
Computational optimization in high
resolution gravity field modelling by
the finite volume method

Macák Marek
joined work with R. Čunderlík, K. Mikula and Z. Minarechová.

Department of Mathematics and Descriptive Geometry

Slovak University of Technology, Faculty of Civil Engineering

Outline

• Motivation

• Solution of the GBVP
▫ Optimal linear solver

• Speedup of solution
▫ Parallelization

▫ Domain decomposition

▫ Parallel domain decomposition

• Conclusion

Outline

•Motivation
• Solution of the GBVP
▫ Optimal linear solver

• Speedup of solution
▫ Parallelization

▫ Domain decomposition

▫ Parallel domain decomposition

• Conclusion

Motivation

• Oceanography

▫ Mean Dynamic Topography

▫ Geostrophic Velocity

Outline

• Motivation

•Solution of the GBVP
▫ Optimal linear solver

• Speedup of solution
▫ Parallelization

▫ Domain decomposition

▫ Parallel domain decomposition

• Conclusion

Formulation of the boundary-value problem

• We consider the following oblique derivative boundary-value
problem (BVP) in the bounded domain Ω :

∆𝑇 = 0 𝑖𝑛 Ω,
𝛻𝑇. Ԧ𝑠 = 𝛿𝑔 𝑜𝑛 Γ𝐷,
𝑇 = 𝑇𝑆𝐴𝑇 𝑜𝑛 Γ𝑈,

where Ω is the exterior space above the Earth, T is the disturbing
potential, Γ𝐷 is the bottom boundary of Ω and Γ𝑈 is the boundary of
Ω-Γ𝐷.

• Using numerical method FEM, FVM or BEM we obtain the system
matrix and the right-hand side vector with nonzero entries.

• 2D computational domain (BEM)

21 600 x 10 800=233 280 000

• 3D computational domain (FEM, FVM)
▫ Satellite altitude ~200km =

21 600 x 10 800 x 200 = 34 992 000 000

Size of computational domain

Resolution Element size on
equator

Elements on the Earth
surface

1° x 1° ~111km 360 x 180

1’ x 1’ ~1.85km 21 600 x 10 800

Matrix/Vector storage formats

• Full matrix: (i.e.: BEM) storage locations 𝑛2

• Sparse matrix: (i.e.: FEM, FVM)

• Compressed storage (Compress Row Storage,Compress Column
Storage)

• create 3 vectors: Val, col ind, row ptr

• storage locations: 2𝑛𝑛𝑧 + 𝑛 + 1,

• Diagonal storage (Compressed Diagonal Storage)

• create 𝐷 vectots (in FEM 𝐷 = 27, in FVM with regular mesh
𝐷 = 9)

• storage locations: 𝐷𝑛

Memory requirements

Method Number of
unknowns

Memory for
unknown values

Memory for matrix
and right-hand side

vector

BEM 233 280 000 ~ 1.8 GB ~ 3 484 GB

FEM
34 992 000 000 ~ 360 GB

~ 13 063 GB

FVM ~ 3 266 GB

Where: HPC STUBA
Our

department
Slovak science

academy

Cores: 624 224 4 096

Memory: 2 501 GB 1 792 GB 31 232 GB

Processor: Intel Xeon AMD IBM POWER 775

Super computer / Our claster

Outline

• Motivation

• Solution of the GBVP

▫Optimal linear solver
• Speedup of solution
▫ Parallelization

▫ Domain decomposition

▫ Parallel domain decomposition

• Conclusion

Experiment settings

540 x 270 x 40 = 4 374 000

• Size of the memory for storage of
the matrix and the right hand-side
vector for the experiment with
unknowns was 52.84 MB.

Resolution Element size on
equator

Elements on the Earth
surface

40’ x 40’ ~74.1km 540 x 270

Solution Ax=b

• Direct solution:

• Cholesky factorization, LU decomposition, QR decomposition

• Iterative solution:

• Stationary methods: Jacobi, Gauss–Seidel (GS) and Successive
over-relaxation (SOR)

• slow convergence, no additional vectors

• Nonstationary methods: Conjugate gradient (CG), Generalized
Minimal Residual (GMRES), Biconjugate gradient method (BiCG)

• fast convergence, additional vector are needed

Solution Ax=b

• The memory and operations costs for various linear solvers

• APXY is a number of vector scalar products, DOT is a number
of scalar-vector Multiplications, MEM represents a number of
additional vectors needed in iterative procedure.

Solver MV AXPY DOT MEM

Bi-CG 2 7 2 7

Bi-CGSTAB 2 3 2 7

Bi-CGSTAB2 2 6 2 10

Bi-CGSTAB(l) 2 0,75*(l+3) 0,25*(l+7) 2l+5

GMRES(l) 1 0,5*(l+3) 0,5*(l+1) l+3

Solution Ax=b

• Efficiency comparison for various Bi-CGSTAB linear solvers in the
experiment with 4 374 000 unknowns, tested on 1 CPU.

Size of the memory for storage of the matrix and the right hand-side vector for the
experiment with unknowns was 52.84 MB.

Solver
Number of
iterations

CPU time
[s]

Additional
solver memory

[MB]

BiCGstab 1053 403.82 184.37

BiCGstab(2) 585 494.14 258.02

BiCGstab(4) 275 629.01 405.46

BiCGstab(8) 130 860.86 700.34

Outline

• Motivation

• Solution of the GBVP
▫ Optimal linear solver

•Speedup of solution

▫Parallelization
▫ Domain decomposition

▫ Parallel domain decomposition

• Conclusion

Parallelization of the solution

• Nowadays, the speed up of numerical algorithms is performed by
distribution of computations into several processes using so-called
Massively Parallel Processors architecture together with the
Message Passing Interface (MPI) and Open Multi-Processing
(OpenMP) programming framework.

OpenMP

MPI

Serial Ax=b

Process
01

Tread
01

...
Tread

n

Process n

Tread
01

...
Tread

n

Parallelization of the solution

• Illustration of data management in MPI parallel implementations.

Resolution Longitude
[MB]

Latitude
[MB]

Radial
[MB]

40’ x 40’ 0.345 0.172 2.332

1’ x 1’ 86.400 43.200 3 732.480

Parallelization of the solution

Balancing between numbers of Processors and Treads configuration is
based on real configuration of computing resources. In our case we
have four quad-core CPU in computing node.

• Comparison of Processor/Tread parallelization in the experiment
with 4 374 000 unknowns, computed on four quad-core CPU.

MPI
Processors

OpenMP
Threads

CPU
time [s]

Speedup
ratio

RAM [MB]
Memory
increase

1

1 403.82 -

237.108 -

2 232.40 1.73

4 191.36 2.11

8 87.31 4.63

16 57.51 7.02

2

1 216.84 1.86

245.868 + 3.7%
2 126.17 3.20

4 98.46 4.10

8 85.88 4.70

4

1 114.01 3.54

266.040 + 12.2%2 79.72 5.06

4 55.56 7.26

8
1 79.34 5.09

308.456 + 30.0%
2 70.81 5.7

16 1 59.51 6.78 390.068 + 64.5%

Outline

• Motivation

• Solution of the GBVP
▫ Optimal linear solver

•Speedup of solution
▫ Parallelization

▫Domain decomposition
▫ Parallel domain decomposition

• Conclusion

Domain decomposition

• The Multiplicative Schwarz Method :

• Basic DD idea is to decompose the computational domain Ω into

𝑀 subdomains Ω = 𝑖=1ڂ
𝑀 Ω𝑖

• Find solution on each Ω𝑖 with proper boundary conditions

∆𝑇𝑖
𝑛 = 0 𝑖𝑛 Ω𝑖,

𝛻𝑇𝑖
𝑛. Ԧ𝑠 = 𝛿𝑔 𝑜𝑛 Γ𝐷,

𝑇𝑖
𝑛 = 𝑇𝑆𝐴𝑇 𝑜𝑛 Γ𝑈,

𝑇𝑖
𝑛 = 𝑇∗ 𝑜𝑛 Γ𝑖 ,

where Γ is a boundary between each pair of neighboring

subdomains. The artficial Dirichlet condition 𝑇𝑖 is updated by the
exchanging some data on Γ𝑖 from the neighboring subdomains.

• The Additive Schwarz Method :

• The difference between the multiplicative Schwarz method and
the additive Schwarz method is in the way how the artificial
Dirichlet condition is updated.

• Dirichlet condition is updated by using

𝑇𝑖
𝑛 = 𝑇∗

𝑛−1 o𝑛 Γ𝑖 ,

• This means that the artificial Dirichlet condition is updated
using solutions from all relevant neighboring subdomains from
previous iteration.

• Therefore, the subdomain solution in the additive Schwarz
method can be carried out completely independently.

Domain decomposition

• Illustration of the solution after the first iteration of DD

Domain decomposition

• Illustration of the solution after 10 iterations of DD

Domain decomposition

• Efficiency comparison for various number of subdomains tested in
experiment with 4 374 000 unknowns, computed on 1 CPU.

Number of
subdomains

CPU time
[s]

Speedup
ratio

RAM
[MB]

Memory
saving

1 403.82 - 237.108 -

5 1651.68 0.24 89.868 -62.1%

10 907.99 0.44 71.308 -69.9%

15 856.04 0.46 65.248 72.5%

30 854.24 0.47 57.816 -75.6%

Domain decomposition

• The additive Schwarz Method :

• the artificial Dirichlet condition is updated using solutions from
all the relevant neighboring subdomains every 𝜇 iteration,
where 𝜇 ∈ 𝑅.

∆𝑇𝑖
𝑛 = 0 𝑖𝑛 Ω𝑖,

𝛻𝑇𝑖
𝑛. Ԧ𝑠 = 𝛿𝑔 𝑜𝑛 Γ𝐷,

𝑇𝑖
𝑛 = 𝑇𝑆𝐴𝑇 𝑜𝑛 Γ𝑖 ,

𝑇𝑖
𝑛 = 𝑇∗

𝑛−𝜇
o𝑛 Γ𝑖 .

Domain decomposition

• Efficiency comparison for the different number 𝜇 in the experiment
with 4 374 000 unknowns for case of 30 subdomains, tested on 1
CPU

𝜇
CPU time

[s]
Speedup

ratio

1 854.24 -

5 308.02 2.77

10 252.33 3.38

15 224.65 3.80

20 236.56 3.61

25 265.73 3.21

Domain decomposition

Outline

• Motivation

• Solution of the GBVP
▫ Optimal linear solver

•Speedup of solution
▫ Parallelization

▫ Domain decomposition

▫Parallel domain decomposition
• Conclusion

Parallel - Domain decomposition

• Illustration of data management in Parallel DD implementations.

• Comparison for the different number of subdomains using parallel
DD method in the experiment with 4 374 000 unknowns with

𝜇 = 15, tested on 4 quad-core CPUs

Number of
subdomains

CPU time
[s]

Speedup
ratio

RAM
[MB]

Memory
saving

1 55.56 - 266.040 -

5 55.52 1.00 115.508 -56.6%

10 28.47 1.95 97.568 -63.3%

15 17.44 3.18 91.156 -65.7%

30 18.67 2.97 84.128 -68.3%

Parallel - Domain decomposition

• Efficiency comparison for methods, in the experiment with

4 374 000 unknowns, computed on 4 quad-core CPU.

Computational
strategies

CPU time
[s]

Speedup
ratio

RAM
[MB]

Memory
saving

Serial 403.82 - 237.108 -

Parallel 55.56 7.26 266.040 +10.8%

Domain dec. 224.65 1.79 57.816 -75.6%

Paralel DD 18.67 21.6 84.128 -64.5%

Efficiency comparison for different computation
strategies

• Comparison for the different number of subdomains using Parallel-
Domain decomposition method in the experiment with

34 992 000 000 unknowns, tested on 28 octo-core CPUs.

Number of
subdomains

CPU time
[s]

Speedup
ratio

RAM
[GB]

Memory
saving

1 706.8 - 1 652 -

5 703.5 1.00 557 66.3%

10 700.9 1.01 420 74.5%

15 710.0 0.99 375 -77.3%

30 718.5 0.98 329 -80.0%

Parallel - Domain decomposition 1’ x 1’

• Global gravity field model with the resolution 1’ x 1’ on the Earth's
surface, [m^2s^2].

Parallel - Domain decomposition 1’ x 1’

Outline

• Motivation

• Solution of the GBVP
▫ Optimal linear solver

• Speedup of solution
▫ Parallelization

▫ Domain decomposition

▫ Parallel domain decomposition

•Conclusion

Conclusion

• Since solution to the GBVP in a space domain leads to a huge linear
system, we have shown that Bi-CGSTAB is an optimal linear solver
due to the minimal time consumption.

• In case of speed up of solution, we have presented MPI and
OpenMP as one of its possibilities.

• Parallelization together with the DD method have shown an
immense contribution to improving algorithms in reduced
computation time and memory costs.

• After all optimizations we are able to solve experiment with
corresponding 34 992 000 000 unknowns in acceptable time using
minimal memory requirements

• All numerical computations have space to improve convergence and
data management.

Thank for your attention

