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Beyond Einstein Theories of Gravity

Type I: UV Modifications:

eg. Quantum Gravity, string theory, extra
dimensions, branes, supergravity

At energies well below the scale of new physics A ,
gravitational effects are well incorporated
in the language of Effective Field Theories

— b c
S = M}%lanck / d4x [ R+ ERQ + ERZ’/ i FRabcng?"Refab + -+ + Luatter
‘|‘%(RabcdRade)2 + ... egCardoso et al 2018

Addition of Higher Dimension, (generally higher derivative operators), no
failure of well-posedness/ghosts etc as all such operators should be treated
perturbatively (rules of EFT)




Type 2: IR Modifications:
Why modity gravity (in the IR)?

Principle Motivation is Cosmological:

Dark Energy and Cosmological Constant

I: Old cosmological constant problem:

Why is the universe not accelerating at a gigantic rate
determined by the vacuum energy?

II: New cosmological constant problem:

Assuming I is solved, what gives rise to the remaining vacuum
energy or dark energy which leads to the acceleration we
observe?



Why modify gravity (in the IR)?

[TI: Because it allows us to put better constraints on Einstein
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Figure 1: A parameter space for quantifying the strength of a gravitational field. The z-axis measures the
potential ¢ = GM/rc® and the y-axis measures the spacetime curvature £ = GM/r3c? of the gravitational
field at a radius r away from a central object of mass M. These two parameters provide two different

quantitative measures of the strength of the gravitational fields. The various curves, points, and legends D. Psaltls y LlVlng ReVleWS

are described in the text.



Guiding Principle

Theorem: General Relativity is the
Unique local and Lorentz invariant
theory describing an interacting single |
massless spin two particle that couples
to matter

Weinberg, Deser, Wald, Feynman, ..
Locality

Massless > Lorentz Invariant

Single Spin 2



Guiding Principle

Corollary: Any theory which preserves Lorentz invariance
and Locality leads to new degrees of freedom!
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Why is General Relativity so
special?

— e——

. BRODKLYN SUPERHERD |
#  SUPP i

277 y
5\

25
A

WARNING, COMNTAINS SRAYIIONS
4OSMAGITIE 15 A FYRTHET ICAL ':.-"\’""‘.

L
¢
\

AT 1

EARYICES Tum= crines Tie poace oF (3AY]
NS FMWOer oF quiyrsd ¥ L TOO . @
i) 'l .

Tpe iy
irds

RS tE
- %

ALHEEEEAE
X
LS




1. GR is Diffeomorphism Invariant

i.e. it exhibits 4 local symmetries -
General Coordinate Transformations

o — ot (2

Every theory can be written in a coordinate invariant way, but there is
usually a preferred system of coordinates/frame of reference

- in GR there is no preferred system in the absence of matter

~ in the presence of matter there is a preferred reference frame,
e.g. the rest frame of the cosmic microwave background



2. In GR Gravity is described by the
curvature of spacetime

Einsteins equations take the form:

Curvature of Energy Momentum
spacetime X Density

G, =8nG1,

radius of curvature’2 (OX_ 1/energy density



3. GR is locally Lorentz Invariant

Every geometry is locally
Minkowski -

GR can be rewritten as spin-two
perturbations around Minkowski

E.o.Ms for GR are Lorentz 1
invariant to all orders  f_—

glﬂ/(x) = Nuv T+ huy(x’)
i~ Ryas(p) (2 — a)(o” — ) + O((z — 2)°)

Essentially a difterent phrasing of the equivalence principle
ability to choice locally inertial frames



4. GR is unique theory of a massless spin-two

field

Metric perturbations transform as massless fields of spin 2!!

G = Nuv + My Q X O &) O
7 s
a WY

O LA O LW Q

There are only two physical polarizations
of gravitational waves!




4. GR is unique theory of a massless spin-two

field

It is this argument that has played a more
Juv = Npv + My significant role in the particle physics
community

S

BRODKLYN SUPERHER! i

String Theory is a theory of Quantum Gravity
BECAUSE in the spectrum of oscillations of a
quantized string is a m=0 s=2 state



feymnan
LECTURES on

Fleld theory approach
to GR b5

Gupta, Feynman, Weinberg, Deser, Boulware, Wald ...

Gravity is a force like EM propagated by a massless spin-2 particle

GR (with a cosmological constant) is the unique Lorentz invariant
low energy effective theory of a single massless spin 2 particle
coupled to matter

Diffeomorphism invariance is a derived concept
Equivalence Principle is a derived concept (Weinberg " Photons

and Gravitons in S-Matrix Theory: Derivation of Charge
Conservation and Equality of Gravitational and Inertial Mass~1964)

Form of action is derived by principles of LEEF



General Relativity

/\/71\[]%] o

2 ‘tensors’ = helicity-2 modes

N N\



Sketch of proof

Spin 2 field is encoded in a 10 component symmetric tensor

Ry

But physical degrees of freedom of a massless spin 2 field are
d.o.f. =2

We need to subtract 8 =2 x4
This Is achieved by introducing 4 local symmetries
Every symmetry removes one component since 1 Is pure

gauge and the other is fixed by associated first class
constraint (Lagrangian counting)



Sketch of proof

Lorentz invariance demands that the 4 symmetries form a
vector (there are only 2 possible distinct scalar symmetries)
and so we are led to the unique possibility

o = Py + 0p& + 0,8,

We can call this linear Diff symmetry but its really just 4 U(1)
symmetries, its sometimes called spin 2 gauge invariance



Quadratic action

Demanding that the action is local and starts at lowest order In
derivatives (two), we are led to a unigue quadratic action
which respects linear diffs

hyw = by + 0,80 + 00,

M? 1
S = d4prhW/ (h,lw — §h77,uu) T

Where ... are terms which vanish in de Donder/harmonic gauge. It has an
elegant representation with the Levi-Civita symbols .....

G /d4£l?€ABCD abcdnaAa thaCth



Invarniance ot kinetic term
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Nonlinear theory

In order to construct the nonlinear theory we must have a
nonlinear completion of the linear Diff symmetry to ensure
that nonlinearly the degrees of freedom are

10 —2 x4 =2
SO the relevant guestion, and what all the proofs in effect rely

on is, what are the nonlinear extensions of the symmetry which
are consistent (i.e. form a group)

h,ul/ — h,uu -+ a,ugy = 6y€,u



Nonlinear theory

The nonlinear symmetry should preserve Lorentz
Invariance so

h,uu — h,w/ -+ a,ugy = auf,u

becomes schematically
hyw = Py + 0,&0 + 00€, + RS (s + 0a) + W (OR)E + K OE

+higher derivatives

but the form of the transformation is strongly
constrained by the requirement that it forms a group



Unigue result

Most complete proot Wald 1986

There are only two nonlinear extensions of the linear Diff
symmetry, (assumption over number of derivatives)

1. Linear Diff -> Linear Dift
h,ul/ — h,uu -+ a,uGV + auﬁ,u

2. Linear Diff -> Full Ditteomorphism
h,u,l/ — h,uu =+ gwﬁwh,u,l/ =+ g,uwal/gw =+ gwl/a,ufw

Guv = Nuv + hpw Metric emerges as derived concept



Punch lLine

Spin 2 + Nonlinear Gauge Symmetry

Metric + Diffeomorphism Invariance

\4

Geometry!!!!



Case 1: Coupling to matter
1. Linear Diff -> Linear Diff

hyw = by + 0,80 + 00,

The coupling to matter must respect this symmetry, e.g. if we
consider

1
/d4x§hw(x)ﬂ‘”(x) then we must have

performing transformation:
/ 0420,,6, " 9T () = 0




Case 1: Coupling to matter

1
/d4x§hw(x)JW(l‘) then we must have

0,J" (x) =0
The problem is that this must hold as an IDENTITY!!

We cannot couple h to the stress energy of matter which is conserved in
the absence of the coupling because as soon as we add the interaction,
the equations of motion for matter are modified in such a way that the
stress energy IS no longer conserved Fernnan
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Case 1:Non-gravitational
spin 2 theory

0,J" (x) =0

An interacting theory does exist in case 1, by taking J to be
i[dentically conserved

Example: Galileon combinations’

abc vVABC / 1/
J'uy — G'u € ACLAAI)BACC

where each entry Is either
Aga = 0,04T OF Mg A

Precisely these terms arise in the Decoupling
Limit of Massive Gravity de Rham, Gabadadze 2010



Case 2: Coupling to matter

2. Linear Dift -> Full Diffeomorphism

h,ul/ — h,uu + gwﬁwh,w/ + g,uwaygw + nga,ugw

The coupling to matter must respect this symmetry, but this is
now easy, we just couple matter covariantly to

Juv
any such coupling is perturbatively equivalent to

/ d*xz h,,, T"
and so Is a theory of gravity!



Kinetic lerms

Case 1: Non-Gravitational Spin 2.
Since nonlinear symmetry is linear Diff, existing kinetic
term is leading term at two derivative order (however
there is a second term ....)

G /d4ZC€ABCD abcdnaAa thaCth

Zero in de Donder/harmonic gauge

1
H h _ — p—

Mz 1
S = [ d*x—Lhr"0O(h,, — ) + -




Kinetic lerms

Case 2: Gravitational Spin 2
Since nonlinear symmetry is nonlinear Diff, kinetic term
must be leading two derivative diffeomorphism invariant
operator

Mp

— [ d*
S T

vV—ygR



Basic Question

What happens 1

- we repeat th

starting wit

IS arguments

N the assump

1on of a

massive spin 2 field?

.e. suppose that the graviton is massive, are

we Inevitably led to the

—Instein-Hilbert action

(plus mass term)?



One argument says no

In a Massive theory of Gravity Diffeomorphism invariance is
completely broken. Thus superficially it appears that
everything that makes GR nice is completely lost

For instance, already at 2 derivative order we can imagine an
infinite number of possible kinetic terms which are
schematically

S = / d*x ]\f’ (8h8h+---2anh”_28hah)



Fortunately this Is wrong

It we really allowed for such a completely general form, then
we would be at risk that all 10 components of metric are
dynamical

1 1
£:§hlu/y h'u —|—

Even if we ensure that ho, is not dynamical, we are at risk that
the 6 remaining spatial components are dynamical

hi; which is one two many

6 = 5 + Ostrogradski ghost



Lorenz Invariant Massive Gravity

VE:
l P] R o I\/Iass Tel‘lll)

S B /
Constraint means only

21492492 _1=5 one scalar propagates

N .

_: :ﬁ o —> E \0\
2 ‘vectors’= helicity-1 modes 2 ‘scalars= helicity-o modes

5 propagating degrees of freedom
5 polarizations of gravitational waves!!!!




A toy example, Proca theory

1 2 1 2
[: — _ZFMV — §m AMA’M

In canonical/phase space form...

L =m"00A; + Ag0'm; — o™i ~ ZFZZ] —imQA? + imzA%



A toy examp\e Proca theory

1 1 1
L =7'0yA; + Agd'm; — §7T — ZFQ —§m2A2 + 2m2A2

is a Lagrange multiplier
for a 1st class constraint

&mi =0

In massless case Ajg

1st class > > gauge symmetry

In massive case  Ag is a non-dynamical/auxiliary field

oL

and class constraint TAo = 5 oA, =0

2nd class constraints come in pairs in L.I. theory



Upgrading from Second to First Class

In many systems it is more natural to formulate a
system with two second class constraints as a
system with one first class constraint

2 X 1 second class = 1 local symmetry =

1 first class constraint + 1 gauge choice

Unitary gauge (Proca) picture emphasises second class form
Stuckelberg picture emphasises first class form



Stuckelberg picture

All of this is much easier to understand in the Stuckelberg
picture in which reintroduce gauge invariance
A, — A, +0.X
1 2 1 2 2
L= _ZF’W — 5 (Ap + 9ux)
Massive theory iIs now gauge invariant

A, — A, +0.8, x> x—¢

Theretore number of degrees of freedom are
2A, +1 X



Proca theory + non-minimal
Kinetic term

For a massive spin 1 field, we break gauge invariance, so we
may think that we can allow non-gauge invariant kinetic terms
of the form

1
L = —ZF/%V -+ CV(@MA'LL)Q

However this would lead to 4 propagating degrees of freedom,
instead of 2s+1 = 3

The key point is that A" must remain non-dynamical to
Impose a second class constraint



Stuckelberg picture

Again this is much easier to understand in the Stuckelberg

picture
A, — A, +0,x
1
L = _ZFi” + a(Cy + 8MA“)2

Massive theory iIs now gauge invariant
A, — A, +0.8, x> x—¢
But is now clearly higher derivative for X

Therefore number of degrees of freedom are
2 A,+ 1 x+ 1 x Ostrogradski



Now to massive spin 2

The general principle is the same In the spin 2 case

Although the massive theory breaks the 4 nonlinear gauge
symmetries, we still need that at least one second class
constraint to ensure 5 degrees of freedom

Equivalently, if we Stuckelberg back the symmetries of the
massless theory then we must demand that the Stuckelberg

flelds do not adm

However, how we do this ¢
at non-gravitational (SPIN
fields

it Ostrogradski instabilities

epends on whether we are looking
2 MESONS) or gravitational spin 2
(GRAVITONS)



Case 1. Non-gravitational
massive spin 2

In this case we should Stuckelberg the linear Diff symmetry
h,uu — h,w/ - 8,ugu + ayf,u

It we choose the massless kinetic term, Stuckelberg fields do
Not enter

Py = Py + Ouxw + Ou Xy

here Is a unigue quadratic mass term

fwmow Mmoo & ¢ WZWZ\“M
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Case 1. Non-gravitational
massive spin 2 - Kinetic term

Remarkably there is a unigue extension to the kinetic term

already at two derivative level which is cubic
Hinterbichler 2013
Folkerts, Pritzel, Wintergerst 2011

S(g) — /d4.CEEABCDGadehaAacthacth

Thus for Case 1 theories, linearized E-H kinetic term,
.e. Flierz-Pauli kinetic term is not unique!!!

Note this is NOT a limit of a Lovelock term as seen by counting derivatives



Case 2. Gravitational
massive spin 2

In this case we should Stuckelberg the nonlinear Diff symmetry
h,ul/ — h,uu =+ gwawh,ul/ =+ g,uwal/fw =+ gwl/a,ufw

This is done explicitly by replacing h with a tensor

A? 0%
_ o a b @ _ 0 |
h,uu — Yuv ,u¢ 8I/¢ Tab ¢ L mMp m2Mp
In this case we are led (after much calculation) to a unigue
kinetic term in four dimensions (up to total derivatives), i.e.

Einstein-Hilbert kinetic term

M2
= VIR

S = [ d*z



Case 2. Gravitational
massive spin 2

de Rham, Matas, Tolley,
“"New Kinetic Interactions for Massive Gravity?,"
1311.6485

I'm leaving out all the details of the proot which is complicated but what it
means is there is no "graviton’ analogue of the spin-2 meson kinetic term

S(g) — /d4$€ABCDeadehaAacthacth

Mp
—P./=gR
9 9
Thus all of the key features of Einstein gravity emerge equally from the
assumption that the graviton is massive even though Diffeomorphism

invariance is strictly broken

S = [ d*x

Coupled with the unigueness of the mass terms this means the
theory of a massive spin 2 particle is unique! o
de Rham, Gabadadze, Tolley (2010) his Is remarkable!
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Massive Gravity: Hard or Soft?

Hard

A generic local, Lorentz invariant theory at thedinearized level

gives the following interaction between stress energies

1 d*k b d 7(2) bed 7(0) NabMed
Tab 2 a c a c abl/c Tcd I
i1z, | oy T ot 2 B a4 2 Bz | T

1 d4]€ a * 7Dac ao’jc C
+— / i T ) [ / dpe ) (1) s + p () 5 | T ()

Pabcd = NacTlbd + NbcNad — MabT)cd SOft

2

S NabT)cd

Pabcd = Nacbd + NovcNad — 3

Soft Massive (3raviton is a resonance
Hard Massive Graviton is a pole (infinite lifetime)



(Generating Function
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(Generating Function
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Soft Massive Gravity: DGP Model

Soft Massive Gravity theories were constructed first!
e BaE Dea: Naturally arise in Braneworld Models: DGP,
Cascading Gravity: Soft Massive Graviton is a
\ Resonance State localized on Brane
I I

| ’ 1 d*k = (W) Puvas(k)
iy AS ~ / T (k [ / dp P e )| s gy
V mbinte extra dimensian Ml:%laan (27-(-)4 ( ) 0 k2 —|_ /,l/

~

Soft

More irrelevant More relevant

Dominates in UV




Gravity in Higher
Dimensions

In 4+n dimensional spacetime, gravitational potential
scales as

|

weaker gravit
Ttn g y

Vi(r) ~

we want to achieve this in the IR

1
T1—|—n

Vir) ~ = s Vi(r) ~

r

UV, small r IR, large r



Gravity in Higher

Dimensions
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What does massive gravity mean?

In SM, Electroweak symmetry
is spontaneously broken by the VEV of the Higgs field

SUR2) xU(l)y — U(1)gm
Result, W and Z bosons become massive

Would-be-Goldstone-mode in Higgs field becomes
Stuckelberg field which gives boson mass

Higgs Vev  Higgs Boson Stuckelberg field

\\

v+,0

e.g. for Abelian Higgs
A, — A, +0,X 0— p+ X



Symmetry Breaking Pattern
In Massive Gravity - Local Diffeomorphism Group and an
additional global Poincare group is broken down the diagonal

subgroup

Dif f(M) x Poincare — Poincaregiagonal

In Bigravity - Two copies of local Diffeomorphism Group are
broken down to a single copy of Dift group

Dif f(M) x Dif f(M) — Dif f(M)aiagonal



Higgs tor Gravity

Despite much blood, sweat and tears an explicit
Higgs mechanism for gravity is not known

However if such a mechanism exists, we DO know how to write
down the low energy effective theory in the spontaneously broken

phase

For Abelian Higgs this corresponds to integrating out the Higgs boson and
working at energy scales lower that the mass of the Higgs boson

Higgs Ii)Ason. Stuckelberg field
E < m, d=(v+pe™T

* Stuckelberg formulation of massive vector bosons



Stuckelberg Formulation
for Massive Gravity

Arkani-Hamed et al 2002
de Rham, Gabadadze 2009

Diffeomorphism invariance is spontaneously broken but
maintained by introducing Stueckelberg fields

Vev of spin 2 Higgs field

' — O Stuckelber
defines a ‘reference metric’ Jur = (Ouv) uc g

reference metric fields

Dynamical Metric \

g V(:E)
’ Fo = fa5(6)0,670,6"

helicity-1 mode of graviton
¢a — ¢ 1 \Aa 1 O A3 :mQMp
mM p A3 e

helicity-o mode of graviton



Discovering how to
square root
F,ul/ — fAB(¢)8M¢A8V¢B

1
A% + —8‘”

gb ::E_I_?TLMP A3

Helicity zero mode enters reference metric squared

Fo, =1, - AB@ 0,7 A6a Oqmd™ 0, m

To extract dominant helicity zero interactions we need
to take a square root

i ] 1
_\/g—lF_ » R Ny 13 0,0,

Branch uniquely chosen to give rise to 1 when Minkowski




Helicity Zero mode = Galileon

The helicity zero mode 7(x) only enters in the combination

I1,,, = 0,0, 7(x)

This is invariant under the
global nonlinearly realized symmetry

m(x) = m(x) + c+ v,a"

1L, —11,,



Whats a Galileon?

A Galileon is a theory nonlinearly realizes the ‘non-relativistic’
limit (Wigner-Inonu contraction) of the Five Dimensional
Poincare group that preserves Four Dimensional Poincare

de Rham, AJT 2010 - DBI and Galileon Reunited

Example - a scalar field #(x) with the symmetry

w(x) = m(x) + c —I—.

Nicolis, Rattazzi, Trincherini 2009



Exact Galileon Symmetry

It we view a (Galileon as a scalar theory then expect symmetry to
broken by gravity - e.g. covariant (Galileon does not respect
symmetry and is therefore not really a covariant Galileon

But Galileons naturally arise in Massive theories of
Gravity, like DGP and dRGT massive gravity, Bigravity and
Multi-Gravity

Here the symmetry remains exact with gravity including
quantum corrections because the scalar is not a scalar but
is actually part of a massive spin-two field
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Discovering how to
square root
F,ul/ — fAB(¢)8M¢A8V¢B

1
A% + —8‘”

gb ::E_I_?TLMP A3

Helicity zero mode enters reference metric squared

Fo, =1, - AB@ 0,7 A6a Oqmd™ 0, m

To extract dominant helicity zero interactions we need
to take a square root

i ] 1
_\/g—lF_ » R Ny 13 0,0,

Branch uniquely chosen to give rise to 1 when Minkowski




de Rham, Gabadadze, AJT 2010

Hard As Massive Gravity

Dif f(M) x Poincare — Poincaregiagonal

1 2
L=V M?% R|g] Zﬁnu + L
K=1-— \/ g 1f Characteristic

Det|l + A\K| = Z AU, ( 4/ Polynomials

Unique low energy EFT where the strong coupling scale is
A3 ( 2 MP) 1 /3

5 propagating degrees of freedom
5 polarizations of gravitational waves!!!!



Stuckelberg Formulation for Bigravity

Fasiello, AJT 1308.1647

Dif f(M) x Dif f(M) — Dif f(M)diagonal

Bigravity breaks the same amount of symmetry as
massive gravity, need to introduce same number of

Stuckelberg fields

Dynamical metric 1 Dynamical metric 11
A B
g,ul/(a?) F,uV — fAB(¢)a,u¢ 8V¢
A A, L oa
O =z A o




Fasiello, AJT 1308.1647

But there are two ways to introduce Stuckelberg fields!

Dynamical metric 1 Dynamical metric 11
A B
g,uy(a?) FMV — fAB(¢)8M¢ 8V¢
i = ¢ x) = 2 + a.
OR

Dynamical metric 1 Dynamical metric 11

éAB(jj) — guV(Z)aAzuﬁBZV fAB(f)

(Galileon




Hassan, Rosen 2011

Hard Massless plus A3 Massive Gravity

. d
L=3 (MJQDNR[Q] + M7/ —fR[f] —m? ) BnUn(K)> + Lm
n=0
d decoupling M — o
Det[1 + AK] = > X"y, (K) limit /
n=0
K=1-+/g7'f '

4

. . £:%\/jg <M123R[g]_m226nun) + Ly
Bigravity= n=0

massless graviton (2 d.o.f.)

+ massive graviton (5 d.o.f) +decoupled massless graviton f,,



