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PART I



Beyond Einstein Theories of  Gravity

Type I: UV Modifications:  
eg. Quantum Gravity, string theory, extra 

dimensions, branes, supergravity
At energies well below the scale of new physics     , 

gravitational effects are well incorporated 
in the language of Effective Field Theories

Addition of Higher Dimension, (generally higher derivative operators), no 
failure of well-posedness/ghosts etc as all such operators should be treated 

perturbatively (rules of EFT)
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Why modify gravity (in the IR)?
Principle Motivation is Cosmological:

  
Dark Energy and Cosmological Constant

I: Old cosmological constant problem: 

Why is the universe not accelerating at a gigantic rate 
determined by the vacuum energy?

II: New cosmological constant problem: 

Assuming I is solved, what gives rise to the remaining vacuum 
energy or dark energy which leads to the acceleration we 

observe?

Type 2: IR Modifications:  



III: Because it allows us to put better constraints on Einstein 
gravity!

Why modify gravity (in the IR)?

D. Psaltis, Living Reviews
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Figure 1: A parameter space for quantifying the strength of a gravitational field. The x-axis measures the
potential ✏ ⌘ GM/rc2 and the y-axis measures the spacetime curvature ⇠ ⌘ GM/r3c2 of the gravitational
field at a radius r away from a central object of mass M . These two parameters provide two di↵erent
quantitative measures of the strength of the gravitational fields. The various curves, points, and legends
are described in the text.

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2008-9

Potential

Curvature

e.g.  Weinberg’s nonlinear Quantum Mechanics- 
constructing to test linearity of QM

Gravity has only been tested over 
special ranges of scales and 
curvatures



Guiding Principle
Theorem: General Relativity is the 
Unique local and Lorentz invariant 
theory describing an interacting single 
massless spin two particle that couples 
to matter

Locality

Massless

Single Spin 2

Lorentz Invariant?

Weinberg, Deser, Wald, Feynman, ….. 



Guiding Principle
Corollary: Any theory which preserves Lorentz invariance 

and Locality leads to new degrees of freedom!

Locality

Massless

Single Spin 2

Lorentz Invariant?
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Why is General Relativity so 
special?



i.e. it exhibits 4 local symmetries -  
General Coordinate Transformations

Every theory can be written in a coordinate invariant way, but there is 
usually a preferred system of coordinates/frame of reference

- in GR there is no preferred system in the absence of matter
- in the presence of matter there is a preferred reference frame, 

e.g. the rest frame of the cosmic microwave background

xµ ! xµ(x0)

1. GR is Diffeomorphism Invariant



2. In GR Gravity is described by the 
curvature of spacetime

Einsteins equations take the form:

Curvature of 
spacetime  

Energy Momentum
 Density/

Gµ� = 8�G Tµ�
radius of curvature^2              1/energy density/



Every geometry is locally 
Minkowski - 

GR can be rewritten as spin-two 
perturbations around Minkowski

E.o.Ms for GR are Lorentz 
invariant to all orders

Essentially a different phrasing of the equivalence principle - 
ability to choice locally inertial frames

3. GR is locally Lorentz Invariant

gµ⌫(x) = ⌘µ⌫ + hµ⌫(x)

hµ⌫ ⇠ Rµ⌫↵�(xP )(x
↵
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4. GR is unique theory of a massless spin-two 
field

Metric perturbations transform as massless fields of spin 2!!

There are only two physical polarizations 
of gravitational waves!

gµ� = �µ� + hµ�



4. GR is unique theory of a massless spin-two 
field

It is this argument that has played a more 
significant role in the particle physics 

community
gµ� = �µ� + hµ�

String Theory is a theory of Quantum Gravity 
BECAUSE in the spectrum of oscillations of a 

quantized string is a m=0 s=2 state



Field theory approach  
to GR

• Gravity is a force like EM propagated by a massless spin-2 particle 

• GR (with a cosmological constant) is the unique Lorentz invariant 
low energy effective theory of a single massless spin 2 particle 
coupled to matter 

• Diffeomorphism invariance is a derived concept 

• Equivalence Principle is a derived concept (Weinberg ``Photons 
and Gravitons in S-Matrix Theory: Derivation of Charge 
Conservation and Equality of Gravitational and Inertial Mass~1964) 

• Form of action is derived by principles of LEEFT 

Gupta, Feynman, Weinberg, Deser, Boulware, Wald …



General Relativity

2 ‘tensors’ = helicity-2 modes



Sketch of proof
Spin 2 field is encoded in a 10 component symmetric tensor

hµ⌫

But physical degrees of freedom of a massless spin 2 field are 
d.o.f. = 2

We need to subtract 8 = 2  x 4

This is achieved by introducing 4 local symmetries

Every symmetry removes one component since 1 is pure 
gauge and the other is fixed by associated first class 

constraint (Lagrangian counting)



Sketch of proof
Lorentz invariance demands that the 4 symmetries form a 

vector (there are only 2 possible distinct scalar symmetries) 
and so we are led to the unique possibility

hµ⌫ ! hµ⌫ + @µ⇠⌫ + @⌫⇠µ

We can call this linear Diff symmetry but its really just 4 U(1) 
symmetries, its sometimes called spin 2 gauge invariance



Quadratic action
Demanding that the action is local and starts at lowest order in 

derivatives (two), we are led to a unique quadratic action 
which respects linear diffs

hµ⌫ ! hµ⌫ + @µ⇠⌫ + @⌫⇠µ

S =

Z
d4x

M2
P

8
hµ⌫⇤(hµ⌫ � 1

2
h⌘µ⌫) + . . .

Where … are terms which vanish in de Donder/harmonic gauge. It has an 
elegant representation with the Levi-Civita symbols …..

S /
Z
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Invariance of  kinetic term



Nonlinear theory
In order to construct the nonlinear theory we must have a 

nonlinear completion of the linear Diff symmetry to ensure 
that nonlinearly the degrees of freedom are 

hµ⌫ ! hµ⌫ + @µ⇠⌫ + @⌫⇠µ

10� 2⇥ 4 = 2

So the relevant question, and what all the proofs in effect rely 
on is, what are the nonlinear extensions of the symmetry which 

are consistent (i.e. form a group)



Nonlinear theory
The nonlinear symmetry should preserve Lorentz 

invariance so

hµ⌫ ! hµ⌫ + @µ⇠⌫ + @⌫⇠µ

becomes schematically

but the form of the transformation is strongly 
constrained by the requirement that it forms a group

hµ⌫ ! hµ⌫ + @µ⇠⌫ + @⌫⇠µ + h↵
µh

�
⌫ (@↵⇠� + @�⇠↵) + hn(@h)⇠ + hm@⇠

+higher derivatives



Unique result
There are only two nonlinear extensions of the linear Diff 

symmetry, (assumption over number of derivatives)

hµ⌫ ! hµ⌫ + @µ⇠⌫ + @⌫⇠µ

1. Linear Diff -> Linear Diff

Most complete proof Wald 1986

2. Linear Diff -> Full Diffeomorphism

gµ⌫ = ⌘µ⌫ + hµ⌫ Metric emerges as derived concept

hµ⌫ ! hµ⌫ + ⇠!@!hµ⌫ + gµ!@⌫⇠
! + g!⌫@µ⇠

!



Punch Line
Spin 2 + Nonlinear Gauge Symmetry

Metric + Diffeomorphism Invariance

Geometry!!!!



Case 1: Coupling to matter
1. Linear Diff -> Linear Diff

hµ⌫ ! hµ⌫ + @µ⇠⌫ + @⌫⇠µ

The coupling to matter must respect this symmetry, e.g. if we 
consider Z

d4x
1

2
hµ⌫(x)J

µ⌫(x) then we must have

@µJ
µ⌫(x) = 0

Z
d4x@µ⇠⌫J

µ⌫

performing transformation:



Case 1: Coupling to matter
Z

d4x
1

2
hµ⌫(x)J

µ⌫(x) then we must have

@µJ
µ⌫(x) = 0

The problem is that this must hold as an IDENTITY!!

We cannot couple h to the stress energy of matter which is conserved in 
the absence of the coupling because as soon as we add the interaction, 

the equations of motion for matter are modified in such a way that the 
stress energy is no longer conserved

Jµ⌫ 6= Tµ⌫

e.g. Feynman goes through expample of a point particle in his book …



Case 1:Non-gravitational 
spin 2 theory

@µJ
µ⌫(x) = 0

An interacting theory does exist in case 1, by taking J to be 
identically conserved

Example: `Galileon combinations’

Jµ⌫ = ✏µabc✏⌫ABCAaAA
0
bBA

00
cC

where each entry is either
AaA = @a@A⇡ or ⌘aA

Precisely these terms arise in the Decoupling 
Limit of Massive Gravity de Rham, Gabadadze 2010



Case 2: Coupling to matter

The coupling to matter must respect this symmetry, but this is 
now easy, we just couple matter covariantly to 

2. Linear Diff -> Full Diffeomorphism

gµ⌫

any such coupling is perturbatively equivalent to Z
d4xhµ⌫T

µ⌫

and so is a theory of gravity!

hµ⌫ ! hµ⌫ + ⇠!@!hµ⌫ + gµ!@⌫⇠
! + g!⌫@µ⇠

!



Kinetic Terms
Case 1: Non-Gravitational Spin 2.  

Since nonlinear symmetry is linear Diff, existing kinetic 
term is leading term at two derivative order (however 

there is a second term ….)

S =

Z
d4x

M2
P

8
hµ⌫⇤(hµ⌫ � 1

2
h⌘µ⌫) + . . .

S /
Z

d4x✏ABCD✏abcd⌘aA@chbB@ChdD

Zero in de Donder/harmonic gauge

@µ(hµ⌫ � 1

2
⌘µ⌫h) = 0
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Kinetic Terms

Case 2: Gravitational Spin 2 
Since nonlinear symmetry is nonlinear Diff, kinetic term 
must be leading two derivative diffeomorphism invariant 

operator

S =

Z
d4x

M2
P

2

p
�gR HENCE GR!!!!



What happens if we repeat this arguments 
starting with the assumption of a  

massive spin 2 field? 

i.e. suppose that the graviton is massive, are 
we inevitably led to the Einstein-Hilbert action 

(plus mass term)?

Basic Question



One argument says no
In a Massive theory of Gravity Diffeomorphism invariance is 

completely broken. Thus superficially it appears that 
everything that makes GR nice is completely lost

For instance, already at 2 derivative order we can imagine an 
infinite number of possible kinetic terms which are 

schematically

S =

Z
d4x� M2

P

2

⇣
@h@h+ · · ·

X
↵nh

n�2@h@h
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Fortunately this is wrong
If we really allowed for such a completely general form, then 

we would be at risk that all 10 components of metric are 
dynamical

Even if we ensure that        is not dynamical, we are at risk that 
the 6 remaining spatial components are dynamical

h0µ

hij which is one two many

L =
1

2
hµ⌫⇤hµ⌫ + . . .

6 = 5 + Ostrogradski ghost



Lorenz Invariant Massive Gravity

2 ‘vectors’ 2 ‘scalars’
5 propagating degrees of freedom

5 polarizations of gravitational waves!!!!

Constraint means only 
one scalar propagates2 + 2 + 2� 1 = 5

= helicity-1 modes = helicity-0 modes



L = �1

4
F 2
µ⌫ � 1

2
m2AµA

µ

A toy example, Proca theory

L = ⇡i@0Ai +A0@
i⇡i �

1

2
⇡2
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1

4
F 2
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2
m2A2

i +
1

2
m2A2

0

In canonical/phase space form…

Unitary gauge formulation for massive spin-1 particle



A toy example, Proca theory

In massless case A0
is a Lagrange multiplier 

for a 1st class constraint

1st class gauge symmetry

@i⇡
i = 0

L = ⇡i@0Ai +A0@
i⇡i �

1

2
⇡2
i �

1

4
F 2
ij �1

2
m2A2

i +
1

2
m2A2

0

In massive case A0 is a non-dynamical/auxiliary field

2nd class constraint ⇡A0 =
@L

@@0A0
= 0

2nd class constraints come in pairs in L.I. theory



Upgrading from Second to First Class

In many systems it is more natural to formulate a 
system with two second class constraints as a 
system with one first class constraint

2⇥ 1 second class = 1 local symmetry =

1 first class constraint + 1 gauge choice

Unitary gauge (Proca) picture emphasises second class form 
Stuckelberg picture emphasises first class form



Stuckelberg picture
All of this is much easier to understand in the Stuckelberg 

picture in which reintroduce gauge invariance

Therefore number of degrees of freedom are  
2         +  1    

Aµ ! Aµ + @µ�

Aµ �

Massive theory is now gauge invariant
Aµ ! Aµ + @µ⇠ , � ! �� ⇠

L = �1

4
F 2
µ⌫ � 1

2
m2(Aµ + @µ�)

2



Proca theory + non-minimal 
kinetic term

For a massive spin 1 field, we break gauge invariance, so we 
may think that we can allow non-gauge invariant kinetic terms 

of the form 

However this would lead to 4 propagating degrees of freedom, 
instead of 2s+1 = 3

The key point is that         must remain non-dynamical to 
impose a second class constraint 

A0

L = �1

4
F 2
µ⌫ + ↵(@µA

µ)2



Stuckelberg picture

But is now clearly higher derivative for   

Again this is much easier to understand in the Stuckelberg 
picture

Therefore number of degrees of freedom are  
2         +  1    +    1     Ostrogradski

Aµ ! Aµ + @µ�

�

Aµ � �

Massive theory is now gauge invariant
Aµ ! Aµ + @µ⇠ , � ! �� ⇠

L = �1

4
F 2
µ⌫ + ↵(⇤�+ @µA

µ)2



Now to massive spin 2
The general principle is the same in the spin 2 case 

Although the massive theory breaks the 4 nonlinear gauge 
symmetries, we still need that at least one second class 

constraint to ensure 5 degrees of freedom

Equivalently, if we Stuckelberg back the symmetries of the 
massless theory then we must demand that the Stuckelberg 

fields do not admit Ostrogradski instabilities
However, how we do this depends on whether we are looking 
at non-gravitational (SPIN 2 MESONS) or gravitational spin 2 

fields (GRAVITONS)



Case 1. Non-gravitational 
massive spin 2

In this case we should Stuckelberg the linear Diff symmetry

There is a unique quadratic mass term

hµ⌫ ! hµ⌫ + @µ⇠⌫ + @⌫⇠µ

If we choose the massless kinetic term, Stuckelberg fields do 
not enter

hµ⌫ ! hµ⌫ + @µ�⌫ + @⌫�µ











Case 1. Non-gravitational 
massive spin 2 - kinetic term

Remarkably there is a unique extension to the kinetic term 
already at two derivative level which is cubic

Thus for Case 1 theories, linearized E-H kinetic term,  
i.e. Fierz-Pauli kinetic term is not unique!!!

S(3) =

Z
d4x✏ABCD✏abcdhaA@chbB@ChdD

Note this is NOT a limit of a Lovelock term as seen by counting derivatives

Hinterbichler 2013 
Folkerts, Pritzel, Wintergerst 2011 



Case 2. Gravitational 
massive spin 2

In this case we should Stuckelberg the nonlinear Diff symmetry

In this case we are led (after much calculation) to a unique 
kinetic term in four dimensions (up to total derivatives), i.e. 

Einstein-Hilbert kinetic term

This is done explicitly by replacing h with a tensor 

hµ⌫ = gµ⌫ � @µ�
a@⌫�

b⌘ab

S =

Z
d4x

M2
P

2

p
�gR

hµ⌫ ! hµ⌫ + ⇠!@!hµ⌫ + gµ!@⌫⇠
! + g!⌫@µ⇠

!

�a = xa +
Aa

mMP
+

@a⇡

m2MP



Case 2. Gravitational 
massive spin 2

S =

Z
d4x

M2
P

2

p
�gR

Thus all of the key features of Einstein gravity emerge equally from the 
assumption that the graviton is massive even though Diffeomorphism 

invariance is strictly broken

This is remarkable!

de Rham, Matas, Tolley, 
  ``New Kinetic Interactions for Massive Gravity?,'' 
  1311.6485 

I’m leaving out all the details of the proof which is complicated but what it 
means is there is no `graviton’ analogue of the spin-2 meson kinetic term 
….

S(3) =

Z
d4x✏ABCD✏abcdhaA@chbB@ChdD

Coupled with the uniqueness of the mass terms this means the 
theory of a massive spin 2 particle is unique!

de Rham, Gabadadze, Tolley (2010)



SOFT AND HARD 
MASSIVE GRAVITY



Massive Gravity: Hard or Soft?

A generic local, Lorentz invariant theory at the linearized level 
gives the following interaction between two stress energies

Hard

Soft

Soft Massive Graviton is a resonance 
Hard Massive Graviton is a pole (infinite lifetime)
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Generating Function



Generating Function



Soft Massive Gravity: DGP Model
Soft Massive Gravity theories were constructed first! 

Naturally arise in Braneworld Models: DGP, 
Cascading Gravity: Soft Massive Graviton is a 

Resonance State localized on Brane

Soft

�S ⇠ 1

M2
Planck

Z
d4k

(2⇡)4
Tµ⌫(k)

Z 1

0
dµ
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Z
d4x

p
�g4LM +

Z
d5x

p
�g5

M3
5

2
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More relevantMore irrelevant

Dominates in IRDominates in UV



Gravity in Higher 
Dimensions

In 4+n dimensional spacetime, gravitational potential 
scales as

V (r) � 1
r1+n

weaker gravity

we want to achieve this in the IR

V (r) � 1
r

V (r) � 1
r1+n

UV, small r IR, large r



Gravity in Higher 
Dimensions

Form of potential

corresponds to propagator

V (r) =
� ⇥

0
ds2�(s2)

e�sr

r

GF (k) =
� �

0
ds2⇥(s2)

1
k2 + s2 � i�

=
1

k2 + m2(k)� i�

for DGP m2(k) /
p

�k2



DISCOVERY OF HARD 
MASSIVE GRAVITY



What does massive gravity mean?
In SM, Electroweak symmetry       

is spontaneously broken by the VEV of the Higgs field

SU(2)⇥ U(1)Y ! U(1)EM

Result, W and Z bosons become massive
Would-be-Goldstone-mode in Higgs field  becomes 

Stuckelberg field which gives boson mass

e.g. for Abelian Higgs
� = (v + ⇢)ei⇡

Aµ ! Aµ + @µ� ⇢ ! ⇢+ �

Higgs Vev Higgs Boson Stuckelberg field



Symmetry Breaking Pattern
In Massive Gravity - Local Diffeomorphism Group and an 
additional global Poincare group is broken down the diagonal 

subgroup

In Bigravity - Two copies of local Diffeomorphism Group are 
broken down to a single copy of Diff group 

Diff(M)⇥Diff(M) ! Diff(M)diagonal

Diff(M)⇥ Poincare ! Poincarediagonal



Higgs for Gravity

� = (v + ⇢)ei⇡

Despite much blood, sweat and tears an explicit 
Higgs mechanism for gravity is not known

For Abelian Higgs this corresponds to integrating out the Higgs boson and 
working at energy scales lower that the mass of the Higgs boson

However if such a mechanism exists, we DO know how to write 
down the low energy effective theory in the spontaneously broken 

phase

E ⌧ m⇢

Stuckelberg formulation of massive vector bosons

Stuckelberg fieldHiggs Boson



Stuckelberg Formulation  
for Massive Gravity

Diffeomorphism invariance is spontaneously broken but 
maintained by introducing Stueckelberg fields

Vev of spin 2 Higgs field
defines a ‘reference metric’

gµ⌫(x)
Fµ⌫ = fAB(�)@µ�

A@⌫�
B

reference metric

�a = xa +
1

mMP
Aa +

1

⇤3
@a⇡ ⇤3 = m2MP

Stuckelberg 
fields

helicity-0 mode of graviton

helicity-1 mode of graviton

fµ⌫ = hÔµ⌫i

Dynamical Metric

de Rham, Gabadadze 2009
Arkani-Hamed et al 2002 



Discovering how to  
square root

Helicity zero mode enters reference metric squared

Fµ⌫ ⇡ ⌘µ⌫ +
2

⇤3
@µ@⌫⇡ +

1

⇤6
@µ@↵⇡@

↵@⌫⇡

To extract dominant helicity zero interactions we need 
to take a square root

hp
g�1F

i

µ⌫
⇡ ⌘µ⌫ +

1

⇤3
@µ@⌫⇡

Branch uniquely chosen to give rise to 1 when Minkowski

Fµ⌫ = fAB(�)@µ�
A@⌫�

B

�a = xa +
1

mMP
Aa +

1

⇤3
@a⇡



Helicity Zero mode = Galileon

only enters in the combination⇡(x)
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The helicity zero mode

⇧µ⌫ = @µ@⌫⇡(x)

<latexit sha1_base64="XFjT1aLo+Zrrr8XQgrCJAvKHcUc=">AAACGnicbVDLSgMxFM3UV62vUZdugkWomzIjFd0IRTcuK9gHdIYhk6ZtaCYz5CGWYb7Djb/ixoUi7sSNf2Om7aK2HgicnHPvTe4JE0alcpwfq7Cyura+UdwsbW3v7O7Z+wctGWuBSRPHLBadEEnCKCdNRRUjnUQQFIWMtMPRTe63H4iQNOb3apwQP0IDTvsUI2WkwHa9Bg1SL9Ie19mVlyChKGITJYNzV65h5iW08nga2GWn6kwAl4k7I2UwQyOwv7xejHVEuMIMSdl1nUT5aT4aM5KVPC1JgvAIDUjXUI4iIv10sloGT4zSg/1YmMMVnKjzHSmKpBxHoamMkBrKRS8X//O6WvUv/ZTyRCvC8fShvmZQxTDPCfaoIFixsSEIC2r+CvEQCYSVSbNkQnAXV14mrbOqW6ue39XK9etZHEVwBI5BBbjgAtTBLWiAJsDgCbyAN/BuPVuv1of1OS0tWLOeQ/AH1vcvd7Chvg==</latexit>

This is invariant under the 
global nonlinearly realized symmetry

⇡(x) ! ⇡(x) + c+ vµx
µ

⇧µ⌫ ! ⇧µ⌫



Whats a Galileon?
A Galileon is a theory nonlinearly realizes the ‘non-relativistic’ 

limit (Wigner-Inonu contraction) of the Five Dimensional 
Poincare group that preserves Four Dimensional Poincare

de Rham, AJT 2010 - DBI and Galileon Reunited

Example - a scalar field                with the symmetry ⇡(x)

⇡(x) ! ⇡(x) + c+ vµx
µ

Nicolis, Rattazzi, Trincherini 2009



Exact Galileon Symmetry
If we view a Galileon as a scalar theory then expect symmetry to 

broken by gravity - e.g. covariant Galileon does not respect 
symmetry and is therefore not really a covariant Galileon

But Galileons naturally arise in Massive theories of 
Gravity, like DGP and dRGT massive gravity, Bigravity and 

Multi-Gravity

Here the symmetry remains exact with gravity including 
quantum corrections because the scalar is not a scalar but 

is actually part of a massive spin-two field







Discovering how to  
square root

Helicity zero mode enters reference metric squared

Fµ⌫ ⇡ ⌘µ⌫ +
2

⇤3
@µ@⌫⇡ +

1

⇤6
@µ@↵⇡@

↵@⌫⇡

To extract dominant helicity zero interactions we need 
to take a square root

hp
g�1F

i

µ⌫
⇡ ⌘µ⌫ +

1

⇤3
@µ@⌫⇡

Branch uniquely chosen to give rise to 1 when Minkowski

Fµ⌫ = fAB(�)@µ�
A@⌫�

B

�a = xa +
1

mMP
Aa +

1

⇤3
@a⇡



Hard          Massive Gravity

Det[1 + �K] =
dX

n=0

�nUn(K)

L =
1

2

p
�g

 
M2

P R[g]�m2
4X

n=0

�n Un

!
+ LM

K = 1�
p
g�1f

Unique low energy EFT where the strong coupling scale is 

⇤3

⇤3 = (m2MP )
1/3

Characteristic 
Polynomials

Diff(M)⇥ Poincare ! Poincarediagonal

5 propagating degrees of freedom
5 polarizations of gravitational waves!!!!

de Rham, Gabadadze, AJT 2010

Double epsilon structure!!!!!



Fasiello, AJT 1308.1647

Diff(M)⇥Diff(M) ! Diff(M)diagonal

Bigravity breaks the same amount of symmetry as 
massive gravity, need to introduce same number of 
Stuckelberg fields

Fµ⌫ = fAB(�)@µ�
A@⌫�

B
Dynamical metric I Dynamical metric II

gµ⌫(x)

Stuckelberg Formulation for Bigravity

�A = xA +
1

⇤3
3

@A⇡



But there are two ways to introduce Stuckelberg fields!

OR
Dynamical metric I Dynamical metric II

Fµ⌫ = fAB(�)@µ�
A@⌫�

B
Dynamical metric I Dynamical metric II

gµ⌫(x)

x̃A = �A(x) = xA + @A⇡(x)

fAB(x̃)G̃AB(x̃) = gµ⌫(Z)@AZ
µ@BZ

⌫

Fasiello, AJT 1308.1647

xµ = Zµ(x̃) = x̃µ + @µ⇡̃(x̃)
Galileon 
Duality!!!!!

=



Hard Massless plus        Massive Gravity

Bigravity=
massless graviton (2 d.o.f.)
+ massive graviton (5 d.o.f.)

decoupling 
limit

Mf ! 1
Det[1 + �K] =

dX

n=0

�nUn(K)

L =
1

2

p
�g

 
M2

P R[g]�m2
4X

n=0

�n Un

!
+ LM

L =
1

2

 
M2

P

p
�gR[g] +M2

f

p
�fR[f ]�m2

dX

n=0

�nUn(K)

!
+ LM

+decoupled massless graviton fµ⌫

K = 1�
p
g�1f

⇤3

Hassan, Rosen 2011


