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Lecture I — The spacetime of N-body simulations

Newtonian description of an N-body system

Newton’s second law:
F ≡ p′ = ma (1)

In “Newtonian” cosmology, p is the comoving momentum, ′ denotes the derivative w.r.t. conformal
time (denoted as τ in this lecture), and the acceleration vector is given by the gradient of the peculiar
gravitational potential φ as

a = −a∇φ , (2)

where a is the scale factor and ∇ is the gradient operator in comoving coordinates.

NB: In many treatments the peculiar velocity v is used as the phase-space coordinate, assuming the
classical relation

v =
p

ma
, (3)

leading to the acceleration equation
v′ +Hv = −∇φ , (4)

where H ≡ (ln a)′ is the conformal Hubble rate. In a relativistic context, the momentum will often
turn out to be the more useful quantity.

The Newtonian gravitational potential solves the Poisson equation

∆φ = 4πGa2δρ . (5)

There are different approaches to solve the N-body dynamics numerically.

• Using the Green’s function method to write a formal solution for eq. (5) one can avoid to solve
for the potential φ explicitly and instead obtains a sum over two-body forces for eq. (1).

• One can discretise (sample) the potential field φ and the density field ρ and approximate eq. (5)
by a finite-difference equation; here ρ is obtained through some particle-to-mesh projection. The
finite-difference equation is then inverted numerically and the gradient is evaluated at the particle
positions by force interpolation.
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A simulation integrates the equations forward in
time from some initial Cauchy data. Each integra-
tion “step” represents the solution at a fixed point
in time.

−
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Example: Kick-drift-kick scheme Given the particle positions, compute the forces (e.g. via the
potential); update the peculiar velocities (“kick”). Move the particles according to their new velocities
(“drift”). Repeat.

3+1 formulation of general relativity

The general relativistic view follows naturally:
Each integration “step” represents the solution on
a three-dimensional equal-time hypersurface of the
four-dimensional spacetime.

−
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Questions:

• What is a “good” foliation?

• Under which conditions is the Newtonian treatment a good approximation?

• How should one go about interpreting the solution, e.g. with regards to observations?

The ADM metric:
gµνdx

µdxν = −α2dτ2 + γij
(
dxi + βidτ

) (
dxj + βjdτ

)
(6)

The ADM (Arnowitt, Deser & Misner) metric provides a generic 3+1 decomposition of the metric,
where α is called the lapse function, βi is called the shift vector, and γij is the induced (spatial) metric
on the equal-time hypersurfaces.

The lapse α, the shift βi and the spatial metric γij are new fields that exist on the equal-time hy-
persurfaces. They play a similar role to the gravitational potential in Newton’s second law, which is
replaced by the geodesic equation:

p′ = −
√
m2 + γijpipj∇α+ pi∇βi −

αpipj∇γij

2
√
m2 + γklpkpl

(7)
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Here, ∇ is the spatial gradient that uses partial derivatives (not covariant ones).

Note that in eq. (7) we have already dropped the assumption that p2 � m2. In the Newtonian limit
where the latter is true we might instead write

p′ ' −m∇α . (8)

In full generality the relation between comoving momentum and peculiar velocity becomes

vi =
αγijpj√

m2 + γklpkpl
− βi . (9)

Example: Kick-drift-kick scheme Given a solution for α, βi, γij (we will discuss those at length
later) the “kick” step would use eq. (7) and the “drift” step would use eq. (9) for the position update.

The solution for the metric has to obey the Hamiltonian constraint (the time-time component of
Einstein’s equation) on the hypersurface,

3R−KijK
ij +K2 = 16πGρ , (10)

where the extrinsic curvature tensor Kij is given by

Kij =
1

2α

(
Diβj +Djβi − γ′ij

)
, (11)

(Di is the covariant derivative on the hypersurface).

NB: In eq. (10) the energy density ρ is given by the projection of the stress-energy onto the unit
normal vector of the hypersurface, ρ ≡ nµnνTµν . This is in general not the same as the density in the
fluid rest frame (if such a concept even exists).

We are still free to choose the foliation (i.e. the time coordinate) as well as the coordinate functions
on the equal-time hypersurfaces. In particular, eq. (10) is true for any foliation!

Case α = a(τ), βi = 0 (comoving synchronous gauge): here p ≡ 0 is a trivial solution to eq. (7)
but the complicated particle dynamics are incorporated into the coordinate chart. Hence γij becomes
non-perturbative as soon as the particle configuration does, and becomes ill-defined when particle
orbits cross! The relation of the solution to observations is obscured by the complex structure of γij ;
for instance, the path of photons is often very far from a straight line under this chart.

Empirically it is evident that charts should exist where photons do travel almost along straight lines
(this is how we interpret almost all our observations). Such a chart should have α, βi, γij such that
the gradients in eq. (7) are small (take the limit m → 0 to find the geodesic equation for photons).
This situation is called weak-field gravity.

Linearised weak-field gravity

The linear regime of weak-field gravity has been studied extensively. We may write

α = a (1 +A) , (12)

γijβ
j = −a2 (∇iB +Bi) , (13)

γij = a2
[
δij (1 + 2HL)− 2

(
∇i∇j −

1

3
δij∆

)
HT +∇iEj +∇jEi + 2Cij

]
, (14)

with Bi and Ei transverse (δij∇iBj = δij∇iEj = 0) and Cij transverse and traceless.
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NB: Due to our freedom to choose the time coordinate (one “scalar”) and the coordinate functions
on the hypersurface (one three-vector which can be decomposed into its longitudinal and transverse
parts) we are free to set two of the scalars A, B, HL, HT and one of the transverse vectors Bi, Ei to
arbitrary functions.

Question: Neglecting vector and tensor perturbations (which are absent in Newtonian gravity) how
do we recover the Newtonian limit?

The Hamiltonian constraint, linearised in the metric variables, reads

−∆HL + 3HH ′L − 3H2A+H∆B − 1

3
∆2HT = 4πGa2δρ . (15)

Here we define δρ = ρ − ρ̄, where ρ̄ is the function that enters the Friedmann equation to which a
is the solution. For an N-body ensemble the computation of ρ requires knowledge about the metric,
since for a classical point-particle we have

ρparticle(x) = δ(3)(x− xparticle)

√
m2 + γijpipj√

γ
. (16)

In the limit where p2 � m2 the physical density from the N-body ensemble therefore is

ρ = ρ̄
n

n̄
(1− 3HL) , (17)

where n is the “bare” number density in coordinate space.

Let us now examine the geodesic equation in the limit p2 � m2,

v′ +Hv = −∇
(
A−HB −B′

)
, (18)

which requires that the gravitational potential in a simulation should satisfy

φsim ' A−HB −B′ (19)

to a good approximation.

If anisotropic stress can be neglected, the trace-free part of the space-space component of Einstein’s
equations also imply that

HL +A+
1

3
∆HT + 2H

(
H ′T −B

)
+
(
H ′T −B

)′
= 0 , (20)

which can be rearranged to

A−HB −B′ + 2HH ′T +H ′′T = −HL −
1

3
∆HT +HB . (21)

Inserting into the Hamiltonian constraint we get

∆
(
A−HB −B′

)
+ ∆

(
2HH ′T +H ′′T

)
+ 3HH ′L − 3H2A = 4πGa2ρ̄

[n
n̄

(1− 3HL)− 1
]
. (22)

A Newtonian code solves
∆φsim = 4πGa2ρ̄

[n
n̄
− 1
]
. (23)
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Case B = 0, HT = 0 (Newtonian gauge): we have A = −HL = φsim from eqs. (19) and (20), but
eq. (23) is only a good approximation to eq. (22) if “∆φsim � 3Hφ′sim + 3H2φsim” and “(n/n̄)− 1�
3(n/n̄)φsim”. Both conditions are generally met on scales much smaller than the homogeneity scale
but fail to be met at ultra-large scales.

Case HL = 0, 3H2A = ∆ (2HH ′T +H ′′T ) (N-body gauge1): works well on large scales but gauge
condition is unusual. It turns out that after the radiation-matter transition A → 0 and HT →
constant 6= 0. On small scales B becomes relatively large and therefore the weak-field assumption is
not satisfied well.

Generally speaking there exists a whole family of gauges (so-called Newtonian motion gauges) that
engenders Newtonian equations of motion at large scales. They typically have HT 6= 0. Some of them
fulfill the weak-field condition at all (cosmological) scales.

The cosmologist’s choice: Poisson gauge

The ADM variables in Poisson gauge are written as

α = aeψ , (24)

γijβ
j = −a2Bi , (25)

γij = a2e−2φ (δij + hij) , (26)

where Bi (the gravitomagnetic potential responsible for “frame dragging”) is transverse and hij (the
tensor perturbation, e.g. from gravitational waves) is transverse and traceless. Since those two are
always very small I will linearise in them (i.e. I only keep them if they are multiplied with a background
term), but shall keep φ and ψ nonperturbatively. It follows that

γ = a6e−6φ , (27)

and the Hamiltonian constraint reads

e2φ∆φ− 1

2
e2φ (∇φ)2 +

3

2

(
H− φ′

)2
e−2ψ = 4πGa2ρ , (28)

and for an N-body ensemble the density is computed relativistically as

ρ = ρ̄rest
n

n̄

〈√
m2a2 + p2e2φ

ma

〉
e3φ , (29)

where ρ̄rest is the rest-mass density in the background model.

Let us say we want to truncate eq. (28) at order φ (typically we have φ ∼ 10−5). If nonrelativistic
matter is the dominant source of the gravitational fields we can estimate ∆φ/H2 ∼ δρ/ρ̄ ∼ O(1),
φ′ ∼ Hφ, v2 ∼ φ (e.g. virial limit) and ∇φ/H ∼ v. Truncating consistently we find

(1 + 2φ) ∆φ− 1

2
(∇φ)2 − 2Hφ′ − 3H2ψ = 4πGa2

[
ρ̄rest

n

n̄

(
1 +

1

2

〈
v2
〉

+ 3φ

)
− ρ̄
]
. (30)

If only sourced by nonrelativistic matter, the difference between φ and ψ is very small as it is sourced
by the anisotropic stress roughly as ∆(φ − ψ)/H2 ∼ v2. It is therefore fair to treat it on the same

1I deviate slightly from the original definition introduced in Fidler et al., JCAP 09 (2016) 031. For further reading,
see also Fidler et al., JCAP 12 (2017) 022, Adamek, Phys. Rev. D 97 (2018) and Adamek & Fidler, JCAP 09 (2019) 026.
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footing as Bi or hij , i.e. only keep (φ− ψ)-terms that are multiplied by background terms. From the
space-space component of Einstein’s equation one then finds

∆2 (φ− ψ) =
(
3∇i∇j − δij∆

)
(∇iφ∇jφ+ 4πGTij) . (31)

For an N-body ensemble the relativistic shear stress is computed as

Tij = ρ̄rest
n

n̄

〈
pipj

m
√
m2 + a−2e2φp2

〉
e3φ . (32)

In the nonrelativistic limit this is well approximated by Tij = a2ρ 〈vivj〉.

The gravitomagnetic potential can be computed from the momentum constraint as

∆2Bi = 16πGa2
(
∇i∇j − δji∆

)
T 0
j , (33)

where the N-body ensemble produces a relativistic momentum density

T 0
i = ρ̄rest

n

n̄

〈 pi
ma

〉
e3φ−ψ . (34)

Finally, the tensor perturbation is sourced as

∆2
(
h′′ij + 2Hh′ij −∆hij

)
=[

4
(
∇i∇k − δki ∆

)(
∇j∇l − δlj∆

)
− 2 (∇i∇j − δij∆)

(
∇k∇l − δkl∆

)]
(∇kφ∇lφ+ 4πGTkl) . (35)

NB: The tensor perturbation contains the propagating degrees of freedom of GR. The fact that the
scalar-vector-tensor decomposition of the metric in Poisson gauge allows us to isolate this contribution
makes large GR cosmological simulations tractable.
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Left: Visualisation of the gravitomagnetic po-
tential in an N-body simulation [Adamek et
al., Nature Phys. 12 (2016) 346-349].

Right: Visualisation of the tensor perturba-
tion in an N-body simulation [Adamek et al.,
Class. Quant. Grav. 31 (2014) 23, 234006].

Summary (Lecture I):

• N-body dynamics in Poisson gauge differ from Newtonian dynamics at large scales (even in
ΛCDM cosmology). However,

• Poisson gauge ensures weak-field conditions for the metric, making interpretation easier (though
subtleties still need to be addressed — see Lecture II),

• additional (relativistic) sources for the gravitational fields can be added easily and consistently,

• hyperbolic nature of GR does not immediately jeopardise numerical performance (tensor modes
can be approximated or neglected altogether).

• Other useful gauges exist (e.g. Newtonian motion gauges) but in all cases there are subtleties in
the interpretation of the solution found by the N-body simulation. This will be the topic of the
next lecture.

Further reading

• For more details on the 3+1 formulation of general relativity, see Chapters 1 and 2 of Baumgarte
& Shapiro, NUMERICAL RELATIVITY – Solving Einstein’s Equations on the Computer.

• Some details on relativistic N-body dynamics formulated in Poisson gauge can be found in
sections 2 and 3 of Adamek et al., JCAP 11 (2017) 004. A full code description can be found in
Adamek et al., JCAP 07 (2016) 053 which is however slightly outdated compared to the most
recent implementation (note in particular a change in convention for the scalar metric variables).

• The relativistic interpretation of Newtonian simulations has been discussed extensively in the
literature, see e.g. Chisari & Zaldarriaga, Phys. Rev. D 83 (2011) 123505 for an example. The
issue is essentially solved through the introduction of Newtonian motion gauges, see e.g. Fidler
et al., JCAP 12 (2017) 022.
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