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Outline of the lectures

@ Gravitational wave events

© Methods to compute gravitational waves
@ Einstein quadrupole formalism

@ Gravitational-wave generation formalism
@ Post-Newtonian parameters

@ Finite-size effects in compact binaries
@ Synergy with the effective field theory

@ Radiation reaction and balance equations
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Gravitational wave events

GRAVITATIONAL WAVE EVENTS

GW theory & approximation methods



A new messenger to explore the Universe




Gravitational wave events

black-hole event GW150914 (1ico/virgo 2
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Gravitational wave events

Binary black-hole events [Lico virgo 2018-2020]

o) 104
[T @ For BH binaries the detectors
Y. =t are mostly sensitive to the
—— merger phase
Vi
I @ Detected total BH masses range
o § from ~ 20 M, to ~ 140 Mg, !

@ One object ~ 2.5 My, is either

A oo £
J s the lightest known BH or the
P heaviest NS

o T @ The signals match perfectly the

.,A,\A,ww"“‘w 1o

) : =N waveform predicted by GR
it

B BayesWave BB LALInference BB WB-LALInference  — cWB Max
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Gravitational wave events

Binary neutron star event GW170817

-15
Time (s)

@ The signal is observed during ~ 100s and ~ 3000 cycles and is the loudest
gravitational-wave signal yet observed with a combined SNR of 32.4

@ The chirp mass is accurately measured to M = p3/°M?/5 = 1.98 M,
@ The distance is measured from the gravitational signal as R = 40 Mpc
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Gravitational wave events

Post-merger waveform of neutron star binaries
[Dietrich, Bernuzzi, Bruegmann, Ujevic & Tichy 2018]
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Gravitational wave events

The advent of multi-messenger astronomy

Event rate (counts/s)  Event rate (counts/s)  Event rate (counts/s)

Frequency (Hz)
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| Lighteurve from Fermi/GBM (10 - 50 keV)

1750 4 ")

1500 4
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Lightcurve from INTEGRAL/SPI-ACS
120000 4 (> 100 keV)

117500 1

—4 =) 0
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The gamma-ray burst has
been detected 1.7 second
after the instant of merger

This is the closest gamma-ray
burst whose distance is
known and is probably seen
off-axis with respect to the
relativistic jet




Gravitational wave events

Speed of gravitational waves versus speed of light

ar®
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| Lighteurve from Fermi/GBM (10 - 50 keV)

Event rate (counts/s)

@ The observed time delay
between GW170817 and
GRB170817A gives a
strong constraint
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Lightcurve from INTEGRAL/SPI-ACS
120000 4 (> 100 keV)

Ce— Cem| S 105ee
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112300 @ This eliminated a series
of alternative theories
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Gravitational wave events

Test of the strong equivalence principle pei & kahys 2016]

@ The test involves the cumulative Shapiro time delay due to
the gravitational potential of the dark matter distribution

@ The violation of the equivalence principle is quantified by a
PPN like parameter ~, depending on the type of radiation
a = GW, EM. For a spherical mass distribution

GM D
Atghapiro T (]— aF A/a)cig In <?>

@ The main contributions come from the galaxy NGC4993
and our own Galaxy with mass Myw = 5.6 10'* M,

@ Assuming an isothermal density profile for dark matter
this yields about 400 days delay in GR

@ The observed difference in arrival time At = 1.7s yields observer

lvew — vem| S 1077 ‘
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Methods to compute gravitational waves

METHODS TO COMPUTE GRAVITATIONAL WAVES
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Methods to compute gravitational waves

The gravitational chirp of binary black holes
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Methods to compute gravitational waves

The gravitational chirp of binary black holes

merger phase
inspiralling phase numerical relativity
post-Newtonian theory
ringdown phase
BH perturbation

/ theory
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Methods to compute gravitational waves

Methods to compute GW templates

2

m m./(m +m.)
A

1/4

)

Post-Newtonian

Symmetric Mass Ratio

Perturbation Theory

0 N : » v2~G(m_+m )/r
Squared Velocity ~ Compactness 1 12

Luc Blanchet (GReCO GW theory & approximation methods CIRM 14 /88



Methods to compute gravitational waves

Methods to compute GW templates

2
m m./(m +m.)
A
1/4

/—\

Numerical
Relativity
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Methods to compute gravitational waves

Methods to compute GW templates

2
mlng(m;mz)

S

1/4

% Numerical
; Relativity
g (|Post-Newtonian

2
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]

Perturbation Theory

R R/

0 : = V>~G(m_+m )/r
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Methods to compute gravitational waves

Post-Newtonian versus gravitational self-force (GSF)

2
m m,/(m +m,)

A

1/4 /

o

m, N\
o 0
-§
@ Post- T
3 [ Newtonian -
s
L -
El . |
£ m,/
£ §
> >
(2]
/////
“~ Perturbation Theory
m
Wl i bt}
0 A - > V’~G(m +m)/r 7 G (M)
Squared Velocity ~ Compactness c? 12

PN predictions for the conservative dynamics are consistent with linear GSF
calculations up to high order [Detweiler 2008; Blanchet, Detweiler, Le Tiec & Whiting 2010]
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Methods to compute gravitational waves

General problem of linear perturbations

@ Suppose we know a solution g(z) of the second-order PDE

aeas=0
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Methods to compute gravitational waves

General problem of linear perturbations

@ Suppose we know a solution g(z) of the second-order PDE
aeas=0
@ Assume a one-parameter family of solutions g(x, A) with g(z,0) = g(z)

Elg(z,N)] =0
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Methods to compute gravitational waves

General problem of linear perturbations

@ Suppose we know a solution g(z) of the second-order PDE
E[g(x)] =0
@ Assume a one-parameter family of solutions g(x, A) with g(z,0) = g(z)
Elg(z,N)] =0

@ Defining h(z) = (0g/0X)(x,0) we obtain the linear second-order PDE

IE
halg [9] + Oh=——=

o€

o0&
9(9g) o] +

+ 0% (82)[§] =0
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Methods to compute gravitational waves

General problem of linear perturbations

@ Suppose we know a solution g(z) of the second-order PDE
E[g(x)] =0
@ Assume a one-parameter family of solutions g(x, A) with g(z,0) = g(z)
Elg(z,N)] =0

@ Defining h(z) = (0g/0X)(x,0) we obtain the linear second-order PDE

o€ o€

*5g 71 Parpg L F

o€

+ 0% (82)[§] =0

@ A good approximation to the exact solution g(x, A) for non-zero but small A is

(glinear(x) =g(x) + Ah(z) ‘
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Methods to compute gravitational waves

Reliability of the perturbative equations

@ To any one-parameter family of solutions g(x, \) corresponds a solution h(x)
of the linear perturbative equations

@ But the converse is not necessarily true, i.e. given a solution h(x) there does
not necessarily exist an exact solution such that h(z) = (9g/0)\)(x, 0)

@ More generally, an infinite set of solutions h,(z) (with n € N) of the
perturbation equations to all non-linear orders n does not necessarily come
from the Taylor expansion of some exact solution g(x, \) when A — 0

Knowing if it does is the problem of the reliability of the perturbation equations
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Methods to compute gravitational waves

Einstein field equations as a “Probleme bien posé”

o Start with the GR action for the metric g, with the matter term

SGr =

/d4$ V= R +S [qlun ]
e - R

matter fields

16G

Einstein-Hilbert action
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Methods to compute gravitational waves

Einstein field equations as a “Probleme bien posé”

o Start with the GR action for the metric g, with the matter term

e
167G

Einstein-Hilbert action

Ser =

/d4$ vV —gR +Sm[g/un\11]
———

matter fields

@ Add the harmonic coordinates gauge-fixing term (where g*” = /—gg*")

2 4 1 :
— —— ) S 2z
160 /d x(«/ gR ngaﬂg 09 ) + Sm

gauge-fixing term

Ser =
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Methods to compute gravitational waves

Einstein field equations as a “Probleme bien posé”

o Start with the GR action for the metric g, with the matter term

Ser =

/d4$ V= R +S [qlun ]
e - R

matter fields

16G

Einstein-Hilbert action

@ Add the harmonic coordinates gauge-fixing term (where g*” = /—gg*")

1 ,,
/ o (*/TQR ‘zga"f@ug”“avgﬂ + Sm

gauge-fixing term

c
e 167G

o Get a well-posed system of equations [Hadamard 1932; Choquet-Bruhat 1952]

non-linear source term

1% [0 16 G (6% «
g 92,0°% = ——|g|T*" + £*F[g, Og]

8,g% = o
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Methods to compute gravitational waves

Perturbation around Minkowski space-time

Assume space-time slightly differs from Minkowski space-time 7,3

o = ol R with |h| < 1

non-linear source term

1 Z X
Ohe — %§|g|T°‘ﬁ + [, Oh, 9h]
B, =0
—_———

harmonic-gauge condition

where 0 = 70,0, is the flat d'Alembertian operator
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Methods to compute gravitational waves

Kirchhoff’s formula

For an homogeneous solution of the wave equation OhApem = 0
dqy 0 S5
et = g (2 ) e ()

(X, t)

(X, t) = field point
(X', t') = source point

/= X, t)

matter | | Lo
source | /] =t X=X
c
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Methods to compute gravitational waves

No-incoming radiation condition

Luc Blanchet o] GW theory & approximation methods CIRM 21/88



Methods to compute gravitational waves

No-incoming radiation condition

] no-incoming
radiation condition
imposed at
past null infinity
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Methods to compute gravitational waves

Two-body system formed from freely falling particles

Gravitational motion of initially free
particles when t — —o0 [Eder 1989

x(t) = Vit + Wlog(—t) + X + o(t°)

where V' and X are constant vectors,
and W =GMV/V3
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Methods to compute gravitational waves

Hypothesis of stationarity in the remote past

\J
“ "‘ ,’( .{
*
* * * &
* * * &
"0 * o 0’.
A TR R
. % G .
* * *
*s % N of
. ¢ . o In practice all GW sources observed
* o .
\‘ ‘0‘ R .{ in astronomy (e.g. a compact binary
* * .0’ ’0’ system) will have been formed and
"’ ¢ ¢ ..’ started to emit GWs only from a
* o finite instant in the past — 7
* *
0“ ..0
iy stationary field
when
r
t-—<-T
Cc

GW source
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Methods to compute gravitational waves

The post-Minkowskian approximation

[Bertotti 1956; Bertotti & Plebanski 1960; Westpfahl et al. 1980, 1985; Bel et al. 1981; Bern et al. 2019]

Appropriate for weakly self-gravitating isolated matter sources

M mass of source

_ GM L
GRS 2a a size of source

—+o0
0’ — RN GRS
=1l

—_———
G labels the PM expansion

known from previous iterations

o[PSl

167G
A

Al =
Fhet =0
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Methods to compute gravitational waves

Post-Newtonian versus post-Minkowskian

m/r~O(G)
b Black Holes
1

é¢9
2
5
S
Q)O
N

0 : &
% |[Post-Newtonian &
=3 K\
& &
g ©
£
o
o

: . UR
Post-Minkowskian Scattering

N

( \ &

Tachyons

Squared Velocity

e v2-0(1/c?)

The post-Minkowskian 3PM two-body Hamiltonian [Bern, Cheung, Solon et al. 2019]
has been checked with the post-Newtonian 4PN two-body equations of motion
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Methods to compute gravitational waves

Multipolar expansion

[Pirani 1964; Geroch 1970; Hansen 1974; Thorne 1980; Simon & Beig 1983; Blanchet 1998]

Valid in the exterior of any possibly strong field isolated source

a size of source

a X
— <1 r distance to source
r P
A ~ ¢P wavelength of radiation
I ~ Ma® Ji ~ Ma‘v (L =iy ig)
——— ——
mass-type multipole moment current-type multipole moment

Split space-time into near zone r < A and wave zone 1 > \

a7 G [1® O
hnz ~ -5 Z [r“l 7J+1] hwz ~ o - - = S

r<A RN
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Methods to compute gravitational waves

Multipolar expansion

[Pirani 1964; Geroch 1970; Hansen 1974; Thorne 1980; Simon & Beig 1983; Blanchet 1998]

@ The radiative multipolar field in the wave zone

y G R
Wz ™ ey ; ra z chnt

is actually a PN expansion in the case of a PN source

19 Mat ;
F o
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Methods to compute gravitational waves

Multipolar expansion

[Pirani 1964; Geroch 1970; Hansen 1974; Thorne 1980; Simon & Beig 1983; Blanchet 1998]

@ The radiative multipolar field in the wave zone

G R
hwz ~ 22_7'; 74‘ o

is actually a PN expansion in the case of a PN source

I}/z) Maz Y]
F o

@ The quadrupole moment formalism gives the lowest order PN contribution to
the radiation field due to the mass type quadrupole moment (¢ = 2)

Lij = Qi; + O(edy)
Qi (t) = / d3x p(x,t) (wixj = 1(5ijT2)
i P === 3

N source
Newtonian

mass density
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Methods to compute gravitational waves

Multipolar-Post-Minkowskian expansion

[Bonnor 1959; Blanchet & Damour 1986]

?
2 /7 Multipole Expansion
£ fv/ ©
O
s N
Multipolar
Post-Minkowskian
.
0 a r<<A A
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Methods to compute gravitational waves

Multipolar-Post-Minkowskian expansion

[Bonnor 1959; Blanchet & Damour 1986]

a
2 /7 Multipole Expansion
£ fv/ ©
O
y
. Multipolar
Post—N?wtonlan Post-Minkowskian
i o
0 a r<<A A
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Einstein quadrupole formalism

EINSTEIN QUADRUPOLE FORMALISM
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Einstein quadrupole formalism

Quadrupole moment formalism [Einstein 1918; Landau & Lifchitz 1945]

—_— X T 4 Al 7
b o <72%% - — v [ e ‘
g;/dj /i ‘/i - g{j‘/—;\ / :—/J C/"“’ ; \f\_J (‘/ w an / /

@ Einstein quadrupole formula

dE\® _ G [dQy 40y Lo (2)
dt 5¢5 | dt3  d#3 c

@ Amplitude quadrupole formula

2G ( d2Q;; R fl’ 1
TT 1
iy :E?,{ e (’f“>+0( )} +O(R2>

© Radiation reaction formula [Chandrasekhar & Esposito 1970; Burke & Thorne 1970]

which is a 2.5PN ~ (v/c)° effect in the source’s equations of motion
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Einstein quadrupole formalism

Application to CompaCt binal’ies [Peters & Mathews 1963; Peters 1964]

a semi-major axis of relative orbit
e eccentricity of relative orbit

w = 2% orbital frequency

M=m;+m ! 1l
MZ—‘mmAZ;Q N

Averaged energy and angular momentum balance equations

() = —(FEHI S - —ge)

are applied to a Keplerian orbit (using Kepler's law GM = w?a?)

(AP, _ 1927 (2nGM VR
dt Bes /o e c2)iee
de 6087 e [2nGM\"/® 14 1Z¢2

R T e 304
dt 15¢5 P P (1 — e2)5/2
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Einstein quadrupole formalism

Orbital phase evolution of compact binaries

[Dyson 1969; Esposito & Harrison 1975; Wagoner 1975]

© Compact binaries are circularized when they enter the detector’'s bandwidth

Mc? 32'c
20 0 L= «g%—u%cs

E=—

2/3 : ;
where z = (¢3«) /3 denotes a small PN parameter defined with w

Luc Blanchet (GReCO)
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Einstein quadrupole formalism

Orbital phase evolution of compact binaries

[Dyson 1969; Esposito & Harrison 1975; Wagoner 1975]

© Compact binaries are circularized when they enter the detector’'s bandwidth

Mc? 32 ¢
B== 20 v ]:GW:EEG*ﬁxS
where z = (9%3)2/3 denotes a small PN parameter defined with w
@ Equating 4€ = —7°W gives a differential equation for z
de _64c® o & _9%v (GMuw 28
— = — =Y
dt 5 GM "~ w? 5 c?

Luc Blanchet (GReCO) GW theory & approximation methods



Einstein quadrupole formalism

Orbital phase evolution of compact binaries
[Dyson 1969; Esposito & Harrison 1975; Wagoner 1975]

© Compact binaries are circularized when they enter the detector’'s bandwidth

Mc? 32 ¢
=Y ZCV:E fGW:5%V25
where z = (9%3)2/3 denotes a small PN parameter defined with w
@ Equating 4€ = —7°W gives a differential equation for z
de _64c® o & _9%v (GMuw 28
— = — =Y
dt 5 GM "~ w? 5 c?

© This permits to solve for the orbital phase

qS:/wdt:/gdw

Luc Blanchet (GReCO)
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Einstein quadrupole formalism

Orbital phase evolution of compact binaries

[Dyson 1969; Esposito & Harrison 1975; Wagoner 1975]

@ The amplitude and phase evolution follow an adiabatic chirp in time

256 G3 M3y e
oft) = (25 - 0)

1 (256 3 4y
o) = 6o o (BB (1 -1)
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Einstein quadrupole formalism

Orbital phase evolution of compact binaries

[Dyson 1969; Esposito & Harrison 1975; Wagoner 1975]

@ The amplitude and phase evolution follow an adiabatic chirp in time

) - (B, t>)1/4

5 cd
1 (256 v Sl
é(t) = ¢ — 390 <TG_M(tC = t))

@ The amplitude and orbital frequency diverge at the instant of coalescence ¢,
and the merger phase is to be described numerically

| “R\/’\(\[\“‘"M\‘\‘ﬁ

[N Hmm

Gravitational Wave Signal

Luc Blanchet (GReCO) GW theory & approximation methods CIRM  33/88



Einstein quadrupole formalism

The quadrupole formula works for GW150914

o The GW frequency is given in terms of the chirp mass M = ;3/°M?/° by

pol[meEMR R
N E @ %
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Einstein quadrupole formalism

The quadrupole formula works for GW150914

o The GW frequency is given in terms of the chirp mass M = ;3/°M?/° by

—3/8

g

™

256 GMO/3
[5T(tc v t)]

@ Therefore the chirp mass is directly measured as

5 @ —11/3 § o

which gives M = 30M, thus M > 7T0M,

Luc Blanchet (GReCO) GW theory & approximation methods CIRM 34/88



Einstein quadrupole formalism

The quadrupole formula works for GW150914

o The GW frequency is given in terms of the chirp mass M = ;3/°M?/° by

—3/8

g

™

256 GM5/3
[5Cv5(tc ™ t)]

@ Therefore the chirp mass is directly measured as

5 @ —11/3 § o

which gives M = 30M, thus M > 7T0M,
@ The GW amplitude is predicted to be!

5/6 -1/6
100 M 100 H
B ~ 4.1 x 10~22 (1\/;) ( OOR pc) <f00 Z) ~ 1.685¢ 10-2L
(O] L merger

Lhest ~ hv/N where N ~ w? /& is the number of cycles around frequency w
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Einstein quadrupole formalism

The quadrupole formula works for GW150914

o The GW frequency is given in terms of the chirp mass M = ;3/°M?/° by

—3/8

g

™

256 GM5/3
[5Cv5(tc ™ t)]

@ Therefore the chirp mass is directly measured as

5 @ —11/3 § o

which gives M = 30M, thus M > 7T0M,
@ The GW amplitude is predicted to be!

5/6 -1/6
100 M 100 H
B ~ 4.1 x 10~22 (1\/;) ( OOR pc) <f00 Z) ~ 1.685¢ 10-2L
(O] L merger

@ The distance R = 400 Mpc is measured from the signal itself [Schutz 1986]

Lhest ~ hv/N where N ~ w? /& is the number of cycles around frequency w

Luc Blanchet (GReCO) GW theory & approximation methods CIRM 34/88



Einstein quadrupole formalism

Total energy radiated away by GW150914

@ The ADM energy of space-time is constant and reads (at any time t)

Gmim G 31\ 2
2; 2 g i dtl(Qij(d)) (t’)

Enpm = (m1 + ma)c® —
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Einstein quadrupole formalism

Total energy radiated away by GW150914

@ The ADM energy of space-time is constant and reads (at any time t)

t
o Gmumy G dt'(Qy; @) (¢)

E = L SEI0E
il 2r Scba

Q Initially Eapm = (m1 + ma)c? while finally (at time )

t

G © 2
EADM = Mc62 T g dt/(Qij(3>) (tl>
— 0o

Luc Blanchet (GReCO) GW theory & approximation methods CIRM
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Einstein quadrupole formalism

Total energy radiated away by GW150914

@ The ADM energy of space-time is constant and reads (at any time t)

t
o Gmumy G dt'(Qy; @) (¢)

E = L SEI0E
il 2r Scba

Q Initially Eapm = (m1 + ma)c? while finally (at time )
2 NEEEE . (3)\2/4
EADM = MCC + — dt (QU ) (t)
aed Jl_ &

© The total energy radiated in GW is

E

s o) Gmlmg
=== . i AR
Bed Jlurs

AEGW = (m1 + mo — Mc)62 dt, (QZJ (3))2(t/) B
e
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Einstein quadrupole formalism

Total energy radiated away by GW150914

@ The ADM energy of space-time is constant and reads (at any time t)

Gmim G 31\ 2
B (ml it m2)02 o 2; 2 g % dtl(Qij(ﬁ)) (t/)

Q Initially Eapm = (m1 + ma)c? while finally (at time )
¢

G © 2
EADM = Mc62 T g dt/(Qij(3>) (tl>
— 0o

© The total energy radiated in GW is

E

s o) Gmlmg
=== . i AR
Bed Jlurs

AEGW = (m1 + mo — Mc)62 dt, (QZJ (3))2(t/) B
e

@ The total power released is

3]\4@02

GW
‘a 0.2s

~10W ~ 1073 —
e
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GRAVITATIONAL-WAVE GENERATION FORMALISM
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Gravitational-wave generation formalism

PN-matched Multipolar-post-Minkowskian

Multipole Expansion

Compactness

nian Multipolar
Post-Minkowskian

r<<i A

r

@ Construct the most general multipolar expansion outside the source in the
form of a PM expansion

multipole expansion
tip p i
(VLT e e e s T el R

post-Minkowskian expansion

@ Match the MPM solution to the PN expansion of the field inside the source

Luc Blanchet (G GW theory & approximation methods



Gravitational-wave generation formalism

Linearized multipolar vacuum solution [piani 1964; Thorne 1980]

Solution of linearized vacuum field equations in harmonic coordinates

OrS? = 9,h5* =0

|
C 7o ! 1
+oo L
R L) 1 o ¢ .
Esa ), iavdar 1 ( - Jor
g e {“(NUUHH Ao
+00 ¢
A gy 1,2 o Lo
hf:zz“!{aL ( liji—2 ) + g7 Oar-2 | ;b jyon—s

e multipole moments I, (u) and Jy(u) are arbitrary functions of u =t — r/c
@ mass M = I = const, center-of-mass position GG; = I; = const
linear momentum P; = Ii(l) = 0, angular momentum J; = const

38,88
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Gravitational-wave generation formalism

Linearized multipolar vacuum solution [piani 1964; Thorne 1980]

Solution of linearized vacuum field equations in harmonic coordinates

Or$? = 8,h5* =0

4+oo R\ 1
h(l)o iy __,ZQ@L ([L) L =iqig---ip

c? vl r
£=0
+oo Vi
= () i ¢ 1
hig— 3 2 T {3L—1<TI,FL)1> + méiabaaL—l <erL1>}
b A (D) 1 (2) 2 1 (1)
hlj s _EZ o T 8L72 ‘,,:IijL72 iy maal/72 ;Eab(i']j)bL,Q

@ multipole moments I (u) and Jg(u) are arbitrary functions of u =t —1/c

@ mass M = I = const, center-of-mass position GG; = I; = const
linear momentum P; = Il.(l) = 0, angular momentum J; = const
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Gravitational-wave generation formalism

The plug-and-grind MPM algorithm

@ At n-th post-Minkowskian order we need to solve

b
DR = REROR,, - - by )
N —

known from previous iterations

@ A particular solution with the required multipole structure reads
-1 [(r\B
u? SERERL [(2)7A%7

© In order to guarantee that the harmonic gauge condition 9,ho* = 0 is
satisfied we add an homogeneous solution v%# hence

hgﬁ i uzﬂ A vgﬁ

@ The MPM solution is generated as a functional of Ip(u) and Jr(u)
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Gravitational-wave generation formalism

The plug-and-grind MPM algorithm

Theorem 1

The MPM solution is the most general solution of Einstein's vacuum equations
outside an isolated matter system

Theorem 2

When expanded in the near zone (r — 0) the MPM solution yields the general
structure of the PN expansion as

i @) &
hEniee t,c) =N ( )hﬁq)(x,t)

cP (p,
p=>2q=>0

Theorem 3

When expanded in the far zone (r — oo, u = const) the MPM solution becomes
asymptotically flat in Penrose’s sense and recovers the Bondi-Sachs formalism
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Gravitational-wave generation formalism

Asymptotic structure of radiating space-time

[Bondi et al. 1962; Sachs 1962; Penrose 1963, 1965]

radiation
P4 loss
X4

mass-energy emitted in GW

Mg(u) = Mapm — 5_G7/ du/ Ug)(u')Ui(jl)(u') + higher multipolar contributions
c OO0
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Gravitational-wave generation formalism

Asymptotic structure of radiating space-time

[Bondi et al. 1962; Sachs 1962; Penrose 1963, 1965]

radiation
AN\ loss
R4

matter
source

mass-energy emitted in GW

Mg (u) = Mapm — 5—G7/ du’ Ui(j;)(u’)Ui(J})(u') + higher multipolar contributions
c

@9

where Uy (u) = Ii(f) (u) + O(G)
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Gravitational-wave generation formalism

Problem of the matching

[Lagerstrom et al. 1967; Burke & Thorne 1971; Kates 1980; Anderson et al. 1982; Blanchet 1998]

@ Most general multipolar(-post-Minkowskian) solution in the source's exterior

M(h) = EPOLL [(£)7 M ]+Za { 7’/@}

where the homogeneous solution is parametrized by multipole moments

@ Most general PN solution in the source’s near zone

BZE:ODs_ym[n, }*Za{ r/c)r (t+r/c)}

where the homogeneous solution (regular when r — 0) is parametrized by
“radiation reaction” multipole moments

42/88

Luc Blanchet (GReCO) GW theory & approximation methods CIRM



Gravitational-wave generation formalism

Problem of the matching

[Lagerstr6m et al. 1967; Burke & Thorne 1971; Kates 1980; Anderson et al. 1982; Blanchet 1998]

exterior zone

—

matching zone
] E—4
: near zone

actual solution

Luc Blanchet
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Gravitational-wave generation formalism

Problem of the matching

[Lagerstr6m et al. 1967; Burke & Thorne 1971; Kates 1980; Anderson et al. 1982; Blanchet 1998]

exterior zone

—

multipole expansion

matching zone
3 ;
: near zone

actual solution

Luc Blanchet
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Gravitational-wave generation formalism

Problem of the matching

[Lagerstr6m et al. 1967; Burke & Thorne 1971; Kates 1980; Anderson et al. 1982; Blanchet 1998]

h
multipole expansion
exterior zone Lo tchi
- matching zone

: near zone
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Gravitational-wave generation formalism

Problem of the matching

[Lagerstrom et al. 1967; Burke & Thorne 1971; Kates 1980; Anderson et al. 1982; Blanchet 1998]

multipole expansion

exterior zone . oh
e matching zone

: near zone

actual solution

biyee., g — r

matching equation = M (h) = M(h)

Luc Blanchet GW theory & approximation methods CIRM 43 /88



Gravitational-wave generation formalism

Near-zone expansion of the multipole expansion

Lemma 1

EPOL |(£5)°M(4)] = EPOL [(5) M)

ZaL {RL (t—r/c) QTRL(t—l-T/C)}

antisymmetric type homogeneous solution

where the radiation reaction multipole moments are

+oo
RL(u):gEJ/d3 (= ) acL/l dzve(z) M(T)(x,t— 2r/c)

multipole expansion of the pseudo-tensor

The finite part at B = 0 plays the role of an UV regularization (r — 0)
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Gravitational-wave generation formalism

Far-zone expansion of the PN expansion

Lemma 2
i (FP O3} {(TO)B*D = FPO.) [(#)BM(f)]
Za { t—r/c)—l—fL(t—Fr/c)}

2r

symmetric type homogeneous solution

= FP/d3 a:L/ dzde(z) T(x t—zr/c)

PN expansion of the pseudo-tensor

The finite part at B = 0 plays the role of an IR regularization (r — +00)
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Gravitational-wave generation formalism

General solution of the matching equation

@ In the far zone

M(h) = FPO [(2)PM(4)] - ”:Tf faL {fL(t—T/c)}

r
a0

source's multipole moments

@ In the near zone [Poujade & Blanchet 2002; Blanchet, Faye & Nissanke 2005]

e ! {( ] ZaL {RL t—r/c)— RL(t—i—r/c)}

non-local tail term (4PN order)
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Post-Newtonian parameters

POST-NEWTONIAN PARAMETERS

GW theory & approximation methods



Post-Newtonian parameters

PN parameters in the orbital phase evolution

Gravitational Wave Signal

0 001 002 003 004 005 006 007 008 000 01
Time

@ The PN parameters come from a mixture of conservative and dissipative
effects through the energy balance equation

conservative energy
d B
dt

GW

dissipative energy flux

Luc Blanchet (G
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Post-Newtonian parameters

PN parameters in the orbital phase evolution

°

°

Gravitational Wave Signal
&

El L L L L
0 001 002 003 004 005 006 007 008 009 01
Time

@ The PN parameters come from a mixture of conservative and dissipative
effects through the energy balance equation

conservative energy
d B W
i1~ s
dt

dissipative energy flux

@ The orbital phase ¢ = [wdt is obtained as a function of z = (GM“’)Q/3

3
i
bt b M1 12
the mass ratio v = ey

and

Tt 0 2
—— 3 (wpn() + () logz) a7 + Ol(log )
p

¢(x) = ¢o —
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Post-Newtonian parameters

The inspiral-merger-ringdown (IMR) model

1.00 -
~ h
N
as
~ 1

N

b
(=}

— 0.10
~ b
= ]
< ]
S
= ]
Z ]
£ ]

0.01

20 50 100 150 200 250 300
Frequency (Hz)

Effective methods that interpolate between the different phases play a crucial role
@ The effective-one-body (EOB) approach [Buonanno & Damour 1999]
@ The inspiral-merger-ringdown (IMR) [Ajith et a/. 2008]

{PN parameters; (2,03 ; ag,a3,04 }
— - & S—

inspiral intermediate merger-ringdown
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Post-Newtonian parameters

The known 3.5PN parameters

They were computed from the MPM-PN approach [Blanchet 2014 for a review]

wopn = 1 <= Einstein quadrupole formula
PIPN = %ég +

p1spN = —107
P2PN = 115021963036645 il 217010%35 ik 3104%45 4

‘Pgl)sPN = (Fie —2v)7
i 1213847876618169227624051 P % Tk %%_g 3424 e

e 151723179o7267566s;35 Al 242125 s 766901025 2 1?&24215 1

@gleN i _%

p3sen = (Gmos + oo ? — sois?)
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Post-Newtonian parameters

Measurement of PN parameters [Lico, virgo 2017, 2020]

0.00004 5
0.8 6
0.00003
0.6 0
0.00002 4
= 04 5
< s
< 0.00001 02 2
0.00000 -0
0.0 o
~0.00001 02 : -1
~IPN OPN 0.5PN IPN 15PN 2PN 2.5PN® 3PN 3PN© 3.5PN
@n
1Px 0PN 05PN IPN 15PN 2PN 25PN 3PN 3PN 35 PN
107! 5
1024
10-24 10'4 - .- ) 3
= == = = 10'4
s . v =
= \2 0 — g v
=< 10-%4 10°4 — ¥ =
S 10 = v = . 10°4 - :
= * v . v : )
v ~ v ¥ GWTC-2 (Phenom) 1 =
104 104 o = e V' GWTC:2 (SEOB) 104 "
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) ! ¢ GWI70817 (Phenom)
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Post-Newtonian parameters

Inspiral-Merger-Ringdown consistency test [ico/viro 2016]

Final spin a
o o o
~ o)} o0

S
o

40 50 60 70 80 90 100 110 120

Final mass My (M)

GW theory & approximation methods
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Post-Newtonian parameters

The gravitational wave tail effect (sinchet & pamour 1988, 1992]

field point

@ In the near zone (4PN effect)

LGN dedt’ :
il (d (3) (yr
S S 508 // | t’| z] Izj (t )

@ In the far zone (1.5PN effect)

. 4GGM [* —
Rgl= 2o | WIPE)h (u - )
RO

matter source
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Post-Newtonian parameters

Tail effects in PN parameters

wopn = 1
_ g 55
P1IPN = 7008 7Y
p1spN =  —107
_ 15293365 , 27145 3085 2
2PN = Toi6062 T 1008 ¥ T T V
(&) __ (38645 _ 65
PrEPN = ( 1344 16’/) w
_ 12348611926451 _ 1602 _ 1712
¥P3PN = T18776862720 3 21
_ 15737765635 |, 22552 76055
+( 12192768 1 as * )V+ 6912 ~
@ - 5
e = T
_ (77096675 | 378515, _ 74045 2
¥P3.5PN = (2032128 + 92006 ¥ ~ “6ods )W

3424 In2
2 127825 1/3
5184

tail terms
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Post-Newtonian parameters

Tail effects in PN parameters

®

YOPN =
P1PN =
15PN =

PPN =

P25PN —

P3PN =

!
@ngN oy

35PN =

tail-of-tail terms

il
Sl | 5
1008 T 12Y
—107
_ 15203365 , 27145 3085 2
1016064 1 1008 ¥ T Taa Y
38645 _ 65
( 1344 EV) w
12348611926451| 160 -2 _ 1712 3424
18776862720 3 21 JE o1 In2
15737765635 |, 2255, 2 760552 127825 3
s 12192768 1 a8 T G 6912 5184 Y
_ 856
21
77096675 | 378515, 74045 2
( 2032128 T 12096 ¥ ~ 6048 )W

tail terms
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Post-Newtonian parameters

The 4.5PN radiative quadrupole moment

A BSER
Ui;(t) = Ii(j)(t) I VT g dTI,l-(;-l)(t —7) [2 In <QTO> A 6]

1.5PN tail integral

ERIERN )
o 5{—7/ dTIgQJ;iL@ — 7) + instantaneous terms}
C 0 i

2.5PN memory integral

@Rl B o b7 T 124627
dr;V(t—7) [2In* [ — | + =In | —

e /O L G <270> o3 n<2m) * 22050 |

3PN tail-of-tail integral

GRS IR 5 JAR e e 129268 1 AIR
dr(t—7) |z — )+ + oo + ==7°
i /O il o o <2m> ST T

4.5PN tail-of-tail-of-tail integral
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Post-Newtonian parameters

Toward 4.5PN parameters

@ The 4.5PN term is also known and due to the 4.5PN tail-of-tail-of-tail
integral for circular orbits [Marchand, Blanchet & Faye 2017; Messina & Nagar 2017]

— (— 23008188434443 [UREOTBINNTTD a4
45PN _< 150214901760 |- 8 & & 21 JE T In2

e ooy Lo PP S o ss )3 ) o
1072963584 a8 1016064 1596672
O] 856 ] : :
aspn = |87 T tail-of-tail-of-tail terms
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Post-Newtonian parameters

Toward 4.5PN parameters

@ The 4.5PN term is also known and due to the 4.5PN tail-of-tail-of-tail
integral for circular orbits [Marchand, Blanchet & Faye 2017; Messina & Nagar 2017]

_(_93098188434443 /80 2 | 1712 3424
[P4.5PN = ( 50514901760 T3 & + oy JE+ 57 In2
it [1492917260735 i 22557r2] _ 45203335 2 _ 10323755 3)
1072963584 48 1016064 1596672
0 — . tail-of-tail-of-tail t
s sen = ail-of-tail-of-tail terms

@ However the 4PN term is only known from perturbative BH theory in the

test-mass limit 7 — O [Tagoshi & Sasaki 1994; Tanaka, Tagoshi & Sasaki 1996]

PaPN =

1)
Soz(lPN G

2550713843998885153 _ 45245
2214468081745920 756

——718596785 In3+ O(v)

2 9203
T ME

_ 2527551, 9

(4 2646

9203
252

+ O(v)
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Finite-size effects in compact binaries

FINITE-SIZE EFFECTS IN COMPACT BINARIES
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Finite-size effects in compact binaries

Constraining the neutron star equation of state

[LIGO/Virgo 2017]

3000 1

|x| <0.05

\\‘
25001 %
20007 © =14.4km
1.§5'M_sol
Less Compact 2 62 Ra 5
=
3~~~ \ Gmy,
nb;fer
More Compact
\
: 11.1 km
1.35 M_s!
0 500 1000 1500 2000 2500 3000
Ay
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Finite-size effects in compact binaries

Equations of motion of N extended bodies

st = 73,((i) oF Z(E=i0)
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Finite-size effects in compact binaries

Equations of motion of N extended bodies

@ The Newtonian equations of motion of extended (spinless) bodies are

G

b#a

effect of the quadrupole moments

Tab

1 1 ; ,
mamig () +5 (mai + o)

83

i 9pd Gk
0zt Oxt 0k

(

1

Tab

@ The conserved energy of the N-body system is the sum of the internal
energies E, and of the orbital contributions

FE =

e

1 G MM
+*mav2__z - b_
+

2 2
b

Tab

© The tidal quadrupole moment felt by the body a is

Luc Blanchet (GReCO)

G
a

2
4 Ua, where U, = Z

N

b#a

e
—_0OY cY
2 Qa ga }
Gmb

Tab
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Finite-size effects in compact binaries

Equations of motion of N extended bodies

@ The coupling of the quadrupole moments with the external tidal field G/
implies a variation of the internal energy given by
@B, -l age g
— S @
dt 2Q“ G

@ Neglecting tidal dissipation we assume that the quadrupole moment is
aligned with the tidal field

Qd = paGd
where p, is a deformability or polarizability coefficient
© The conserved energy of the system simplifies in this case

55 {imot- S5 2 2 gygy]

Tab

@ Very importantly the dynamics admits a Lagrangian formulation

i — Z{ mav> + — Zm“mb Ha gwgw}

Luc Blanchet (GReCO) GW theory & approximation methods CIRM
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Finite-size effects in compact binaries

GW flux of extended two-body systems

@ We compute the GW flux using the quadrupole formula, where the total
quadrupole moment of the system is (2! = ¢ — %)

orbital quadrupole moment

Q¥ = my(s'al = 589r%) +Q¥ + QF

@ For two bodies moving on a circular orbit this yields

32G4622

ol o5 — r*wWmy [1 +6(m‘1‘A1 +m§A2)

Gm
By

© The internal structure is characterized by the dimensionless parameter

e Opa _ gka @Rq\’
CEimd v 3 Gmg,
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Finite-size effects in compact binaries

Influence of the internal structure on the phase

: PGl GW :
© Applying the energy balance equation 3 = —F~" we obtain the

modification of the phase due to the internal structure as

5PN effect
¢_¢_L5/2 1_‘_@[\5 _ (Gmw i
BT 37 g " gl

@ The tidal interaction on two bodies moving on a circular orbit depends on
[Flanagan & Hinderer 2008]
3
m
1A1 L (

a0
13

16 (m1 + llmg)
m4

© The effect of the internal structure is formally a very small effect for compact
objects comparable to an orbital correction of the order 5PN ~ 1/¢!°
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Finite-size effects in compact binaries

Dominant quadrupole tidal effect in BNS

@ Tidal contribution to the GW chirp

3000
Ix| <0.05
il 1/4 5/4
2500 z(t) = 49 / |:1+ A@ /}
2000 \ 1775/2 39X .5
Ry = 1k o) = g0 — ——[1+ 2A2°]
. / Less Compact N——
S 1500 5PN effect
135M _sol 13 6 km
\ ore Compact 3
T with o = (232)2/3 and 0 = £ (t. —t)
RlasMso. S 1811 km o The polarizability A depends on the source
O S0 10 L0 W 200 s mass of the NS (for a given EoS) while the
1

point-particle part of the signal depends
on the redshifted mass
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Finite-size effects in compact binaries

Effective action for compact binary systems

@ Hierarchy of length scales in a compact binary system

GW
<:a<</\GWNvi/C

<:R1,R2<<a

@ The Newtonian result can be reformulated as an effective matter action

point-particle action internal structure effect

efF = Z/dt[ mav Sipt Z Gmb %géj gtizj ]

Tab
#a N————
5PN
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Finite-size effects in compact binaries

Effective field theory for extended compact objects

[Goldberger & Rothstein 2006; Damour & Nagar 2009]

@ Matter action with non-minimal world-line couplings

eff_z/dfa{ ma—i-z%'[ ® ( )+€%&(Ha)} }

mass type current type
polarizability polarizability

o Tidal multipole moments [Thorne & Hartle 1985; Zhang 1986]

&= —[V@l o (O lomoL

@ = 2" doo Vi Bl b g
Hi=2 {V(n NeTe Cn_lgu)oL
where CO ., are the components of the Weyl tensor C),, ., projected on a
local tetrad and evaluated at the location of the particle using a self-field
regularization
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Finite-size effects in compact binaries

High-order PN tidal effects

A recent result [Henry, Faye & Blanchet 2020abc] is the orbital SPA phase at the
next-to-next-to-leading order for equal NS binaries on circular orbit

NLO
Yridal = —%%S{ﬁ@) L (%12#(2) = 3700(2)>

()P 379931975 935380~2 500~3
@y +<m (2) 4 9353805(2) 4 5 <>)

NNLO

208 72 592 ~(2 5
—W(mu( ) 4 3925( ))U }
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Finite-size effects in compact binaries

High-order PN tidal effects

A recent result [Henry, Faye & Blanchet 2020abc] is the orbital SPA phase at the
next-to-next-to-leading order for equal NS binaries on circular orbit

NLO
Ytidal = —I§705{ﬁ(2) T (3112/1(2) I %5(2))02

~(2) )3 379931075 ~(2) | 935380~=(2) | 500 4
—mfi P + ( Lisrosos B + Taag 0D + G ))

NNLO
r (L) + 82500 } il
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Synergy with the effective field theory

SYNERGY WITH THE EFFECTIVE FIELD THEORY
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Synergy with the effective field theory

Fokker action versus effective action

Einstein-Hilbert
Lagranglan

IGWG/d%W{ ”r r,,} Zma/dra

gauge- flxmg term

Sz, h] =

point partlcles

o Traditional PN approach: compute the Fokker action by inserting an
explicit iterated PN solution of the Einstein field equations

A (x,t) — B (3% 20 (t), va(t), - )
SFokker[fE] == Sg [:B,E(.’E)]

o Effective field theory: compute the effective action by integrating over the
gravitational degrees of freedom

lSeff /D 1S s, h]
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Synergy with the effective field theory

Diagrammatic expansion in EFT
Effective Field Theory

_:
o
PN

Post-Newtonian

@ emission from a quadrupole source

o tail effect in radiation field (1.5PN)

@ non-linear memory effect (2.5PN)

o radiation reaction (2.5PN)

o tail in radiation reaction (4PN)

The EFT is equivalent to the traditional PN at the level of tree diagrams

Luc Blanchet (GReCO)
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Synergy with the effective field theory

Action for simple non-local tails derived by EFT

[Foffa & Sturani 2019]

@ Using the relation between the tail self-energy diagram and the imaginary
part of the tail radiation diagram

+oo
; G2M dedt’ b
gtail _ 02“_4 // ne [ I(é-‘rl)( )Iél-‘rl)(t/) 3 C—;J£E+1)(t)J£é+l)(t/)

@ The coefficients are those which appear in the multipole expansion of the
gravitational wave energy flux [Thorne 1980]

@ The proof of this action by PN methods is tedious and limited to 1PN

@ However the multipole moments I, and Jy, are computed up to high PN
order by traditional PN methods [Blanchet & lyer 2004]
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Synergy with the effective field theory

High-order logarithmic tails in the circular energy

[Blanchet, Foffa, Larrouturou & Sturani 2020]

Current knowledge for the mass quadrupole moment is limited to 3PN order so we
can compute the logarithmic tail terms to NNNL/7PN order

2
: my
g el o T 448 e 4988 GgGV) .
2
1967284 |, 914782 32384 2
+(“ 8505 + o945 Vibiss )x
85220654387 | (2132 2 41161601) L, _ 13476541 2 _ 289666 3
16372125 51030 5670 1215

B (1 | 1og 4) — 83009004 ],
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Synergy with the effective field theory

High-order logarithmic tails in the circular energy

[Blanchet, Foffa, Larrouturou & Sturani 2020]

Current knowledge for the mass quadrupole moment is limited to 3PN order so we
can compute the logarithmic tail terms to NNNL/7PN order

Etail — _m’/2 Hokns 448 + ( 4988 656V) 2
1067284 | 914782 32384 2
+( 8505 T oas VT I35 )a:
. [ 85229654387 | (2132 2 41161601) 134765412 289666, 3
16372125 15 51030 5670 1215

8 (1 | Jog 4) — 83009 10g 5],

n—1
+% +o<:>3 (6n+1)(461) 3(n—1)(10gx)n—1 +}

=

4PN-7PN tails
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Synergy with the effective field theory

High-order logarithmic tails in the circular energy

[Blanchet, Foffa, Larrouturou & Sturani 2020]

Current knowledge for the mass quadrupole moment is limited to 3PN order so we
can compute the logarithmic tail terms to NNNL/7PN order

+lo

n=3

+o0 (6n+1)(4l31)” B

tail mv® o 448 4988 656
B = 7 logx{ —l—( === Z/).’E
+ (_ 19865702584 + 919447582V + 3324 2) 22
+ [8512623976251423587 + (2‘1?2 2 4151160136001) v 13?51(7;?841 2 zélsg?ga 3
~ 12884 o+ log) — S8 loga]

3(n—1)(log m)n—l T }

4PN-7PN tails 7PN tail-of-tail-of-tails
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Synergy with the effective field theory

High-order logarithmic tails in the circular energy

[Blanchet, Foffa, Larrouturou & Sturani 2020]

Current knowledge for the mass quadrupole moment is limited to 3PN order so we
can compute the logarithmic tail terms to NNNL/7PN order

gl — _m’/2 25 log 24 (_ 4988 _ @y) e
o 5 g 15 35 5
1067284 | 914782 32384 2
+( 8505 1+ oas VT 135 )x
4 [88220654387 | (21322 ALLGIOOL) ,, _ 134T6541,2 _ 2896663
16372125 15 51030 5670 1215

M2 (e + og4) — 4882 log o

Z+oo g6n+1)£4ﬂz)" L p3(n— D(logz)™1 _|_}

4PN-7PN tails 7PN tail-of-tail-of-tails leading (3n + 1)PN (log )™ terms
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Synergy with the effective field theory

Consistency with gravitational self-force calculations

The 7PN tail-of-tail-of-tail terms are computed by combining information from
high-order GSF calculations of the redshift invariant [Kavanagh, Ottewill & Wardell 2015]

2
mlmzi(m;mz)

1/4 /

/" m, <

o
8 .
@ Post- T
%] . .~
s Newtonian .
) "
= R J
g m,
3 _ -
g P
[2]
Perturbation Theory
L )
0 - » V~G(m_ +m. )/r
Squared Velocity ~ Compactness c? ( 1 2)
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Synergy with the effective field theory

Leading powers of logarithms from RG theory

@ The renormalization group equations for mass and angular momentum are
(with p the renormalization scale) [Goldberger, Ross & Rothstein 2014]

dlog M 2
ogM(p) _ _2G? {21(1 19 - 1?4 Iggg))}

dlog i e
difi(u) SGENCTREE SN0 (2)3)
S ~ ) [Ijllkl —Ijl I, +I I }
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Synergy with the effective field theory

Leading powers of logarithms from RG theory

@ The renormalization group equations for mass and angular momentum are
(with p the renormalization scale) [Goldberger, Ross & Rothstein 2014]

dlog i R
S _8G2M
dlogp 5

dlog M(n) 2
M JI TS 2l o1 D1 10 10|

ik [Ijl e Iqum G I(z) 1(3)}

@ The quadrupole moment itself undergoes a logarithmic renormalization under
the RG flow (|n the Fourier domain) [Blanchet 1998; Goldberger & Ross 2010]

5 & o
o (0 e SIS T () 14 )

with fi = p1/p and ) = — 212 is the beta function coefficient
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Synergy with the effective field theory

Leading powers of logarithms from RG theory

© Integrating and averaging over one orbital scale, then specializing to
quasi-circular orbits

1 Gm?v e
5= gmv e e %— z:: 86173 log v)n
J =mvriw— Z 86173 log v)n
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Synergy with the effective field theory

Leading powers of logarithms from RG theory

© Integrating and averaging over one orbital scale, then specializing to
quasi-circular orbits

1 Gm?v e
5= gmv e e % z:: 86173 log v)n
J =mvriw— Z 86173 log v)n

@ For circular orbits the two invariants E(w) and J(w) are linked by the
“thermodynamic” relation or first law of binary mechanics

dE dJ

dw T dw
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Synergy with the effective field theory

Leading powers of logarithms from RG theory

This gives three relations for the three unknowns E(w) and J(w) and r(w)

E leading (log)™ _

myvz [1 64y IX 6n 41

) iy o1 m3”+1(logx)"}
n=1 ¥

+oo
Jleading (eg) m2v |:1 'k 64v 3n + 2

15 n!

o 3 e G|

in agreement with high-order GSF calculations up to 22PN order !

Luc Blanchet (GReCO) GW theory & approximation methods CIRM 76 /88



RADIATION REACTION AND BALANCE EQUATIONS
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Radiation reaction and balance equations

Radiation reaction and balance equations

© Conserved Newtonian energy in the source
2 U
E:/dgxp[‘;—l—ﬂ—v}

@ Eulerian equations of motion in the source k]

i e

dv? ZEm RO
= —@)ylP U — —pz’ -
o TR PR e

© Energy loss is due to the work of the radiation reaction force

PR 56 A3 did

T s e IR
dt

+ total time derivative

@ Obtain the balance equation after averaging over one period

E)=-") = ¢= [wa=[Law
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Radiation reaction and balance equations

Radiation reaction to 4PN order sinche: 1003, 1007]

@ At 2.5PN order for general matter systems the radiation reaction force in a
specific gauge is purely scalar [Burke & Thorne 1970]

Freac — palvreac
i - ()

@ At the 3.5PN order the radiation reaction derives from scalar and vector
radiation reaction potentials

r r o r 4 'de:eaC
Fieac =p 8iV eac __ 6721)] (@ereac &N a]VZ eac) wh gaijkvj =

@ At 4PN order the radiation reaction contains a tail term (again scalar)
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Radiation reaction and balance equations

Radiation reaction to 4PN order sinche: 1003, 1007]

2.5PN radiation reaction 3.5PN scalar correction
r Eaan ) GRS ) 0
Ve I g e - e
Eeanaey. e (7) R 11 1
A i dr e i L o=
il (T ™) [n<2m> i 12} i <c9>

4PN radiation reaction tail

r G 1 ~ijk 7(6) 4 it 7(8) :
‘/ieaccf)|:2:[xj i —ZE)Eijk:Z?J S e =

3.5PN vector correction

This result permits to prove the balance equations for general isolated systems up
to the 4PN order or 1.5PN relative order beyond the quadrupolar radiation
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Radiation reaction and balance equations

Radiation reaction derivation revisited sinche: & Faye 2015

@ Metric accurate to 1PN order for conservative effects and to
3.5PN order for dissipative radiation reaction effects

Ny, oA el
900:—1+07—CT+OC0 <C6>

4V, 1
= o (1)

c? @
2V 4 1
! <1 . CQ> + C—4(Wij — 6 Wit ) + O™ (CG)
@ Potentials are composed of a conservative part and a dissipative one

© Integrate the matter equations of motion V, T*” = 0 over the source

1
81/(\/ _gT:) o b} vV—4 a,ugpanU
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Radiation reaction and balance equations

Radiation reaction derivation revisited sinche: & Faye 2015

@ Recover well known results for the fluxes of energy and angular momentum
[Epstein & Wagoner 1975; Thorne 1980; Blanchet & Damour 1989]

1
LI G (* @, 1 {L 1@ 16J,<3>J,<3>D Lo (1)
45 g ) 08

dt B \5 4 "4 2| 189 wkiik
dJ; G 2 1(2) @)l [ S B2 ) (3) 1
E = —CT,)Eijk (5Ijl Ikl + 6_2 @Ijlm]’klm aF Z5le Jkl +O 078

@ And also for the linear momentum which is a subdominant 3.5PN effect
[Papapetrou 1971; Bekenstein 1973]

dfs _ G (2,00, 16 60 1
g — —67 |:63[ijk‘[jk "‘Zggijk-[jl Jkl +O Cig
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Radiation reaction and balance equations

What about the position of the center of mass?

@ For an isolated conservative system the conserved integrals are E, J;, P; and
also the initial position of the center of mass

Z;=G; - Pt

where G; is the position of the center of mass multiplied by the mass
@ The conservation of Z; is associated with the invariance under Lorentz boosts
@ We also find a balance equation for the center-of-mass position

dGi:Pi_2_G_IB)IS)+O< )

dt Dilgw

@ This formula has never appeared in standard texbooks on GR or gravitational
waves, nor on specialized reviews, it appeared only recently in the GW
litterature [Kozameh, Nieva & Quirega 2018; Nichols 2018; Blanchet & Faye 2018]
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Radiation reaction and balance equations

Direct calculation of the GW fluxes at infinity

@ Introduce a retarded null coordinate u satisfying

‘ g oud,u =0 ‘

@ For instance choose u =t — r,/c with the tortoise coordinate

o = P 4k 2G2]w In <L> (@) (1>
c 70 T
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Radiation reaction and balance equations

Direct calculation of the GW fluxes at infinity

@ Perform a coordinate change (¢,x) — (u,x) in the conservation law of the
pseudo-tensor 9,7 = 0 to get

= TR0 (x, u + 1, /) — niTHi(x, u+r*/6)} + 0; |:TMZ(X u—H"*/c)} = (0]

@ Integrating over a volume V tending to infinity with u =const

dE -
@ = —C i dSl Tg\Z/V(X,U+T*/C)
Ji
d e —5ijk/ ds; o7 ’TGW(X u—+ry/c)
d’U, ay
dPpP? %
s fos dS; Ty (X, u + 74 /0)
d(;Z 1 ij
i P, — " /{—)v ds; (a: TGW P TG“<N) (x,u+14/C)
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Radiation reaction and balance equations

Direct calculation of the GW fluxes at infinity

A long calculation to control the leading 1/72 and subleading 1/73 terms in the
GW pseudo-tensor when r — oo gives the fluxes as full multipole series
parametrized by the multipole moments Iz, and Jr up to order O(G?)

a5 Jio G (L+1)(+2) (£+1)(£JIF1)
dlay 2E\—Deeernn v ir

400+ 2) (64}1)(531)
N " Y
iy e { £ B g
av 2 2T\ (- AR+ 1!

407(0+2) @ (631)

G

+

+c2
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Radiation reaction and balance equations

Direct calculation of the GW fluxes at infinity

A long calculation to control the leading 1/r% and subleading 1/72 terms in the
GW pseudo-tensor when r — oo gives the fluxes as full multipole series
parametrized by the multipole moments 17, and Jr up to order O(G?)

dPl-__Jio G [ 26+2)(E+3) @42 @4
du e+ T E
B 8(¢+2) <é}1) <é71>
O - WO et
8(¢ +3) (€2 (0
e (¢ + 1) e
S <
i" G [26+D(+3)¢D €1 8(¢+3) 4D Ce)
e T IR e V(27 T
[Blanchet & Faye 2018]
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Radiation reaction and balance equations

Any implication for the total recoil of a source?

@ We have obtained the balance equations

dP

o g

dt 125

dG

— =P — F
dt G

@ |Integrating these equations for a burst of GWs
with finite duration we obtain

t1
T —/ dt’ Fp(t'),

to

- / it [t’ b3 FG(t’)} .

to

© The total recoil depends only on the linear momentum
flux (as in usual calculations)
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Radiation reaction and balance equations

The instantaneous CM position of a circular binary

© The linear momentum is evaluated for a Newtonian
circular binary as usual [Fitchett 1983

dP 0 464 G*mbPw

e 2 S AR T P S\ t
dt — 105 ¢t i !
464 G*m?®
P=— i V1—4dviin :
105 c7r4 dPsy, | o
dt ; Py
@ However in order to obtain the instantaneous :
CM position we must also use the CM flux |
dG 544 G4m5 CM motion
e il 3o 3 1—14 2
at 105 cirt ) ’”2. Sk
48 G4 5 om __ 9Faw
O R e dt dt
5 c’rtw

© It would be interesting to compare this prediction to
very accurate NR computations of the CM position
[Gerosa, Hébert & Stein 2018; Woodford, Boyle & Pfeiffer 2019]
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