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Gravitational wave events

GRAVITATIONAL WAVE EVENTS
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Gravitational wave events

A new messenger to explore the Universe
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Gravitational wave events

Binary black-hole event GW150914 [LIGO/Virgo 2016]
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Gravitational wave events

Binary black-hole events [LIGO/Virgo 2018-2020]

For BH binaries the detectors
are mostly sensitive to the
merger phase

Detected total BH masses range
from ∼ 20M� to ∼ 140M� !

One object ∼ 2.5M� is either
the lightest known BH or the
heaviest NS

The signals match perfectly the
waveform predicted by GR
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Gravitational wave events

Binary neutron star event GW170817

The signal is observed during ∼ 100 s and ∼ 3000 cycles and is the loudest
gravitational-wave signal yet observed with a combined SNR of 32.4

The chirp mass is accurately measured to M = µ3/5M2/5 = 1.98M�

The distance is measured from the gravitational signal as R = 40 Mpc
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Gravitational wave events

Post-merger waveform of neutron star binaries
[Dietrich, Bernuzzi, Bruegmann, Ujevic & Tichy 2018]
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Gravitational wave events

The advent of multi-messenger astronomy

The gamma-ray burst has
been detected 1.7 second
after the instant of merger

This is the closest gamma-ray
burst whose distance is
known and is probably seen
off-axis with respect to the
relativistic jet
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Gravitational wave events

Speed of gravitational waves versus speed of light

The observed time delay
between GW170817 and
GRB170817A gives a
strong constraint

|cg − cem| . 10−15c

This eliminated a series
of alternative theories
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Gravitational wave events

Test of the strong equivalence principle [Desai & Kahya 2016]

The test involves the cumulative Shapiro time delay due to
the gravitational potential of the dark matter distribution

The violation of the equivalence principle is quantified by a
PPN like parameter γa depending on the type of radiation
a = GW,EM. For a spherical mass distribution

∆taShapiro =
(
1 + γa

)GM
c3

ln

(
D

b

)
The main contributions come from the galaxy NGC4993
and our own Galaxy with mass MMW = 5.6 1011M�

Assuming an isothermal density profile for dark matter
this yields about 400 days delay in GR

The observed difference in arrival time ∆t = 1.7 s yields

|γGW − γEM| . 10−7

b

DM

source

observer
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Methods to compute gravitational waves

METHODS TO COMPUTE GRAVITATIONAL WAVES
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Methods to compute gravitational waves

The gravitational chirp of binary black holes
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Methods to compute gravitational waves

Methods to compute GW templates
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Methods to compute gravitational waves

Post-Newtonian versus gravitational self-force (GSF)
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PN predictions for the conservative dynamics are consistent with linear GSF
calculations up to high order [Detweiler 2008; Blanchet, Detweiler, Le Tiec & Whiting 2010]
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Methods to compute gravitational waves

General problem of linear perturbations

1 Suppose we know a solution g(x) of the second-order PDE

E
[
g(x)

]
= 0

2 Assume a one-parameter family of solutions g(x, λ) with g(x, 0) = g(x)

E
[
g(x, λ)

]
= 0

3 Defining h(x) ≡ (∂g/∂λ)(x, 0) we obtain the linear second-order PDE

h
∂E
∂g

[
g
]

+ ∂h
∂E
∂(∂g)

[
g
]

+ ∂2h
∂E

∂(∂2g)

[
g
]

= 0

4 A good approximation to the exact solution g(x, λ) for non-zero but small λ is

glinear(x) = g(x) + λh(x)
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Methods to compute gravitational waves

Reliability of the perturbative equations

To any one-parameter family of solutions g(x, λ) corresponds a solution h(x)
of the linear perturbative equations

But the converse is not necessarily true, i.e. given a solution h(x) there does
not necessarily exist an exact solution such that h(x) = (∂g/∂λ)(x, 0)

More generally, an infinite set of solutions hn(x) (with n ∈ N) of the
perturbation equations to all non-linear orders n does not necessarily come
from the Taylor expansion of some exact solution g(x, λ) when λ→ 0

Knowing if it does is the problem of the reliability of the perturbation equations
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Methods to compute gravitational waves

Einstein field equations as a “Problème bien posé”

Start with the GR action for the metric gµν with the matter term

SGR =
c3

16πG

∫
d4x
√−g R︸ ︷︷ ︸

Einstein-Hilbert action

+Sm[gµν ,Ψ]︸ ︷︷ ︸
matter fields

Add the harmonic coordinates gauge-fixing term (where gαβ =
√−ggαβ)

SGR =
c3

16πG

∫
d4x

(√−g R−1

2
gαβ∂µg

αµ∂νg
βν︸ ︷︷ ︸

gauge-fixing term

)
+ Sm

Get a well-posed system of equations [Hadamard 1932; Choquet-Bruhat 1952]

gµν∂2µνg
αβ =

16πG

c4
|g|Tαβ +

non-linear source term︷ ︸︸ ︷
Σαβ [g, ∂g]

∂µg
αµ = 0
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Start with the GR action for the metric gµν with the matter term

SGR =
c3

16πG

∫
d4x
√−g R︸ ︷︷ ︸

Einstein-Hilbert action

+Sm[gµν ,Ψ]︸ ︷︷ ︸
matter fields

Add the harmonic coordinates gauge-fixing term (where gαβ =
√−ggαβ)

SGR =
c3

16πG

∫
d4x

(√−g R−1

2
gαβ∂µg

αµ∂νg
βν︸ ︷︷ ︸

gauge-fixing term

)
+ Sm

Get a well-posed system of equations [Hadamard 1932; Choquet-Bruhat 1952]

gµν∂2µνg
αβ =

16πG

c4
|g|Tαβ +

non-linear source term︷ ︸︸ ︷
Σαβ [g, ∂g]

∂µg
αµ = 0

Luc Blanchet (GRεCO) GW theory & approximation methods CIRM 18 / 88



Methods to compute gravitational waves

Einstein field equations as a “Problème bien posé”
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Methods to compute gravitational waves

Perturbation around Minkowski space-time

Assume space-time slightly differs from Minkowski space-time ηαβ

gαβ = ηαβ + hαβ with |h| � 1

�hαβ =
16πG

c4
|g|Tαβ +

non-linear source term︷ ︸︸ ︷
Λαβ [h, ∂h, ∂2h]

∂µh
αµ = 0︸ ︷︷ ︸

harmonic-gauge condition

where � = ηµν∂µ∂ν is the flat d’Alembertian operator
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Methods to compute gravitational waves

Kirchhoff’s formula

For an homogeneous solution of the wave equation �hhom = 0

hhom(x, t) = lim
|x′|→+∞

∫∫
dΩ′

4π

(
∂

∂r
+

∂

c∂t

)
(rhhom)

(
x′, t− |x− x′|

c

)

(x, t)

(x', t')

(x, t) = field point

(x', t') = source point

t' = t - 
|x – x'|

c

matter 
source

Luc Blanchet (GRεCO) GW theory & approximation methods CIRM 20 / 88



Methods to compute gravitational waves

No-incoming radiation condition

J -

I

+

-

I

I

I

0 0
matter
source

J -

J+

t+  =constr
c-

J+

lim
r→+∞

t+ r
c
=const

(
∂

∂r
+

∂

c∂t

)(
rhαβ

)
= 0
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J -

I

+

-

I

I

I

0 0
matter
source

J -

J+

    no-incoming
radiation condition
     imposed at
  past null infinity

t+  =constr
c-

J+

lim
r→+∞

t+ r
c
=const

(
∂

∂r
+

∂

c∂t

)(
rhαβ

)
= 0
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Methods to compute gravitational waves

Two-body system formed from freely falling particles

m m1 2

Gravitational motion of initially free
particles when t→ −∞ [Eder 1989]

x(t) = V t+W log(−t) +X + o(t0)

where V and X are constant vectors,
and W = GMV /V 3
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Methods to compute gravitational waves

Hypothesis of stationarity in the remote past

T stationary field
       when 

t - r < - Tc
GW source

In practice all GW sources observed
in astronomy (e.g. a compact binary
system) will have been formed and
started to emit GWs only from a
finite instant in the past −T
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Methods to compute gravitational waves

The post-Minkowskian approximation
[Bertotti 1956; Bertotti & Plebanski 1960; Westpfahl et al. 1980, 1985; Bel et al. 1981; Bern et al. 2019]

Appropriate for weakly self-gravitating isolated matter sources

γPM ≡
GM

c2a
� 1

{
M mass of source
a size of source

gαβ = ηαβ +

+∞∑
n=1

Gn hαβn︸ ︷︷ ︸
G labels the PM expansion

�hαβn =
16πG

c4
|g|Tαβn +

known from previous iterations︷ ︸︸ ︷
Λαβn [h1, · · · , hn−1]

∂µh
αµ
n = 0
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Methods to compute gravitational waves

Post-Newtonian versus post-Minkowskian
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     UR 
Scattering

The post-Minkowskian 3PM two-body Hamiltonian [Bern, Cheung, Solon et al. 2019]

has been checked with the post-Newtonian 4PN two-body equations of motion
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Methods to compute gravitational waves

Multipolar expansion
[Pirani 1964; Geroch 1970; Hansen 1974; Thorne 1980; Simon & Beig 1983; Blanchet 1998]

Valid in the exterior of any possibly strong field isolated source

a

r
< 1

 a size of source
r distance to source
λ ∼ cP wavelength of radiation

IL ∼Ma`︸ ︷︷ ︸
mass-type multipole moment

JL ∼Ma`v︸ ︷︷ ︸
current-type multipole moment

(L = i1 · · · i`)

Split space-time into near zone r � λ and wave zone r � λ

hNZ ∼
G

c2

∑
`

[
IL
r`+1

+
JL
cr`+1

]
︸ ︷︷ ︸

r�λ

hWZ ∼
G

c2r

∑
`

[
I
(`)
L

c`
+
J
(`)
L

c`+1

]
︸ ︷︷ ︸

r�λ

Luc Blanchet (GRεCO) GW theory & approximation methods CIRM 26 / 88



Methods to compute gravitational waves

Multipolar expansion
[Pirani 1964; Geroch 1970; Hansen 1974; Thorne 1980; Simon & Beig 1983; Blanchet 1998]

The radiative multipolar field in the wave zone

hWZ ∼
G

c2r

∑
`

[
I
(`)
L

c`
+
J
(`)
L

c`+1

]
is actually a PN expansion in the case of a PN source

I
(`)
L

c`
∼ Ma`

λ`
∼M ε`PN

The quadrupole moment formalism gives the lowest order PN contribution to
the radiation field due to the mass type quadrupole moment (` = 2)

Iij = Qij +O(ε2PN)

Qij(t) =

∫
PN source

d3x ρN(x, t)︸ ︷︷ ︸
Newtonian

mass density

(
xixj −

1

3
δijr

2

)
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Methods to compute gravitational waves

Multipolar-Post-Minkowskian expansion
[Bonnor 1959; Blanchet & Damour 1986]
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Einstein quadrupole formalism

EINSTEIN QUADRUPOLE FORMALISM
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Einstein quadrupole formalism

Quadrupole moment formalism [Einstein 1918; Landau & Lifchitz 1945]

1 Einstein quadrupole formula(
dE

dt

)GW

=
G

5c5

{
d3Qij

dt3
d3Qij

dt3
+O

(v
c

)2}
2 Amplitude quadrupole formula

hTT
ij =

2G

c4R

{
d2Qij

dt2

(
t− R

c

)
+O

(v
c

)}TT

+O
(

1

R2

)
3 Radiation reaction formula [Chandrasekhar & Esposito 1970; Burke & Thorne 1970]

F reac
i = − 2G

5c5
ρ xj

d5Qij
dt5

+O
(v
c

)7
which is a 2.5PN ∼ (v/c)5 effect in the source’s equations of motion
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Einstein quadrupole formalism

Application to compact binaries [Peters & Mathews 1963; Peters 1964]

m

m

1

2

1

2

v

v

 a semi-major axis of relative orbit
e eccentricity of relative orbit
ω = 2π

P orbital frequency

M = m1 +m2

µ = m1m2

M

ν =
µ

M
0 < ν 6

1

4

Averaged energy and angular momentum balance equations

〈dE
dt
〉 = −〈FGW〉 〈dJi

dt
〉 = −〈GGW

i 〉

are applied to a Keplerian orbit (using Kepler’s law GM = ω2a3)

〈dP
dt
〉 = −192π

5c5
ν

(
2πGM

P

)5/3 1 + 73
24e

2 + 37
96e

4

(1− e2)7/2

〈de
dt
〉 = −608π

15c5
ν
e

P

(
2πGM

P

)5/3 1 + 121
304e

2

(1− e2)5/2
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Einstein quadrupole formalism

Orbital phase evolution of compact binaries
[Dyson 1969; Esposito & Harrison 1975; Wagoner 1975]

1 Compact binaries are circularized when they enter the detector’s bandwidth

E = −Mc2

2
ν x FGW =

32

5

c5

G
ν2x5

where x =
(
GMω
c3

)2/3
denotes a small PN parameter defined with ω

2 Equating dE
dt = −FGW gives a differential equation for x

dx

dt
=

64

5

c3ν

GM
x5 ⇐⇒ ω̇

ω2
=

96ν

5
ν

(
GMω

c3

)5/3

3 This permits to solve for the orbital phase

φ =

∫
ω dt =

∫
ω

ω̇
dω
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Einstein quadrupole formalism

Orbital phase evolution of compact binaries
[Dyson 1969; Esposito & Harrison 1975; Wagoner 1975]

1 The amplitude and phase evolution follow an adiabatic chirp in time

a(t) =

(
256

5

G3M3ν

c5
(tc − t)

)1/4

φ(t) = φc −
1

32ν

(
256

5

c3ν

GM
(tc − t)

)5/8

2 The amplitude and orbital frequency diverge at the instant of coalescence tc
and the merger phase is to be described numerically
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Einstein quadrupole formalism

The quadrupole formula works for GW150914

The GW frequency is given in terms of the chirp mass M = µ3/5M2/5 by

f =
1

π

[
256

5

GM5/3

c5
(tc − t)

]−3/8
Therefore the chirp mass is directly measured as

M =

[
5

96

c5

Gπ8/3
f−11/3ḟ

]3/5
which gives M = 30M� thus M > 70M�

The GW amplitude is predicted to be1

heff ∼ 4.1× 10−22
(M
M�

)5/6(
100 Mpc

R

)(
100 Hz

fmerger

)−1/6
∼ 1.6× 10−21

The distance R = 400 Mpc is measured from the signal itself [Schutz 1986]

1heff ∼ h
√
N where N ∼ ω2/ω̇ is the number of cycles around frequency ω
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Einstein quadrupole formalism

Total energy radiated away by GW150914

1 The ADM energy of space-time is constant and reads (at any time t)

EADM = (m1 +m2)c2 − Gm1m2

2r
+

G

5c5

∫ t

−∞
dt′
(
Qij

(3)
)2

(t′)

2 Initially EADM = (m1 +m2)c2 while finally (at time tc)

EADM = Mcc
2 +

G

5c5

∫ tc

−∞
dt′
(
Qij

(3)
)2

(t′)

3 The total energy radiated in GW is

∆EGW = (m1 +m2 −Mc)c
2 =

G

5c5

∫ tc

−∞
dt′
(
Qij

(3)
)2

(t′) =
Gm1m2

2rc

4 The total power released is

PGW ∼ 3M�c
2

0.2 s
∼ 1049 W ∼ 10−3

c5

G
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Gravitational-wave generation formalism

GRAVITATIONAL-WAVE GENERATION FORMALISM
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Gravitational-wave generation formalism

PN-matched Multipolar-post-Minkowskian

2GM

1

C
om

pa
ct

ne
ss

 r
 a

a c2

0

2G
M

 c
2

= 
r

 λλ r<<

Multipole Expansion

Post-Newtonian       Multipolar
Post-Minkowskian

1 Construct the most general multipolar expansion outside the source in the
form of a PM expansion

multipole expansion︷ ︸︸ ︷
M(h) = Gh1 +G2 h2 + · · ·+Gn hn + · · ·︸ ︷︷ ︸

post-Minkowskian expansion

2 Match the MPM solution to the PN expansion of the field inside the source
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Gravitational-wave generation formalism

Linearized multipolar vacuum solution [Pirani 1964; Thorne 1980]

Solution of linearized vacuum field equations in harmonic coordinates

�hαβ1 = ∂µh
αµ
1 = 0

h001 = − 4

c2

+∞∑
`=0

(−)`

`!
∂L

(
1

r
IL

)

h0i1 =
4

c3

+∞∑
`=1

(−)`

`!

{
∂L−1

(
1

r
I
(1)
iL−1

)
+

`

`+ 1
εiab∂aL−1

(
1

r
JbL−1

)}

hij1 = − 4

c4

+∞∑
`=2

(−)`

`!

{
∂L−2

(
1

r
I
(2)
ijL−2

)
+

2`

`+ 1
∂aL−2

(
1

r
εab(iJ

(1)
j)bL−2

)}

multipole moments IL(u) and JL(u) are arbitrary functions of u = t− r/c
mass M ≡ I = const, center-of-mass position Gi ≡ Ii = const

linear momentum Pi ≡ I(1)i = 0, angular momentum Ji = const
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Gravitational-wave generation formalism

The plug-and-grind MPM algorithm

1 At n-th post-Minkowskian order we need to solve

∂νh
αβ
n = 0

�hµνn = Λµν
(
h1, · · ·hn−1︸ ︷︷ ︸

known from previous iterations

)
2 A particular solution with the required multipole structure reads

uαβn = FP
B=0
�−1Ret

[
( rr0 )BΛαβn

]
3 In order to guarantee that the harmonic gauge condition ∂µh

αµ
n = 0 is

satisfied we add an homogeneous solution vαβn hence

hαβn = uαβn + vαβn

4 The MPM solution is generated as a functional of IL(u) and JL(u)
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Gravitational-wave generation formalism

The plug-and-grind MPM algorithm

Theorem 1

The MPM solution is the most general solution of Einstein’s vacuum equations
outside an isolated matter system

Theorem 2

When expanded in the near zone (r → 0) the MPM solution yields the general
structure of the PN expansion as

hαβPN(x, t, c) =
∑

p>2 q>0

(ln c)q

cp
hαβ(p,q)(x, t)

Theorem 3

When expanded in the far zone (r →∞, u = const) the MPM solution becomes
asymptotically flat in Penrose’s sense and recovers the Bondi-Sachs formalism
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Gravitational-wave generation formalism

Asymptotic structure of radiating space-time
[Bondi et al. 1962; Sachs 1962; Penrose 1963, 1965]

I 0
matter
source

J+

J -

B

ADM

(u)M

M

radiation
    loss

MB(u) = MADM −

mass-energy emitted in GW︷ ︸︸ ︷
G

5c7

∫ u

−∞
du′ U

(1)
ij (u′)U

(1)
ij (u′) + higher multipolar contributions
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matter
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ADM
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M

radiation
    loss
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G

5c7

∫ u

−∞
du′ U

(1)
ij (u′)U

(1)
ij (u′) + higher multipolar contributions

where Uij(u) = I
(2)
ij (u) +O(G)
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Gravitational-wave generation formalism

Problem of the matching
[Lagerström et al. 1967; Burke & Thorne 1971; Kates 1980; Anderson et al. 1982; Blanchet 1998]

1 Most general multipolar(-post-Minkowskian) solution in the source’s exterior

M(h) = FP
B=0
�−1ret

[
( rr0 )BM(Λ)

]
+

+∞∑
`=0

∂L

{
ML(t− r/c)

r

}
where the homogeneous solution is parametrized by multipole moments

2 Most general PN solution in the source’s near zone

h̄ = FP
B=0
�−1sym

[
( rr0 )B τ̄

]
+

+∞∑
`=0

∂L

{
AL(t− r/c)−AL(t+ r/c)

r

}
where the homogeneous solution (regular when r → 0) is parametrized by
“radiation reaction” multipole moments
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Gravitational-wave generation formalism

Problem of the matching
[Lagerström et al. 1967; Burke & Thorne 1971; Kates 1980; Anderson et al. 1982; Blanchet 1998]

m
m

1

2

actual solution

h

r

exterior zone

near zone

matching zone
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Gravitational-wave generation formalism

Problem of the matching
[Lagerström et al. 1967; Burke & Thorne 1971; Kates 1980; Anderson et al. 1982; Blanchet 1998]

m
m

1

2

PN expansion

multipole expansion

actual solution

h

r

exterior zone

near zone

matching zone

matching equation =⇒ M(h) =M(h̄)
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Gravitational-wave generation formalism

Near-zone expansion of the multipole expansion

Lemma 1

FP
B=0
�−1ret

[
( rr0 )BM(Λ)

]
= FP
B=0
�−1sym

[
( rr0 )BM(Λ)

]
− 4G

c4

+∞∑
`=0

∂L

{RL(t− r/c)−RL(t+ r/c)

2r

}
︸ ︷︷ ︸

antisymmetric type homogeneous solution

where the radiation reaction multipole moments are

RL(u) = FP
B=0

∫
d3x ( rr0 )B x̂L

∫ +∞

1

dz γ`(z) M(τ)(x, t− zr/c)︸ ︷︷ ︸
multipole expansion of the pseudo-tensor

The finite part at B = 0 plays the role of an UV regularization (r → 0)
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Gravitational-wave generation formalism

Far-zone expansion of the PN expansion

Lemma 2

M
(

FP
B=0
�−1sym

[
( rr0 )B τ̄

])
= FP
B=0
�−1sym

[
( rr0 )BM(τ̄)

]
− 1

4π

+∞∑
`=0

∂L

{FL(t− r/c) + FL(t+ r/c)

2r

}
︸ ︷︷ ︸

symmetric type homogeneous solution

FL(u) = FP
B=0

∫
d3x ( rr0 )B x̂L

∫ 1

−1
dz δ`(z) τ̄(x, t− zr/c)︸ ︷︷ ︸

PN expansion of the pseudo-tensor

The finite part at B = 0 plays the role of an IR regularization (r → +∞)
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Gravitational-wave generation formalism

General solution of the matching equation

1 In the far zone

M(h) = FP
B=0
�−1ret

[
( rr0 )BM(Λ)

]
− 4G

c4

+∞∑
`=0

∂L

{FL(t− r/c)
r

}
︸ ︷︷ ︸

source’s multipole moments

2 In the near zone [Poujade & Blanchet 2002; Blanchet, Faye & Nissanke 2005]

h̄ = FP
B=0
�−1ret

[
( rr0 )B τ̄

]
− 4G

c4

+∞∑
`=0

∂L

{RL(t− r/c)−RL(t+ r/c)

r

}
︸ ︷︷ ︸

non-local tail term (4PN order)
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Post-Newtonian parameters

POST-NEWTONIAN PARAMETERS
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Post-Newtonian parameters

PN parameters in the orbital phase evolution

The PN parameters come from a mixture of conservative and dissipative
effects through the energy balance equation

d

conservative energy︷︸︸︷
E

dt
= − FGW︸︷︷︸
dissipative energy flux

The orbital phase φ =
∫
ω dt is obtained as a function of x =

(
GMω
c3

)2/3
and

the mass ratio ν = m1m2

(m1+m2)2

φ(x) = φ0 −
x−5/2

32ν

∑
p

(
ϕpPN(ν) + ϕ

(l)
pPN(ν) log x

)
xp +O[(log x)2]
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Post-Newtonian parameters

The inspiral-merger-ringdown (IMR) model

20 50 100 150 200 250 300
Frequency (Hz)

1.00

0.10

0.01

|h G
W

(f
)|/

10
−2

2
(H

z)

inspiral intermediate merger
ringdown

Effective methods that interpolate between the different phases play a crucial role

The effective-one-body (EOB) approach [Buonanno & Damour 1999]

The inspiral-merger-ringdown (IMR) [Ajith et al. 2008]

{PN parameters︸ ︷︷ ︸
inspiral

; β2, β3︸ ︷︷ ︸
intermediate

; α2, α3, α4︸ ︷︷ ︸
merger-ringdown

}
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Post-Newtonian parameters

The known 3.5PN parameters

They were computed from the MPM-PN approach [Blanchet 2014 for a review]

ϕ0PN = 1 ⇐= Einstein quadrupole formula

ϕ1PN = 3715
1008 + 55

12ν

ϕ1.5PN = −10π

ϕ2PN = 15293365
1016064 + 27145

1008 ν + 3085
144 ν

2

ϕ
(l)
2.5PN =

(
38645
1344 − 65

16ν
)
π

ϕ3PN = 12348611926451
18776862720 − 160

3 π2 − 1712
21 γE − 3424

21 ln 2

+
(
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Post-Newtonian parameters

Measurement of PN parameters [LIGO/Virgo 2017, 2020]
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Post-Newtonian parameters

Inspiral-Merger-Ringdown consistency test [LIGO/Virgo 2016]
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Post-Newtonian parameters

The gravitational wave tail effect [Blanchet & Damour 1988, 1992]

4PN

1.5PN

matter source

field point

In the near zone (4PN effect)

Stail =
G2M

5c8

∫∫
dtdt′

|t− t′| I
(3)
ij (t) I

(3)
ij (t′)

In the far zone (1.5PN effect)

htailij =
4G

c4r

GM

c3

∫ u

−∞
du′I

(4)
ij (u′) ln

(
u− u′
P

)
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Post-Newtonian parameters

Tail effects in PN parameters

ϕ0PN = 1 tail terms
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Post-Newtonian parameters

Tail effects in PN parameters
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Post-Newtonian parameters

The 4.5PN radiative quadrupole moment

Uij(t) = I
(2)
ij (t) +

GM

c3

∫ +∞

0

dτI
(4)
ij (t− τ)

[
2 ln

(
τ

2τ0

)
+

11

6

]
︸ ︷︷ ︸

1.5PN tail integral

+
G

c5

{
−2

7

∫ +∞

0

dτI
(3)
a<iI

(3)
j>a(t− τ)︸ ︷︷ ︸

2.5PN memory integral

+ instantaneous terms

}

+
G2M2

c6

∫ +∞

0

dτI
(5)
ij (t− τ)

[
2 ln2

(
τ

2τ0

)
+

57

35
ln

(
τ

2τ0

)
+

124627

22050

]
︸ ︷︷ ︸

3PN tail-of-tail integral

+
G3M3

c9

∫ +∞

0

dτI
(6)
ij (t− τ)

[
4

3
ln3

(
τ

2τ0

)
+ · · ·+ 129268

33075
+

428

315
π2

]
︸ ︷︷ ︸

4.5PN tail-of-tail-of-tail integral

+O
(

1

c10

)
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Post-Newtonian parameters

Toward 4.5PN parameters

The 4.5PN term is also known and due to the 4.5PN tail-of-tail-of-tail
integral for circular orbits [Marchand, Blanchet & Faye 2017; Messina & Nagar 2017]

ϕ4.5PN =
(
− 93098188434443

150214901760 + 80
3 π

2 + 1712
21 γE + 3424

21 ln 2

+
[
1492917260735
1072963584 − 2255

48 π2
]
ν − 45293335

1016064 ν
2 − 10323755

1596672 ν
3
)
π

ϕ
(l)
4.5PN = 856

21 π tail-of-tail-of-tail terms

However the 4PN term is only known from perturbative BH theory in the
test-mass limit ν → 0 [Tagoshi & Sasaki 1994; Tanaka, Tagoshi & Sasaki 1996]

ϕ4PN = 2550713843998885153
2214468081745920 − 45245

756 π2 − 9203
126 γE − 252755

2646 ln 2

− 78975
1568 ln 3 + O(ν)

ϕ
(l)
4PN = − 9203

252 + O(ν)
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Finite-size effects in compact binaries

FINITE-SIZE EFFECTS IN COMPACT BINARIES
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Finite-size effects in compact binaries

Constraining the neutron star equation of state
[LIGO/Virgo 2017]

R
1.35 M_sol 

= 14.4 km

R
1.35 M_sol  

= 13.6 km

R
1.35 M_sol 

= 11.1 km

Λa =
2

3
ka︸︷︷︸
Love

number

(
c2Ra
Gma

)5
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Finite-size effects in compact binaries

Equations of motion of N extended bodies

m
b

m
a

r
ab
(t)

x
b
(t)

x
a
(t)

x

z
a

ma =

∫
Va

d3x ρ(x, t) xa(t) =
1

ma

∫
Va

d3xx ρ(x, t)

x = xa(t) + za(x, t) Qija =

∫
Va

d3za ρa(za, t)
(
ziaz

j
a −

1

3
δijz2a

)
α ∼ |za|

rab
� 1
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Finite-size effects in compact binaries

Equations of motion of N extended bodies

1 The Newtonian equations of motion of extended (spinless) bodies are

ma
dvia
dt

= G
∑
b 6=a

[
mamb

∂

∂xia

(
1

rab

)
+

effect of the quadrupole moments︷ ︸︸ ︷
1

2

(
maQ

jk
b +mbQ

jk
a

) ∂3

∂xia∂x
j
a∂xka

(
1

rab

)]

2 The conserved energy of the N -body system is the sum of the internal
energies Ea and of the orbital contributions

E =
∑
a

{
Ea +

1

2
mav

2
a −

G

2

∑
b 6=a

mamb

rab
− 1

2
Qija Gija

}

3 The tidal quadrupole moment felt by the body a is

Gija =
∂2Ua

∂xia∂x
j
a

where Ua =
∑
b6=a

Gmb

rab
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Finite-size effects in compact binaries

Equations of motion of N extended bodies

1 The coupling of the quadrupole moments with the external tidal field Gija
implies a variation of the internal energy given by

dEa
dt

=
1

2
Q̇ija Gija

2 Neglecting tidal dissipation we assume that the quadrupole moment is
aligned with the tidal field

Qija = µa Gija
where µa is a deformability or polarizability coefficient

3 The conserved energy of the system simplifies in this case

E =
∑
a

{
1

2
mav

2
a −

G

2

∑
b 6=a

mamb

rab
− µa

4
Gija Gija

}
4 Very importantly the dynamics admits a Lagrangian formulation

L =
∑
a

{
1

2
mav

2
a +

G

2

∑
b 6=a

mamb

rab
+
µa
4
Gija Gija

}
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Finite-size effects in compact binaries

GW flux of extended two-body systems

1 We compute the GW flux using the quadrupole formula, where the total
quadrupole moment of the system is (xi = xi1 − xi2)

Qij =

orbital quadrupole moment︷ ︸︸ ︷
mν
(
xixj − 1

3
δijr2

)
+Qij1 +Qij2

2 For two bodies moving on a circular orbit this yields

FGW =
32G

5c5
r4ω6m2ν2

[
1 + 6

(
m4

1Λ1 +m4
2Λ2

)G5m

r5c10

]
3 The internal structure is characterized by the dimensionless parameter

Λa =
c10µa
G4m5

a

=
2

3
ka

(
c2Ra
Gma

)5
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Finite-size effects in compact binaries

Influence of the internal structure on the phase

1 Applying the energy balance equation dE
dt = −FGW we obtain the

modification of the phase due to the internal structure as

φ = φ0 −
x−5/2

32ν

[
1 +

5PN effect︷ ︸︸ ︷
39

8
Λ̃x5

]
x =

(
Gmω

c3

)2/3

2 The tidal interaction on two bodies moving on a circular orbit depends on
[Flanagan & Hinderer 2008]

Λ̃ =
16

13

[
(m1 + 11m2)m3

1

m4
Λ1 +

(m2 + 11m1)m3
2

m4
Λ2

]
3 The effect of the internal structure is formally a very small effect for compact

objects comparable to an orbital correction of the order 5PN ∼ 1/c10
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Finite-size effects in compact binaries

Dominant quadrupole tidal effect in BNS

R
1.35 M_sol 

= 14.4 km

R
1.35 M_sol  

= 13.6 km

R
1.35 M_sol 

= 11.1 km

Tidal contribution to the GW chirp

x(t) =
1

4
θ−1/4

[
1 + 39

8192 Λ̃ θ−5/4
]

φ(t) = φ0 −
x−5/2

32ν

[
1 + 39

8 Λ̃x5︸ ︷︷ ︸
5PN effect

]

with x = (Gmωc3 )2/3 and θ = νc3

5Gm (tc − t)

The polarizability Λ̃ depends on the source
mass of the NS (for a given EoS) while the
point-particle part of the signal depends
on the redshifted mass
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Finite-size effects in compact binaries

Effective action for compact binary systems

Hierarchy of length scales in a compact binary system

GW
⇐= a � λGW ∼ a

v/c

⇐= R1 , R2 � a

The Newtonian result can be reformulated as an effective matter action

Seff =
∑
a

∫
dt

[ point-particle action︷ ︸︸ ︷
1

2
mav

2
a +

1

2

∑
b 6=a

Gmb

rab
+

internal structure effect︷ ︸︸ ︷
µa
4
Gija Gija︸ ︷︷ ︸
5PN

]
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Finite-size effects in compact binaries

Effective field theory for extended compact objects
[Goldberger & Rothstein 2006; Damour & Nagar 2009]

Matter action with non-minimal world-line couplings

Seff =
∑
a

∫
dτa

{
−ma +

+∞∑
`=2

1

2`!

[
µ(`)
a︸︷︷︸

mass type
polarizability

(
Ga
L̂

)2
+

`

`+ 1
σ(`)
a︸︷︷︸

current type
polarizability

(
Ha
L̂

)2]
+ · · ·

}

Tidal multipole moments [Thorne & Hartle 1985; Zhang 1986]

Ga
L̂

= −
[
∇〈̂i1 · · · ∇î`−2

Cî`−10̂î`〉0̂

]
a

Ha
L̂

= 2
[
∇〈̂i1 · · · ∇î`−2

C∗
î`−10̂î`〉0̂

]
a

where Cî0ĵ0 are the components of the Weyl tensor Cµνρσ projected on a
local tetrad and evaluated at the location of the particle using a self-field
regularization

Luc Blanchet (GRεCO) GW theory & approximation methods CIRM 66 / 88



Finite-size effects in compact binaries

High-order PN tidal effects

A recent result [Henry, Faye & Blanchet 2020abc] is the orbital SPA phase at the
next-to-next-to-leading order for equal NS binaries on circular orbit

ψtidal = − 117
2 v5

{
µ̃(2) +

NLO︷ ︸︸ ︷(
3115
1248 µ̃

(2) + 370
117 σ̃

(2)
)
v2

−πµ̃(2)v3 +
(

379931975
44579808 µ̃

(2) + 935380
66339 σ̃

(2) + 500
351 µ̃

(3)
)
v4︸ ︷︷ ︸

NNLO

−π
(

2137
546 µ̃

(2) + 592
117 σ̃

(2)
)
v5
}
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Finite-size effects in compact binaries

High-order PN tidal effects
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v4︸ ︷︷ ︸
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Synergy with the effective field theory

SYNERGY WITH THE EFFECTIVE FIELD THEORY
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Synergy with the effective field theory

Fokker action versus effective action

Sg[x, h] =
c3

16πG

∫
d4x
√−g

[Einstein-Hilbert
Lagrangian︷︸︸︷
R −1

2
ΓµΓµ︸ ︷︷ ︸

gauge-fixing term

]
−
∑
a

ma

∫
dτa︸ ︷︷ ︸

point particles

Traditional PN approach: compute the Fokker action by inserting an
explicit iterated PN solution of the Einstein field equations

hµν(x, t) −→ h
µν

(x;xa(t),va(t), · · ·)
SFokker[x] = Sg[x, h(x)]

Effective field theory: compute the effective action by integrating over the
gravitational degrees of freedom

eiSeff[x] =

∫
D[h] eiSg[x,h]
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Synergy with the effective field theory

Diagrammatic expansion in EFT
Effective Field Theory Post-Newtonian

⇐⇒

emission from a quadrupole source

tail effect in radiation field (1.5PN)

non-linear memory effect (2.5PN)

radiation reaction (2.5PN)

tail in radiation reaction (4PN)

The EFT is equivalent to the traditional PN at the level of tree diagrams
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Synergy with the effective field theory

Action for simple non-local tails derived by EFT
[Foffa & Sturani 2019]

Using the relation between the tail self-energy diagram and the imaginary
part of the tail radiation diagram

Stail =

+∞∑
`=2

G2M

c2`+4

∫∫
dtdt′

|t− t′|

[
a` I

(`+1)
L (t)I

(`+1)
L (t′) +

b`
c2
J
(`+1)
L (t)J

(`+1)
L (t′)

]

The coefficients are those which appear in the multipole expansion of the
gravitational wave energy flux [Thorne 1980]

The proof of this action by PN methods is tedious and limited to 1PN

However the multipole moments IL and JL are computed up to high PN
order by traditional PN methods [Blanchet & Iyer 2004]
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Synergy with the effective field theory

High-order logarithmic tails in the circular energy
[Blanchet, Foffa, Larrouturou & Sturani 2020]

Current knowledge for the mass quadrupole moment is limited to 3PN order so we
can compute the logarithmic tail terms to NNNL/7PN order

Etail = −mν
2

2
x5 log x

{
448
15 +

(
− 4988

35 − 656
5 ν
)
x

+
(
− 1967284

8505 + 914782
945 ν + 32384

135 ν2
)
x2

+
[
85229654387
16372125 +

(
2132
45 π2 − 41161601

51030

)
ν − 13476541

5670 ν2 − 289666
1215 ν3

− 1424384
1575

(
γE + log 4

)
− 356096

1575 log x
]
x3

+ 64
15

∑+∞
n=3

(6n+1)(4βI)
n−1

n! x3(n−1)(log x)n−1 + · · ·
}
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Synergy with the effective field theory

High-order logarithmic tails in the circular energy
[Blanchet, Foffa, Larrouturou & Sturani 2020]

Current knowledge for the mass quadrupole moment is limited to 3PN order so we
can compute the logarithmic tail terms to NNNL/7PN order

Etail = −mν
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5 ν
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)
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1215 ν3
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(
γE + log 4

)
− 356096

1575 log x
]
x3
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∑+∞
n=3

(6n+1)(4βI)
n−1

n! x3(n−1)(log x)n−1 + · · ·
}

4PN-7PN tails 7PN tail-of-tail-of-tails
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Synergy with the effective field theory

High-order logarithmic tails in the circular energy
[Blanchet, Foffa, Larrouturou & Sturani 2020]

Current knowledge for the mass quadrupole moment is limited to 3PN order so we
can compute the logarithmic tail terms to NNNL/7PN order

Etail = −mν
2

2
x5 log x

{
448
15 +

(
− 4988

35 − 656
5 ν
)
x

+
(
− 1967284

8505 + 914782
945 ν + 32384

135 ν2
)
x2

+
[
85229654387
16372125 +

(
2132
45 π2 − 41161601

51030

)
ν − 13476541

5670 ν2 − 289666
1215 ν3

− 1424384
1575

(
γE + log 4

)
− 356096

1575 log x
]
x3

+ 64
15

∑+∞
n=3

(6n+1)(4βI)
n−1

n! x3(n−1)(log x)n−1 + · · ·
}

4PN-7PN tails 7PN tail-of-tail-of-tails leading (3n+ 1)PN (log x)n terms
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Synergy with the effective field theory

Consistency with gravitational self-force calculations

The 7PN tail-of-tail-of-tail terms are computed by combining information from
high-order GSF calculations of the redshift invariant [Kavanagh, Ottewill & Wardell 2015]
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Synergy with the effective field theory

Leading powers of logarithms from RG theory

The renormalization group equations for mass and angular momentum are
(with µ the renormalization scale) [Goldberger, Ross & Rothstein 2014]

d logM(µ)

d logµ
= −2G2

5

[
2I

(1)
ij I

(5)
ij − 2I

(2)
ij I

(4)
ij + I

(3)
ij I

(3)
ij

]
dJ i(µ)

d logµ
= −8G2M

5
εijk

[
IjlI

(5)
kl − I

(1)
jl I

(4)
kl + I

(2)
jl I

(3)
kl

]
The quadrupole moment itself undergoes a logarithmic renormalization under
the RG flow (in the Fourier domain) [Blanchet 1998; Goldberger & Ross 2010]

Ĩij(ω, µ) = µ̄βI(GMω)2 Ĩij(ω, µ0)

with µ̄ ≡ µ/µ0 and βI = − 214
105 is the beta function coefficient
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Synergy with the effective field theory

Leading powers of logarithms from RG theory

1 Integrating and averaging over one orbital scale, then specializing to
quasi-circular orbits

E =
1

2
mν r2ω2 − Gm2ν

r
− 8mν2

γ2

βI

+∞∑
n=1

1

n!

(
8βIγ

3 log v
)n

J = mν r2ω − 48

5
G2m3ν2

ω

βIγ

+∞∑
n=1

1

n!

(
8βIγ

3 log v
)n

2 For circular orbits the two invariants E(ω) and J(ω) are linked by the
“thermodynamic” relation or first law of binary mechanics

dE

dω
= ω

dJ

dω
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Synergy with the effective field theory

Leading powers of logarithms from RG theory

This gives three relations for the three unknowns E(ω) and J(ω) and r(ω)

E leading (log)n = −mν x
2

[
1 +

64ν

15

+∞∑
n=1

6n+ 1

n!
(4βI)

n−1 x3n+1(log x)n
]

J leading (log)n =
m2ν√
x

[
1− 64ν

15

+∞∑
n=1

3n+ 2

n!
(4βI)

n−1 x3n+1(log x)n
]

in agreement with high-order GSF calculations up to 22PN order !
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Radiation reaction and balance equations

RADIATION REACTION AND BALANCE EQUATIONS
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Radiation reaction and balance equations

Radiation reaction and balance equations

1 Conserved Newtonian energy in the source

E =

∫
d3x ρ

[
v2

2
+ Π− U

2

]
2 Eulerian equations of motion in the source

ρ
dvi

dt
= −∂iP + ρ∂iU −

F reac︷ ︸︸ ︷
2G

5c5
ρ xj

d5Qij
dt5

3 Energy loss is due to the work of the radiation reaction force

dE

dt
=

∫
d3xv · F reac = − G

5c5
d3Qij

dt3
d3Qij

dt3
+ total time derivative

4 Obtain the balance equation after averaging over one period

〈dE
dt
〉 = −〈FGW〉 =⇒ φ =

∫
ω dt =

∫
ω

ω̇
dω
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Radiation reaction and balance equations

Radiation reaction to 4PN order [Blanchet 1993, 1997]

1 At 2.5PN order for general matter systems the radiation reaction force in a
specific gauge is purely scalar [Burke & Thorne 1970]

F reac
i = ρ ∂iV

reac

2 At the 3.5PN order the radiation reaction derives from scalar and vector
radiation reaction potentials

F reac
i = ρ

[
∂iV

reac − 4

c2
vj
(
∂iV

reac
j − ∂jV reac

i

)
− 4

c3
εijkv

j dV reac
k

dt

]
3 At 4PN order the radiation reaction contains a tail term (again scalar)
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Radiation reaction and balance equations

Radiation reaction to 4PN order [Blanchet 1993, 1997]

V reac = −

2.5PN radiation reaction︷ ︸︸ ︷
G

5c5
xijI

(5)
ij +

3.5PN scalar correction︷ ︸︸ ︷
G

c7

[
1

189
xijk I

(7)
ijk −

1

70
r2xij I

(7)
ij

]
− 4G2M

5c8
xij
∫ +∞

0

dτ I
(7)
ij (t− τ)

[
ln

(
τ

2τ0

)
+

11

12

]
︸ ︷︷ ︸

4PN radiation reaction tail

+O
(

1

c9

)

V reac
i =

G

c5

[
1

21
x̂ijk I

(6)
jk −

4

45
εijk x

jl J
(5)
kl

]
︸ ︷︷ ︸

3.5PN vector correction

+O
(

1

c7

)

This result permits to prove the balance equations for general isolated systems up
to the 4PN order or 1.5PN relative order beyond the quadrupolar radiation
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Radiation reaction and balance equations

Radiation reaction derivation revisited [Blanchet & Faye 2018]

1 Metric accurate to 1PN order for conservative effects and to
3.5PN order for dissipative radiation reaction effects

g00 = −1 +
2V
c2
− 2V2

c4
+Ocons

(
1

c6

)
g0i = −4Vi

c3
+Ocons

(
1

c5

)
gij = δij

(
1 +

2V
c2

)
+

4

c4

(
Wij − δijWkk

)
+Ocons

(
1

c6

)
2 Potentials are composed of a conservative part and a dissipative one

Vµ = V cons
µ + V reac

µ

3 Integrate the matter equations of motion ∇νTµν = 0 over the source

∂ν
(√−gT νµ ) =

1

2

√−g ∂µgρσT ρσ
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Radiation reaction and balance equations

Radiation reaction derivation revisited [Blanchet & Faye 2018]

Recover well known results for the fluxes of energy and angular momentum
[Epstein & Wagoner 1975; Thorne 1980; Blanchet & Damour 1989]

dE

dt
= −G

c5

(
1

5
I
(3)
ij I

(3)
ij +

1

c2

[
1

189
I
(4)
ijkI

(4)
ijk +

16

45
J
(3)
ij J

(3)
ij

])
+O

(
1

c8

)
dJi
dt

= −G
c5
εijk

(
2

5
I
(2)
jl I

(3)
kl +

1

c2

[
1

63
I
(3)
jlmI

(4)
klm +

32

45
J
(2)
jl J

(3)
kl

])
+O

(
1

c8

)
And also for the linear momentum which is a subdominant 3.5PN effect
[Papapetrou 1971; Bekenstein 1973]

dPi
dt

= −G
c7

[
2

63
I
(4)
ijkI

(3)
jk +

16

45
εijkI

(3)
jl J

(3)
kl

]
+O

(
1

c9

)
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Radiation reaction and balance equations

What about the position of the center of mass?

For an isolated conservative system the conserved integrals are E, Ji, Pi and
also the initial position of the center of mass

Zi = Gi − Pit

where Gi is the position of the center of mass multiplied by the mass

The conservation of Zi is associated with the invariance under Lorentz boosts

We also find a balance equation for the center-of-mass position

dGi
dt

= Pi −
2G

21c7
I
(3)
ijkI

(3)
jk +O

(
1

c9

)
This formula has never appeared in standard texbooks on GR or gravitational
waves, nor on specialized reviews, it appeared only recently in the GW
litterature [Kozameh, Nieva & Quirega 2018; Nichols 2018; Blanchet & Faye 2018]
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Radiation reaction and balance equations

Direct calculation of the GW fluxes at infinity

I 0
matter
source

J+

J -

u = const

t = const

1 Introduce a retarded null coordinate u satisfying

gµν∂µu∂νu = 0

2 For instance choose u = t− r∗/c with the tortoise coordinate

r∗ = r +
2GM

c2
ln

(
r

r0

)
+O

(
1

r

)
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Radiation reaction and balance equations

Direct calculation of the GW fluxes at infinity

1 Perform a coordinate change (t,x)→ (u,x) in the conservation law of the
pseudo-tensor ∂ντ

µν = 0 to get

∂

c∂u

[
τµ0(x, u+ r∗/c)− ni∗τµi(x, u+ r∗/c)

]
+ ∂i

[
τµi(x, u+ r∗/c)

]
= 0

2 Integrating over a volume V tending to infinity with u =const

dE

du
= −c

∫
∂V

dSi τ
0i
GW(x, u+ r∗/c)

dJi
du

= −εijk
∫
∂V

dSl x
j τklGW(x, u+ r∗/c)

dP i

du
= −

∫
∂V

dSj τ
ij
GW(x, u+ r∗/c)

dGi
du

= Pi −
1

c

∫
∂V

dSj

(
xi τ0jGW − r∗ τ

ij
GW

)
(x, u+ r∗/c)
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Radiation reaction and balance equations

Direct calculation of the GW fluxes at infinity

A long calculation to control the leading 1/r2 and subleading 1/r3 terms in the
GW pseudo-tensor when r → +∞ gives the fluxes as full multipole series
parametrized by the multipole moments IL and JL up to order O(G2)

dE

du
= −

+∞∑
`=2

G

c2`+1

{
(`+ 1)(`+ 2)

(`− 1)``!(2`+ 1)!!

(`+1)

I L

(`+1)

I L

+
4`(`+ 2)

c2(`− 1)(`+ 1)!(2`+ 1)!!

(`+1)

J L
(`+1)

J L

}
dJi
du

= −εijk
+∞∑
`=2

G

c2`+1

{
(`+ 1)(`+ 2)

(`− 1)`!(2`+ 1)!!

(`)

I jL−1
(`+1)

I kL−1

+
4`2(`+ 2)

c2(`− 1)(`+ 1)!(2`+ 1)!!

(`)

J jL−1
(`+1)

J kL−1

}
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Radiation reaction and balance equations

Direct calculation of the GW fluxes at infinity

A long calculation to control the leading 1/r2 and subleading 1/r3 terms in the
GW pseudo-tensor when r → +∞ gives the fluxes as full multipole series
parametrized by the multipole moments IL and JL up to order O(G2)

dPi
du

= −
+∞∑
`=2

G

c2`+3

{
2(`+ 2)(`+ 3)

`(`+ 1)!(2`+ 3)!!

(`+2)

I iL

(`+1)

I L

+
8(`+ 2)

(`− 1)(`+ 1)!(2`+ 1)!!
εijk

(`+1)

I jL−1
(`+1)

J kL−1

+
8(`+ 3)

c2(`+ 1)!(2`+ 3)!!

(`+2)

J iL
(`+1)

J L

}
dGi
du

= Pi

−
+∞∑
`=2

G

c2`+3

{
2(`+ 2)(`+ 3)

` `!(2`+ 3)!!

(`+1)

I iL

(`+1)

I L +
8(`+ 3)

c2`!(2`+ 3)!!

(`+1)

J iL
(`+1)

J L

}
︸ ︷︷ ︸

[Blanchet & Faye 2018]
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Radiation reaction and balance equations

Any implication for the total recoil of a source?

1 We have obtained the balance equations

dP

dt
= −FP ,

dG

dt
= P − FG ,

2 Integrating these equations for a burst of GWs
with finite duration we obtain

P1 = −
∫ t1

t0

dt′ FP (t′) ,

Z1 =

∫ t1

t0

dt′
[
t′ FP (t′)− FG(t′)

]
.

3 The total recoil depends only on the linear momentum
flux (as in usual calculations)

GWs

t

t

0

1

P
Z1

1

Z =P =0
0 0

Luc Blanchet (GRεCO) GW theory & approximation methods CIRM 87 / 88



Radiation reaction and balance equations

The instantaneous CM position of a circular binary

1 The linear momentum is evaluated for a Newtonian
circular binary as usual [Fitchett 1983]

dP

dt
=

464

105

G4m5ω

c7r4
√

1− 4ν ν2 λ

P =
464

105

G4m5

c7r4
√

1− 4ν ν2 n

2 However in order to obtain the instantaneous
CM position we must also use the CM flux

dG

dt
= P +

544

105

G4m5

c7r4
√

1− 4ν ν2 n

G = −48

5

G4m5

c7r4ω

√
1− 4ν ν2 λ

3 It would be interesting to compare this prediction to
very accurate NR computations of the CM position
[Gerosa, Hébert & Stein 2018; Woodford, Boyle & Pfeiffer 2019]

m
1

m
2

V
recoil

CM motion

dP
dt

GW

dP
dt

CM dP
dt

GW= –

v
1

v
2
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