$

O The internal structure is characterized by the dimensionless parameter

$$\Lambda_a = \frac{c^{10}\mu_a}{G^4m_a^5} = \frac{2}{3}k_a \bigg(\frac{c^2R_a}{Gm_a}\bigg)^5$$

Influence of the internal structure on the phase

• Applying the energy balance equation $\frac{dE}{dt} = -\mathcal{F}^{GW}$ we obtain the modification of the phase due to the internal structure as

$$\phi = \phi_0 - \frac{x^{-5/2}}{32\nu} \left[1 + \underbrace{\frac{39}{39}\tilde{\Lambda} x^5}_{8} \right] \qquad x = \left(\frac{Gm\omega}{c^3}\right)^{2/3}$$

The tidal interaction on two bodies moving on a circular orbit depends on [Flanagan & Hinderer 2008]

$$\tilde{\Lambda} = \frac{16}{13} \left[\frac{(m_1 + 11m_2)m_1^3}{m^4} \Lambda_1 + \frac{(m_2 + 11m_1)m_2^3}{m^4} \Lambda_2 \right]$$

• The effect of the internal structure is formally a very small effect for compact objects comparable to an orbital correction of the order 5PN $\sim 1/c^{10}$

Dominant quadrupole tidal effect in BNS

Tidal contribution to the GW chirp

$$x(t) = \frac{1}{4} \theta^{-1/4} \left[1 + \frac{39}{8192} \tilde{\Lambda} \theta^{-5/4} \right]$$
$$\phi(t) = \phi_0 - \frac{x^{-5/2}}{32\nu} \left[1 + \underbrace{\frac{39}{8} \tilde{\Lambda} x^5}_{\text{5PN effect}} \right]$$

with
$$x = (\frac{Gm\omega}{c^3})^{2/3}$$
 and $\theta = \frac{\nu c^3}{5Gm}(t_{\rm c}-t)$

• The polarizability $\overline{\Lambda}$ depends on the source mass of the NS (for a given EoS) while the point-particle part of the signal depends on the redshifted mass

Effective action for compact binary systems

• Hierarchy of length scales in a compact binary system

• The Newtonian result can be reformulated as an effective matter action

$$S_{\text{eff}} = \sum_{a} \int dt \left[\underbrace{\frac{1}{2} m_a v_a^2 + \frac{1}{2} \sum_{b \neq a} \frac{G m_b}{r_{ab}}}_{5\text{PN}} + \underbrace{\frac{\mu_a}{4} \mathcal{G}_a^{ij} \mathcal{G}_a^{ij}}_{5\text{PN}} \right]$$

Effective field theory for extended compact objects

[Goldberger & Rothstein 2006; Damour & Nagar 2009]

Matter action with non-minimal world-line couplings

$$S_{\text{eff}} = \sum_{a} \int \mathrm{d}\tau_{a} \left\{ -m_{a} + \sum_{\ell=2}^{+\infty} \frac{1}{2\ell!} \left[\underbrace{\mu_{a}^{(\ell)}}_{\text{mass type}} (\mathcal{G}_{\hat{L}}^{a})^{2} + \frac{\ell}{\ell+1} \underbrace{\sigma_{a}^{(\ell)}}_{\text{current type}} (\mathcal{H}_{\hat{L}}^{a})^{2} \right] + \cdots \right\}$$

• Tidal multipole moments [Thorne & Hartle 1985; Zhang 1986]

$$\begin{split} \mathcal{G}_{\hat{L}}^{a} &= - \left[\nabla_{\langle \hat{i}_{1}} \cdots \nabla_{\hat{i}_{\ell-2}} C_{\hat{i}_{\ell-1} \underline{\hat{0}} \hat{i}_{\ell} \rangle \hat{0}} \right]_{a} \\ \mathcal{H}_{\hat{L}}^{a} &= 2 \Big[\nabla_{\langle \hat{i}_{1}} \cdots \nabla_{\hat{i}_{\ell-2}} C_{\hat{i}_{\ell-1} \underline{\hat{0}} \hat{i}_{\ell} \rangle \hat{0}} \Big]_{a} \end{split}$$

where $C_{\hat{i}0\hat{j}0}$ are the components of the Weyl tensor $C_{\mu\nu\rho\sigma}$ projected on a local tetrad and evaluated at the location of the particle using a self-field regularization

High-order PN tidal effects

A recent result [Henry, Faye & Blanchet 2020abc] is the orbital SPA phase at the next-to-next-to-leading order for equal NS binaries on circular orbit

$$\begin{split} \psi_{\mathsf{tidal}} &= -\frac{117}{2} v^5 \bigg\{ \widetilde{\mu}^{(2)} + \overbrace{\left(\frac{3115}{1248} \widetilde{\mu}^{(2)} + \frac{370}{117} \widetilde{\sigma}^{(2)}\right) v^2}^{\mathsf{NLO}} \\ &- \pi \widetilde{\mu}^{(2)} v^3 + \underbrace{\left(\frac{379931975}{44579808} \widetilde{\mu}^{(2)} + \frac{935380}{66339} \widetilde{\sigma}^{(2)} + \frac{500}{351} \widetilde{\mu}^{(3)}\right) v^4}_{-\pi \left(\frac{2137}{546} \widetilde{\mu}^{(2)} + \frac{592}{117} \widetilde{\sigma}^{(2)}\right) v^5} \bigg\}^{\mathsf{NNLO}} \end{split}$$

High-order PN tidal effects

A recent result [Henry, Faye & Blanchet 2020abc] is the orbital SPA phase at the next-to-next-to-leading order for equal NS binaries on circular orbit

$$\begin{split} \psi_{\text{tidal}} &= -\frac{117}{2} v^5 \bigg\{ \widetilde{\mu}^{(2)} + \overbrace{\left(\frac{3115}{1248} \widetilde{\mu}^{(2)} + \frac{370}{117} \widetilde{\sigma}^{(2)}\right) v^2}^{\text{NLO}} \\ & -\pi \widetilde{\mu}^{(2)} v^3 + \underbrace{\left(\frac{379931975}{44579808} \widetilde{\mu}^{(2)} + \frac{935380}{66339} \widetilde{\sigma}^{(2)} + \frac{500}{351} \widetilde{\mu}^{(3)}\right) v^4}_{\text{O}\pi \left(\frac{2137}{546} \widetilde{\mu}^{(2)} + \frac{592}{117} \widetilde{\sigma}^{(2)}\right) v^5} \bigg\} \\ \end{split}$$

SYNERGY WITH THE EFFECTIVE FIELD THEORY

Fokker action versus effective action

$$S_{\mathbf{g}}[\boldsymbol{x},h] = \frac{c^3}{16\pi G} \int d^4 x \sqrt{-g} \left[\underbrace{\bigcap_{\text{Lagrangian}}^{\text{Einstein-Hilbert}}}_{\text{gauge-fixing term}} - \frac{1}{2} \frac{\Gamma^{\mu} \Gamma_{\mu}}{16\pi G} \right] - \sum_{a} \underbrace{m_a \int d\tau_a}_{\text{point particles}} \frac{1}{2} \frac{\Gamma^{\mu} \Gamma_{\mu}}{16\pi G} = \sum_{a} \underbrace{m_a \int d\tau_a}_{\text{point particles}} \frac{1}{2} \frac{\Gamma^{\mu} \Gamma_{\mu}}{16\pi G} = \sum_{a} \underbrace{m_a \int d\tau_a}_{\text{point particles}} \frac{1}{2} \frac{\Gamma^{\mu} \Gamma_{\mu}}{16\pi G} = \sum_{a} \underbrace{m_a \int d\tau_a}_{\text{point particles}} \frac{1}{2} \frac{\Gamma^{\mu} \Gamma_{\mu}}{16\pi G} = \sum_{a} \underbrace{m_a \int d\tau_a}_{\text{point particles}} \frac{1}{2} \frac{\Gamma^{\mu} \Gamma_{\mu}}{16\pi G} = \sum_{a} \underbrace{m_a \int d\tau_a}_{\text{point particles}} \frac{1}{2} \underbrace{\Gamma^{\mu} \Gamma_{\mu}}_{\text{particles}} \frac{1$$

• **Traditional PN approach:** compute the Fokker action by inserting an explicit iterated PN solution of the Einstein field equations

$$\begin{split} h^{\mu\nu}(\mathbf{x},t) &\longrightarrow \overline{h}^{\mu\nu}(\mathbf{x}; \boldsymbol{x}_{a}(t), \boldsymbol{v}_{a}(t), \cdots) \\ S_{\mathsf{Fokker}}[\boldsymbol{x}] &= S_{\mathsf{g}}[\boldsymbol{x}, \overline{h}(\boldsymbol{x})] \end{split}$$

• Effective field theory: compute the effective action by integrating over the gravitational degrees of freedom

$$\mathrm{e}^{\mathrm{i}S_{\mathrm{eff}}[\boldsymbol{x}]} = \int \mathcal{D}[h] \, \mathrm{e}^{\mathrm{i}S_{\mathrm{g}}[\boldsymbol{x},h]}$$

Diagrammatic expansion in EFT

Effective Field Theory

Post-Newtonian

• emission from a quadrupole source

• tail effect in radiation field (1.5PN)

• non-linear memory effect (2.5PN)

• radiation reaction (2.5PN)

• tail in radiation reaction (4PN)

The EFT is equivalent to the traditional PN at the level of tree diagrams

Action for simple non-local tails derived by EFT [Foffa & Sturani 2019]

• Using the relation between the tail self-energy diagram and the imaginary part of the tail radiation diagram

$$S^{\mathsf{tail}} = \sum_{\ell=2}^{+\infty} \frac{G^2 M}{c^{2\ell+4}} \iint \frac{\mathrm{d}t \mathrm{d}t'}{|t-t'|} \left[\mathbf{a}_{\ell} I_L^{(\ell+1)}(t) I_L^{(\ell+1)}(t') + \frac{\mathbf{b}_{\ell}}{c^2} J_L^{(\ell+1)}(t) J_L^{(\ell+1)}(t') \right]$$

- The coefficients are those which appear in the multipole expansion of the gravitational wave energy flux [Thorne 1980]
- The proof of this action by PN methods is tedious and limited to 1PN
- However the multipole moments I_L and J_L are computed up to high PN order by traditional PN methods [Blanchet & lyer 2004]

High-order logarithmic tails in the circular energy

[Blanchet, Foffa, Larrouturou & Sturani 2020]

Current knowledge for the mass quadrupole moment is limited to 3PN order so we can compute the logarithmic tail terms to NNNL/7PN order

$$E^{\text{tail}} = -\frac{m\nu^2}{2} x^5 \log x \left\{ \frac{448}{15} + \left(-\frac{4988}{35} - \frac{656}{5}\nu\right) x \right. \\ \left. + \left(-\frac{1967284}{8505} + \frac{914782}{945}\nu + \frac{32384}{135}\nu^2\right) x^2 \right. \\ \left. + \left[\frac{85229654387}{16372125} + \left(\frac{2132}{45}\pi^2 - \frac{41161601}{51030}\right)\nu - \frac{13476541}{5670}\nu^2 - \frac{289666}{1215}\nu^3 \right. \\ \left. - \frac{1424384}{1575}\left(\gamma_{\mathsf{E}} + \log 4\right) - \frac{356096}{1575}\log x\right] x^3 \right. \\ \left. + \frac{64}{15}\sum_{n=3}^{+\infty} \frac{(6n+1)(4\beta_I)^{n-1}}{n!} x^{3(n-1)} (\log x)^{n-1} + \cdots \right\}$$

High-order logarithmic tails in the circular energy

[Blanchet, Foffa, Larrouturou & Sturani 2020]

Current knowledge for the mass quadrupole moment is limited to 3PN order so we can compute the logarithmic tail terms to NNNL/7PN order

$$E^{\text{tail}} = -\frac{m\nu^2}{2} x^5 \log x \Biggl\{ \frac{448}{15} + \left(-\frac{4988}{35} - \frac{656}{5}\nu\right) x \Biggr\}$$
$$+ \left(-\frac{1967284}{8505} + \frac{914782}{945}\nu + \frac{32384}{135}\nu^2\right) x^2 \Biggr\}$$
$$+ \left[\frac{85229654387}{16372125} + \left(\frac{2132}{45}\pi^2 - \frac{41161601}{51030}\right)\nu - \frac{13476541}{5670}\nu^2 - \frac{289666}{1215}\nu^3 - \frac{1424384}{1575}\left(\gamma_{\mathsf{E}} + \log 4\right) - \frac{356096}{1575}\log x \Biggr] x^3 \Biggr\}$$
$$+ \frac{64}{15} \sum_{n=3}^{+\infty} \frac{(6n+1)(4\beta_I)^{n-1}}{n!} x^{3(n-1)} (\log x)^{n-1} + \cdots \Biggr\}$$

4PN-7PN tails

Luc Blanchet $(\mathcal{GR} \in \mathbb{CO})$

High-order logarithmic tails in the circular energy

[Blanchet, Foffa, Larrouturou & Sturani 2020]

Current knowledge for the mass quadrupole moment is limited to 3PN order so we can compute the logarithmic tail terms to NNNL/7PN order

$$\begin{split} E^{\text{tail}} &= -\frac{m\nu^2}{2} x^5 \log x \bigg\{ \frac{448}{15} + \left(-\frac{4988}{35} - \frac{656}{5}\nu\right) x \\ &+ \left(-\frac{1967284}{8505} + \frac{914782}{945}\nu + \frac{32384}{135}\nu^2\right) x^2 \\ &+ \left[\frac{85229654387}{16372125} + \left(\frac{2132}{45}\pi^2 - \frac{41161601}{51030}\right)\nu - \frac{13476541}{5670}\nu^2 - \frac{289666}{1215}\nu^3 \right. \\ &\left. - \frac{1424384}{1575} \left(\gamma_{\mathsf{E}} + \log 4\right) - \frac{356096}{1575} \log x \right] x^3 \\ &+ \frac{64}{15} \sum_{n=3}^{+\infty} \frac{(6n+1)(4\beta_I)^{n-1}}{n!} x^{3(n-1)} (\log x)^{n-1} + \cdots \bigg\} \end{split}$$

4PN-7PN tails 7PN tail-of-tail-of-tails

Luc Blanchet $(\mathcal{GR} \in \mathbb{CO})$

High-order logarithmic tails in the circular energy

[Blanchet, Foffa, Larrouturou & Sturani 2020]

Current knowledge for the mass quadrupole moment is limited to 3PN order so we can compute the logarithmic tail terms to NNNL/7PN order

$$E^{\text{tail}} = -\frac{m\nu^2}{2} x^5 \log x \left\{ \frac{448}{15} + \left(-\frac{4988}{35} - \frac{656}{5}\nu\right) x \right. \\ \left. + \left(-\frac{1967284}{8505} + \frac{914782}{945}\nu + \frac{32384}{135}\nu^2\right) x^2 \right. \\ \left. + \left[\frac{85229654387}{16372125} + \left(\frac{2132}{45}\pi^2 - \frac{41161601}{51030}\right)\nu - \frac{13476541}{5670}\nu^2 - \frac{289666}{1215}\nu^3 \right. \\ \left. - \frac{1424384}{1575}\left(\gamma_{\mathsf{E}} + \log 4\right) - \frac{356096}{1575}\log x\right] x^3 \right. \\ \left. + \frac{64}{15} \sum_{n=3}^{+\infty} \frac{(6n+1)(4\beta_I)^{n-1}}{n!} x^{3(n-1)} (\log x)^{n-1} + \cdots \right\}$$

4PN-7PN tails 7PN tail-of-tail-of-tails leading (3n+1)PN $(\log x)^n$ terms

Consistency with gravitational self-force calculations

The 7PN tail-of-tail terms are computed by combining information from high-order GSF calculations of the redshift invariant [Kavanagh, Ottewill & Wardell 2015]

Leading powers of logarithms from RG theory

• The renormalization group equations for mass and angular momentum are (with μ the renormalization scale) [Goldberger, Ross & Rothstein 2014]

$$\frac{\mathrm{l}\log M(\mu)}{\mathrm{d}\log\mu} = -\frac{2G^2}{5} \left[2I_{ij}^{(1)}I_{ij}^{(5)} - 2I_{ij}^{(2)}I_{ij}^{(4)} + I_{ij}^{(3)}I_{ij}^{(3)} \right]$$
$$\frac{\mathrm{d}J^i(\mu)}{\mathrm{d}\log\mu} = -\frac{8G^2M}{5}\varepsilon^{ijk} \left[I_{jl}I_{kl}^{(5)} - I_{jl}^{(1)}I_{kl}^{(4)} + I_{jl}^{(2)}I_{kl}^{(3)} \right]$$

The quadrupole moment itself undergoes a logarithmic renormalization under the RG flow (in the Fourier domain) (second one) (second conterger & Ross 2000)

$$\tilde{I}_{ij}(\omega,\mu) = \bar{\mu}^{\sigma_i (GM\omega)^2} \tilde{I}_{ij}(\omega,\mu_0)$$

with $\bar{\mu} \equiv \mu/\mu_0$ and $\beta_I = -\frac{214}{100}$ is the beta function coefficient

Leading powers of logarithms from RG theory

• The renormalization group equations for mass and angular momentum are (with μ the renormalization scale) [Goldberger, Ross & Rothstein 2014]

$$\frac{\mathrm{l}\log M(\mu)}{\mathrm{d}\log \mu} = -\frac{2G^2}{5} \left[2I_{ij}^{(1)}I_{ij}^{(5)} - 2I_{ij}^{(2)}I_{ij}^{(4)} + I_{ij}^{(3)}I_{ij}^{(3)} \right]$$
$$\frac{\mathrm{d}J^i(\mu)}{\mathrm{d}\log \mu} = -\frac{8G^2M}{5}\varepsilon^{ijk} \left[I_{jl}I_{kl}^{(5)} - I_{jl}^{(1)}I_{kl}^{(4)} + I_{jl}^{(2)}I_{kl}^{(3)} \right]$$

• The quadrupole moment itself undergoes a logarithmic renormalization under the RG flow (in the Fourier domain) [Blanchet 1998; Goldberger & Ross 2010]

$$\tilde{I}_{ij}(\omega,\mu) = \bar{\mu}^{\beta_{I}(GM\omega)^{2}} \tilde{I}_{ij}(\omega,\mu_{0})$$

with $\bar{\mu}\equiv \mu/\mu_0$ and $\beta_I=-\frac{214}{105}$ is the beta function coefficient

Leading powers of logarithms from RG theory

Integrating and averaging over one orbital scale, then specializing to quasi-circular orbits

$$E = \frac{1}{2}m\nu r^{2}\omega^{2} - \frac{Gm^{2}\nu}{r} - 8m\nu^{2}\frac{\gamma^{2}}{\beta_{I}}\sum_{n=1}^{+\infty}\frac{1}{n!}\left(8\beta_{I}\gamma^{3}\log v\right)^{n}$$
$$J = m\nu r^{2}\omega - \frac{48}{5}G^{2}m^{3}\nu^{2}\frac{\omega}{\beta_{I}\gamma}\sum_{n=1}^{+\infty}\frac{1}{n!}\left(8\beta_{I}\gamma^{3}\log v\right)^{n}$$

. For circular orbits the two invariants $E(\omega)$ and $J(\omega)$ are linked by the "thermodynamic" relation or first law of binary mechanics

$$\frac{\mathrm{d}E}{\mathrm{d}\omega} = \omega \frac{\mathrm{d}J}{\mathrm{d}\omega}$$
Leading powers of logarithms from RG theory

Integrating and averaging over one orbital scale, then specializing to quasi-circular orbits

$$E = \frac{1}{2}m\nu r^{2}\omega^{2} - \frac{Gm^{2}\nu}{r} - 8m\nu^{2}\frac{\gamma^{2}}{\beta_{I}}\sum_{n=1}^{+\infty}\frac{1}{n!}\left(8\beta_{I}\gamma^{3}\log v\right)^{n}$$
$$J = m\nu r^{2}\omega - \frac{48}{5}G^{2}m^{3}\nu^{2}\frac{\omega}{\beta_{I}\gamma}\sum_{n=1}^{+\infty}\frac{1}{n!}\left(8\beta_{I}\gamma^{3}\log v\right)^{n}$$

$$\frac{\mathrm{d}E}{\mathrm{d}\omega} = \omega \frac{\mathrm{d}J}{\mathrm{d}\omega}$$

Leading powers of logarithms from RG theory

This gives three relations for the three unknowns $E(\omega)$ and $J(\omega)$ and $r(\omega)$

$$\begin{split} E^{\text{leading } (\log)^n} &= -\frac{m\nu \, x}{2} \left[1 + \frac{64\nu}{15} \sum_{n=1}^{+\infty} \frac{6n+1}{n!} (4\beta_I)^{n-1} \, \frac{x^{3n+1} (\log x)^n}{x^{3n+1} (\log x)^n} \right] \\ J^{\text{leading } (\log)^n} &= \frac{m^2\nu}{\sqrt{x}} \left[1 - \frac{64\nu}{15} \sum_{n=1}^{+\infty} \frac{3n+2}{n!} (4\beta_I)^{n-1} \, \frac{x^{3n+1} (\log x)^n}{x^{3n+1} (\log x)^n} \right] \end{split}$$

in agreement with high-order GSF calculations up to 22PN order !

RADIATION REACTION AND BALANCE EQUATIONS

Radiation reaction and balance equations

Conserved Newtonian energy in the source

$$E = \int \mathrm{d}^3 \mathbf{x} \, \rho \left[\frac{\mathbf{v}^2}{2} + \Pi - \frac{U}{2} \right]$$

Selection equations of motion in the source

$$\rho \frac{\mathrm{d}v^i}{\mathrm{d}t} = -\partial_i P + \rho \partial_i U - \overbrace{\frac{2G}{5c^5}\rho \, x^j}^{\mathbf{T}} \frac{\mathrm{d}^5 Q_{ij}}{\mathrm{d}t^5}$$

reac

S Energy loss is due to the work of the radiation reaction force

$$\frac{\mathrm{d}E}{\mathrm{d}t} = \int \mathrm{d}^3 \mathbf{x} \, \boldsymbol{v} \cdot \boldsymbol{F}^{\mathsf{reac}} = -\frac{G}{5c^5} \frac{\mathrm{d}^3 \boldsymbol{Q}_{ij}}{\mathrm{d}t^3} \frac{\mathrm{d}^3 \boldsymbol{Q}_{ij}}{\mathrm{d}t^3} + \mathsf{total} \mathsf{ time derivative}$$

Obtain the balance equation after averaging over one period

$$\langle \frac{\mathrm{d}E}{\mathrm{d}t} \rangle = -\langle \mathcal{F}^{\mathsf{GW}} \rangle \implies \phi = \int \omega \,\mathrm{d}t = \int \frac{\omega}{\dot{\omega}} \,\mathrm{d}\omega$$

Radiation reaction to 4PN order [Blanchet 1993, 1997]

At 2.5PN order for general matter systems the radiation reaction force in a specific gauge is purely scalar [Burke & Thorne 1970]

$$F_i^{\mathsf{reac}} = \rho \,\partial_i V^{\mathsf{reac}}$$

 At the 3.5PN order the radiation reaction derives from scalar and vector radiation reaction potentials

$$F_i^{\text{reac}} = \rho \left[\partial_i V^{\text{reac}} - \frac{4}{c^2} v^j \left(\partial_i V_j^{\text{reac}} - \partial_j V_i^{\text{reac}} \right) - \frac{4}{c^3} \varepsilon_{ijk} v^j \frac{\mathrm{d}V_k^{\text{reac}}}{\mathrm{d}t} \right]$$

S At 4PN order the radiation reaction contains a tail term (again scalar)

Radiation reaction to 4PN order [Blanchet 1993, 1997]

This result permits to prove the balance equations for general isolated systems up to the 4PN order or 1.5PN relative order beyond the quadrupolar radiation

Radiation reaction derivation revisited [Blanchet & Faye 2018]

 Metric accurate to 1PN order for conservative effects and to 3.5PN order for dissipative radiation reaction effects

$$g_{00} = -1 + \frac{2\mathcal{V}}{c^2} - \frac{2\mathcal{V}^2}{c^4} + \mathcal{O}^{\mathsf{cons}}\left(\frac{1}{c^6}\right)$$
$$g_{0i} = -\frac{4\mathcal{V}_i}{c^3} + \mathcal{O}^{\mathsf{cons}}\left(\frac{1}{c^5}\right)$$
$$g_{ij} = \delta_{ij}\left(1 + \frac{2\mathcal{V}}{c^2}\right) + \frac{4}{c^4}\left(W_{ij} - \delta_{ij}W_{kk}\right) + \mathcal{O}^{\mathsf{cons}}\left(\frac{1}{c^6}\right)$$

Potentials are composed of a conservative part and a dissipative one

$$\mathcal{V}_{\mu} = V_{\mu}^{\rm cons} + \boxed{V_{\mu}^{\rm reac}}$$

③ Integrate the matter equations of motion $\nabla_{\nu}T^{\mu\nu} = 0$ over the source

$$\partial_{\nu} \left(\sqrt{-g} T^{\nu}_{\mu} \right) = \frac{1}{2} \sqrt{-g} \, \partial_{\mu} g_{\rho\sigma} T^{\rho\sigma}$$

Radiation reaction derivation revisited [Blanchet & Faye 2018]

• Recover well known results for the fluxes of energy and angular momentum [Epstein & Wagoner 1975; Thorne 1980; Blanchet & Damour 1989]

$$\begin{aligned} \frac{\mathrm{d}E}{\mathrm{d}t} &= -\frac{G}{c^5} \left(\frac{1}{5} I_{ij}^{(3)} I_{ij}^{(3)} + \frac{1}{c^2} \left[\frac{1}{189} I_{ijk}^{(4)} I_{ijk}^{(4)} + \frac{16}{45} J_{ij}^{(3)} J_{ij}^{(3)} \right] \right) + \mathcal{O}\left(\frac{1}{c^8} \right) \\ \frac{\mathrm{d}J_i}{\mathrm{d}t} &= -\frac{G}{c^5} \varepsilon_{ijk} \left(\frac{2}{5} I_{jl}^{(2)} I_{kl}^{(3)} + \frac{1}{c^2} \left[\frac{1}{63} I_{jlm}^{(3)} I_{klm}^{(4)} + \frac{32}{45} J_{jl}^{(2)} J_{kl}^{(3)} \right] \right) + \mathcal{O}\left(\frac{1}{c^8} \right) \end{aligned}$$

 And also for the linear momentum which is a subdominant 3.5PN effect [Papapetrou 1971; Bekenstein 1973]

$$\frac{\mathrm{d}P_i}{\mathrm{d}t} = -\frac{G}{c^7} \left[\frac{2}{63} I_{ijk}^{(4)} I_{jk}^{(3)} + \frac{16}{45} \varepsilon_{ijk} I_{jl}^{(3)} J_{kl}^{(3)} \right] + \mathcal{O}\left(\frac{1}{c^9}\right)$$

What about the position of the center of mass?

• For an isolated conservative system the conserved integrals are E, J_i , P_i and also the initial position of the center of mass

$$Z_i = G_i - P_i t$$

where G_i is the position of the center of mass multiplied by the mass

- The conservation of Z_i is associated with the invariance under Lorentz boosts
- We also find a balance equation for the center-of-mass position

$$\frac{\mathrm{d}G_i}{\mathrm{d}t} = P_i - \frac{2G}{21c^7} I_{ijk}^{(3)} I_{jk}^{(3)} + \mathcal{O}\left(\frac{1}{c^9}\right)$$

• This formula has never appeared in standard texbooks on GR or gravitational waves, nor on specialized reviews, it appeared only recently in the GW litterature [Kozameh, Nieva & Quirega 2018; Nichols 2018; Blanchet & Faye 2018]

Radiation reaction and balance equations

Direct calculation of the GW fluxes at infinity

() Introduce a retarded null coordinate u satisfying

$$g^{\mu\nu}\partial_{\mu}u\partial_{\nu}u=0$$

② For instance choose $u = t - r_*/c$ with the tortoise coordinate

$$r_* = r + \frac{2GM}{c^2} \ln\left(\frac{r}{r_0}\right) + \mathcal{O}\left(\frac{1}{r}\right)$$

Direct calculation of the GW fluxes at infinity

• Perform a coordinate change $(t,{\bf x})\to(u,{\bf x})$ in the conservation law of the pseudo-tensor $\partial_\nu\tau^{\mu\nu}=0$ to get

$$\frac{\partial}{c\partial u} \Big[\tau^{\mu 0}(\mathbf{x}, u + r_*/c) - n_*^i \tau^{\mu i}(\mathbf{x}, u + r_*/c) \Big] + \partial_i \Big[\tau^{\mu i}(\mathbf{x}, u + r_*/c) \Big] = 0$$

② Integrating over a volume \mathcal{V} tending to infinity with u = const

$$\begin{aligned} \frac{\mathrm{d}E}{\mathrm{d}u} &= -c \int_{\partial \mathcal{V}} \mathrm{d}S_i \, \tau_{\mathsf{GW}}^{0i}(\mathbf{x}, u + r_*/c) \\ \frac{\mathrm{d}J_i}{\mathrm{d}u} &= -\varepsilon_{ijk} \int_{\partial \mathcal{V}} \mathrm{d}S_l \, x^j \, \tau_{\mathsf{GW}}^{kl}(\mathbf{x}, u + r_*/c) \\ \frac{\mathrm{d}P^i}{\mathrm{d}u} &= -\int_{\partial \mathcal{V}} \mathrm{d}S_j \, \tau_{\mathsf{GW}}^{ij}(\mathbf{x}, u + r_*/c) \\ \frac{\mathrm{d}G_i}{\mathrm{d}u} &= P_i - \frac{1}{c} \int_{\partial \mathcal{V}} \mathrm{d}S_j \left(x^i \, \tau_{\mathsf{GW}}^{0j} - r_* \, \tau_{\mathsf{GW}}^{ij} \right) (\mathbf{x}, u + r_*/c) \end{aligned}$$

Direct calculation of the GW fluxes at infinity

A long calculation to control the leading $1/r^2$ and subleading $1/r^3$ terms in the GW pseudo-tensor when $r \to +\infty$ gives the fluxes as full multipole series parametrized by the multipole moments I_L and J_L up to order $\mathcal{O}(G^2)$

$$\begin{split} \frac{\mathrm{d}\boldsymbol{E}}{\mathrm{d}\boldsymbol{u}} &= -\sum_{\ell=2}^{+\infty} \frac{G}{c^{2\ell+1}} \bigg\{ \frac{(\ell+1)(\ell+2)}{(\ell-1)\ell\ell!(2\ell+1)!!} \frac{^{(\ell+1)}(\ell+1)}{\boldsymbol{I} \boldsymbol{L} \boldsymbol{I} \boldsymbol{L}} \\ &+ \frac{4\ell(\ell+2)}{c^2(\ell-1)(\ell+1)!(2\ell+1)!!} \frac{^{(\ell+1)}(\ell+1)}{\boldsymbol{J} \boldsymbol{L} \boldsymbol{J} \boldsymbol{L}} \bigg\} \\ \frac{\mathrm{d}\boldsymbol{J}_i}{\mathrm{d}\boldsymbol{u}} &= -\varepsilon_{ijk} \sum_{\ell=2}^{+\infty} \frac{G}{c^{2\ell+1}} \bigg\{ \frac{(\ell+1)(\ell+2)}{(\ell-1)\ell!(2\ell+1)!!} \frac{^{(\ell)}(\ell+1)}{\boldsymbol{I}_{jL-1} \boldsymbol{I} \boldsymbol{I} \boldsymbol{k} \boldsymbol{L} - 1} \\ &+ \frac{4\ell^2(\ell+2)}{c^2(\ell-1)(\ell+1)!(2\ell+1)!!} \frac{^{(\ell)}(\ell+1)}{\boldsymbol{J}_{jL-1} \boldsymbol{J} \boldsymbol{k} \boldsymbol{L} - 1} \bigg\} \end{split}$$

Direct calculation of the GW fluxes at infinity

A long calculation to control the leading $1/r^2$ and subleading $1/r^3$ terms in the GW pseudo-tensor when $r \to +\infty$ gives the fluxes as full multipole series parametrized by the multipole moments I_L and J_L up to order $\mathcal{O}(G^2)$

$$\begin{split} \frac{\mathrm{d}P_{i}}{\mathrm{d}u} &= -\sum_{\ell=2}^{+\infty} \frac{G}{c^{2\ell+3}} \bigg\{ \frac{2(\ell+2)(\ell+3)}{\ell(\ell+1)!(2\ell+3)!!} \stackrel{(\ell+2)}{I} \stackrel{(\ell+1)}{I} \stackrel{(\ell+1)}{L} \\ &+ \frac{8(\ell+2)}{(\ell-1)(\ell+1)!(2\ell+1)!!} \varepsilon_{ijk} \stackrel{(\ell+1)}{I} \stackrel{(\ell+1)}{J} \stackrel{(\ell+1)}{L} \\ &+ \frac{8(\ell+3)}{c^{2}(\ell+1)!(2\ell+3)!!} \stackrel{(\ell+2)}{J} \stackrel{(\ell+1)}{I} \stackrel{(\ell)}{L} J_{L} \bigg\} \\ \frac{\mathrm{d}G_{i}}{\mathrm{d}u} &= P_{i} \\ &- \underbrace{\sum_{\ell=2}^{+\infty} \frac{G}{c^{2\ell+3}} \bigg\{ \frac{2(\ell+2)(\ell+3)}{\ell\,\ell!(2\ell+3)!!} \stackrel{(\ell+1)}{I} \stackrel{(\ell+1)}{I} \stackrel{(\ell+1)}{L} + \frac{8(\ell+3)}{c^{2}\ell!(2\ell+3)!!} \stackrel{(\ell+1)}{J} \stackrel{(\ell+1)}{L} \bigg\} }_{[\text{Blanchet & Faye 2018]}} \end{split}$$

Any implication for the total recoil of a source?

We have obtained the balance equations

$$\begin{aligned} \frac{\mathrm{d}\boldsymbol{P}}{\mathrm{d}t} &= -\boldsymbol{F}_P \,, \\ \frac{\mathrm{d}\boldsymbol{G}}{\mathrm{d}t} &= \boldsymbol{P} - \boldsymbol{F}_G \,, \end{aligned}$$

Integrating these equations for a burst of GWs with finite duration we obtain

$$\begin{split} \boldsymbol{P}_1 &= -\int_{t_0}^{t_1} \mathrm{d}t' \, \boldsymbol{F}_P(t') \,, \\ \boldsymbol{Z}_1 &= \int_{t_0}^{t_1} \mathrm{d}t' \Big[t' \, \boldsymbol{F}_P(t') - \boldsymbol{F}_G(t') \Big] \end{split}$$

 The total recoil depends only on the linear momentum flux (as in usual calculations)

The instantaneous CM position of a circular binary

The linear momentum is evaluated for a Newtonian circular binary as usual [Fitchett 1983]

$$\begin{aligned} \frac{\mathrm{d}\boldsymbol{P}}{\mathrm{d}t} &= \frac{464}{105} \frac{G^4 m^5 \omega}{c^7 r^4} \sqrt{1 - 4\nu} \,\nu^2 \,\boldsymbol{\lambda} \\ \boldsymbol{P} &= \frac{464}{105} \frac{G^4 m^5}{c^7 r^4} \sqrt{1 - 4\nu} \,\nu^2 \,\boldsymbol{n} \end{aligned}$$

However in order to obtain the instantaneous CM position we must also use the CM flux

$$\begin{aligned} \frac{\mathrm{d}\boldsymbol{G}}{\mathrm{d}t} &= \boldsymbol{P} + \frac{544}{105} \frac{G^4 m^5}{c^7 r^4} \sqrt{1 - 4\nu} \,\nu^2 \,\boldsymbol{n} \\ \boldsymbol{G} &= -\frac{48}{5} \frac{G^4 m^5}{c^7 r^4 \omega} \,\sqrt{1 - 4\nu} \,\nu^2 \,\boldsymbol{\lambda} \end{aligned}$$

It would be interesting to compare this prediction to very accurate NR computations of the CM position [Gerosa, Hébert & Stein 2018; Woodford, Boyle & Pfeiffer 2019]