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Macrophages?

Sipka, Tamara, et al. "Macrophages undergo a behavioural
switch during wound healing in zebrafish." Free Radical
Biology and Medicine (2022).




Macrophages in microscopy videos - from Montpellier University
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Procedure of macrophage segmentation & tracking

Data acquisition

~Image segmentation 1. Filtering by considering the temporal coherence
Space-time filtering Local Otsu’s method+SUBSURF

2. Segmentation by using local thresholding and
removal of the remaining noise

\ 4
Macrophage tracking
Extraction of partial trajectories Connection of the trajectories 1. Extraction of trajectories when segmented cells
overlap in time

2. Connection of trajectories obtained from #1 by
approximating the direction of the cell movement.




Image segmentation of macrophages

- space-time filtering
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Sarti, Alessandro, Karol Mikula, and Fiorella Sgallari. , IEEE
Transactions on Medical Imaging (1999), "Nonlinear multiscale

analysis of three-dimensional echocardiographic sequences."”
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Image segmentation of macrophages
- space-time filtering

0.0e+00 100

| U ——




Image segmentation of macrophages
- Discretization of space-time filtering equation

By using the semi-implicit scheme,
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Image segmentation of macrophages
- Local Otsu’s method (thresholding)

Calculation of the optimal threshold using global Otsu’s method in a local window




Global Otsu’s method

Let us suppose there are two classes, Cy and C; represented by a threshold intensity k.

OTSU, N.: A threshold selection method from gray-level histograms, IEEE transactions

on systems, man, and cybernetics 9(1) (1979), 62-66. Searching for a threshold T, that maximizes o5 (T;)
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Image segmentation of macrophages
- Local Otsu’s method

The optimal threshold in a certain window of size s X s for every pixel centered in (i, ) is calculated
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Image segmentation of macrophages
- Global Otsu’s method

Original Adjusted Global Otsu




Image segmentation of macrophages
- Local Otsu’s method without space-time filtering
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Image segmentation of macrophages Original

- Local Otsu’s method With space-time filtering
Original

Adjusted

Space-time filtering+Local Otsu’s




Image segmentation of macrophages
- The Subjective surface segmentation (SUBSURF) method

The SUBSURF method remove the artifact from the local Otsu’s method and
smooth the inside of macrophages

Original image
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Image segmentation of macrophages
- The Subjective surface segmentation (SUBSURF) method

Adjusted

Space-time filtering+Local Otsu’s

Filtering+Local Otsu’s+SUBSURF
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Image segmentation of macrophages
- Comparison with deep learning-based segmentation

ZeroCostDL4Mic
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Testing to
macrophage data

Stringer, Carsen, et al. "Cellpose: a generalist algorithm for cellular
segmentation." Nature methods 18.1 (2021)

von Chamier, Lucas, et al. "Democratising deep learning for microscopy
with ZeroCostDL4Mic." Nature communications 12.1 (2021)




- Comparison with deep learning-based segmentation
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Cell tracking
- The approximate center of the cell

Time-relaxed eikonal equation: /; + |Vd| =1

Source: d = 0




Cell tracking
- The approximate center of the cell

We solve the unknown function d(x,¢,8), (x,t) € Q x[0,Tg]

By using Rouy-Tourin scheme, (in 2D+time)
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Cell tracking
- The approximate center of the cell

Approximateé
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Cell tracking
- Extraction of trajectories

Partial trajectories

Case 1: when the cells are mostly overlapped in temporal direction

Case 2: when the cells are barely overlapped in temporal direction

Case 3: when the cells are not overlapped in temporal direction




Cell tracking
- Extraction of partial trajectories

Approximate centers are connected
when the cells are overlapped in time




Cell tracking

Steps for extracting partial trajectories




Cell tracking
- Extraction of partial trajectories

Case 1: when the cells are mostly overlapped in temporal direction




Cell tracking
- Extraction of partial trajectories

Case 2: when the cells are barely overlapped in temporal direction




Cell tracking
- Extraction of partial trajectories

The steps are repeated until every cell is inspected for forming partial trajectories




Cell tracking
- Extraction of partial trajectories




Cell tracking
- Connection of partial trajectories

We assume that the reason for non-overlapping cells is that their
movement is relatively fast.
> non-overlapping cells keep their direction of movement.




Cell tracking
- Connection of partial trajectories

The tangent is computed by third order accuracy using finite difference approximation

time
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Cell tracking
- Connection of partial trajectories

time
Under the assumption, V/ (r,_1) = V' (r,) Under the assumption, V*(rp1.1) = V*(rp)
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Cell tracking
- Connection of partial trajectories

If there is a trajectory near the estimated point r,g, i.e., |T.c — ;| < Ar

The trajectory is linked to the trajectory containing point r;




Cell tracking
- Connection of partial trajectories




Result - 15t dataset of macrophages

# of correct links

Mean accuracy = 0.975
# of total links

accuracy =

Region 4




Result - 2" dataset of macrophages

Mean accuracy = 0.974
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Cell tracking- quantitative analysis by using the mean Hausdorff distance

Manual tracking
Automatic tracking
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Conclusion

* Combination of space-time filtering, local Otsu’s, and SUBSURF method segmented all macrophages
having high variability of the image intensity

* The proposed cell tracking method traces the movement of cells by considering overlap of cell bodies

in the temporal direction and the approximate direction of the movement.
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