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Formulation of the boundary-value problem

• We consider the following oblique derivative boundary-value 
problem (BVP) in the bounded domain Ω  :

∆𝑇 = 0 𝑖𝑛 Ω, 
𝛻𝑇. Ԧ𝑠 = 𝛿𝑔 𝑜𝑛 Γ𝐷,
𝑇 = 𝑇𝑆𝐴𝑇 𝑜𝑛 Γ𝑈,

where Ω is the exterior space above the Earth, T is the disturbing
potential, Γ𝐷 is the bottom boundary of Ω and Γ𝑈 is the boundary of
Ω-Γ𝐷.

• Using numerical method FEM, FVM or BEM we obtain the system
matrix and the right-hand side vector with nonzero entries.



• 2D computational domain (BEM)

21 600 x 10 800=233 280 000

• 3D computational domain (FEM, FVM)
▫ Satellite altitude ~200km = 

21 600 x 10 800 x 200 = 34 992 000 000

Size of computational domain

Resolution Element size on 
equator

Elements on the Earth 
surface

1° x 1° ~111km 360 x 180

1’ x 1’ ~1.85km 21 600 x 10 800



Matrix/Vector storage formats

• Full matrix: (i.e.: BEM) storage locations 𝑛2

• Sparse matrix: (i.e.: FEM, FVM) 

• Compressed storage (Compress Row Storage,Compress Column
Storage)

• create 3 vectors: Val, col ind, row ptr

• storage locations: 2𝑛𝑛𝑧 + 𝑛 + 1, 

• Diagonal storage (Compressed Diagonal Storage)

• create 𝐷 vectots ( in FEM 𝐷 = 27, in FVM with regular mesh 
𝐷 = 9)

• storage locations: 𝐷𝑛



Memory requirements

Method Number of 
unknowns

Memory for 
unknown values

Memory for matrix 
and right-hand side 

vector

BEM 233 280 000 ~ 1.8 GB ~ 3 484 GB

FEM
34 992 000 000 ~ 360 GB 

~ 13 063 GB

FVM ~ 3 266 GB



Where: HPC STUBA
Our

department
Slovak science 

academy

Cores: 624 224 4 096

Memory: 2 501 GB 1 792 GB 31 232 GB

Processor: Intel Xeon AMD IBM POWER 775 

Super computer / Our claster
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Experiment settings

540 x 270 x 40 = 4 374 000 

• Size of the memory for storage of 
the matrix and the right hand-side 
vector for the experiment with 
unknowns was 52.84 MB.

Resolution Element size on 
equator

Elements on the Earth 
surface

40’ x 40’ ~74.1km 540 x 270



Solution Ax=b

• Direct solution: 

• Cholesky factorization, LU decomposition, QR decomposition

• Iterative solution:

• Stationary methods: Jacobi, Gauss–Seidel (GS) and Successive 
over-relaxation (SOR)

• slow convergence, no additional vectors

• Nonstationary methods:  Conjugate gradient (CG), Generalized
Minimal Residual (GMRES), Biconjugate gradient method (BiCG)

• fast convergence, additional vector are needed



Solution Ax=b

• The memory and operations costs for various linear solvers

• APXY is a number  of vector scalar products, DOT is a number 
of scalar-vector Multiplications,  MEM represents a number of 
additional vectors needed in iterative procedure.

Solver MV AXPY DOT MEM

Bi-CG 2 7 2 7

Bi-CGSTAB 2 3 2 7

Bi-CGSTAB2 2 6 2 10

Bi-CGSTAB(l) 2 0,75*(l+3) 0,25*(l+7) 2l+5

GMRES(l) 1 0,5*(l+3) 0,5*(l+1) l+3



Solution Ax=b

• Efficiency comparison for various Bi-CGSTAB linear solvers in the 
experiment with 4 374 000 unknowns, tested on 1 CPU.

Size of the memory for storage of the matrix and the right hand-side vector for the 
experiment with unknowns was 52.84 MB.

Solver
Number of 
iterations

CPU time
[s]

Additional 
solver memory 

[MB]

BiCGstab 1053 403.82 184.37

BiCGstab(2) 585 494.14 258.02

BiCGstab(4) 275 629.01 405.46

BiCGstab(8) 130 860.86 700.34
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Parallelization of the solution

• Nowadays, the speed up of numerical algorithms is performed by 
distribution of computations into several processes using so-called 
Massively Parallel Processors architecture together with the 
Message Passing Interface (MPI) and Open Multi-Processing 
(OpenMP) programming framework.

OpenMP

MPI

Serial Ax=b

Process
01

Tread
01

...
Tread

n

Process n

Tread
01

...
Tread

n



Parallelization of the solution

• Illustration of data management in MPI parallel implementations.

Resolution Longitude
[MB]

Latitude
[MB]

Radial
[MB]

40’ x 40’ 0.345 0.172 2.332

1’ x 1’ 86.400 43.200 3 732.480



Parallelization of the solution

Balancing between numbers of Processors and Treads configuration is
based on real configuration of computing resources. In our case we
have four quad-core CPU in computing node.

• Comparison of Processor/Tread parallelization in the experiment
with 4 374 000 unknowns, computed on four quad-core CPU.



MPI 
Processors

OpenMP
Threads

CPU 
time [s]

Speedup
ratio

RAM [MB]
Memory 
increase

1

1 403.82 -

237.108 -

2 232.40 1.73

4 191.36 2.11

8 87.31 4.63

16 57.51 7.02

2

1 216.84 1.86

245.868 + 3.7%
2 126.17 3.20

4 98.46 4.10

8 85.88 4.70

4

1 114.01 3.54

266.040 + 12.2%2 79.72 5.06

4 55.56 7.26

8
1 79.34 5.09

308.456 + 30.0%
2 70.81 5.7

16 1 59.51 6.78 390.068 + 64.5%
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Domain decomposition

• The Multiplicative Schwarz Method : 

• Basic DD idea is to decompose the computational domain Ω into 

𝑀 subdomains Ω = 𝑖=1ڂ
𝑀 Ω𝑖

• Find solution on each Ω𝑖 with proper boundary conditions

∆𝑇𝑖
𝑛 = 0 𝑖𝑛 Ω𝑖, 

𝛻𝑇𝑖
𝑛. Ԧ𝑠 = 𝛿𝑔 𝑜𝑛 Γ𝐷,

𝑇𝑖
𝑛 = 𝑇𝑆𝐴𝑇 𝑜𝑛 Γ𝑈,

𝑇𝑖
𝑛 = 𝑇∗ 𝑜𝑛 Γ𝑖 ,

where Γ is a boundary between each pair of neighboring

subdomains. The artficial Dirichlet condition 𝑇𝑖 is updated by the
exchanging some data on Γ𝑖 from the neighboring subdomains.



• The Additive Schwarz Method : 

• The difference between the multiplicative Schwarz method and 
the additive Schwarz method is in the way how the artificial 
Dirichlet condition is updated. 

• Dirichlet condition is updated by using

𝑇𝑖
𝑛 = 𝑇∗

𝑛−1 o𝑛 Γ𝑖 ,

• This means that the artificial Dirichlet condition is updated 
using solutions from all relevant neighboring subdomains from 
previous iteration. 

• Therefore, the subdomain solution in the additive Schwarz 
method can be carried out completely independently.

Domain decomposition



• Illustration of the solution after the first iteration of DD

Domain decomposition



• Illustration of the solution after 10 iterations of DD

Domain decomposition



• Efficiency comparison for various number of subdomains tested in 
experiment with 4 374 000 unknowns, computed on 1 CPU.

Number of
subdomains

CPU time
[s]

Speedup
ratio

RAM 
[MB]

Memory
saving

1 403.82 - 237.108 -

5 1651.68 0.24 89.868 -62.1%

10 907.99 0.44 71.308 -69.9%

15 856.04 0.46 65.248 72.5%

30 854.24 0.47 57.816 -75.6%

Domain decomposition



• The additive Schwarz Method : 

• the artificial Dirichlet condition is updated using solutions from 
all the relevant neighboring subdomains every 𝜇 iteration,
where 𝜇 ∈ 𝑅.

∆𝑇𝑖
𝑛 = 0 𝑖𝑛 Ω𝑖, 

𝛻𝑇𝑖
𝑛. Ԧ𝑠 = 𝛿𝑔 𝑜𝑛 Γ𝐷,

𝑇𝑖
𝑛 = 𝑇𝑆𝐴𝑇 𝑜𝑛 Γ𝑖 ,

𝑇𝑖
𝑛 = 𝑇∗

𝑛−𝜇
o𝑛 Γ𝑖 .

Domain decomposition



• Efficiency comparison for the different number 𝜇 in the experiment 
with 4 374 000 unknowns for case of 30 subdomains, tested on 1 
CPU

𝜇
CPU time

[s]
Speedup

ratio

1 854.24 -

5 308.02 2.77

10 252.33 3.38

15 224.65 3.80

20 236.56 3.61

25 265.73 3.21

Domain decomposition
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Parallel - Domain decomposition

• Illustration of data management in Parallel DD implementations.



• Comparison for the different number of subdomains using parallel 
DD method in the experiment with 4 374 000 unknowns with 

𝜇 = 15, tested on 4 quad-core CPUs

Number of
subdomains

CPU time
[s]

Speedup
ratio

RAM 
[MB]

Memory
saving

1 55.56 - 266.040 -

5 55.52 1.00 115.508 -56.6%

10 28.47 1.95 97.568 -63.3%

15 17.44 3.18 91.156 -65.7%

30 18.67 2.97 84.128 -68.3%

Parallel - Domain decomposition



• Efficiency comparison for methods, in the experiment with

4 374 000 unknowns, computed on 4 quad-core CPU.

Computational 
strategies

CPU time
[s]

Speedup
ratio

RAM
[MB]

Memory
saving

Serial 403.82 - 237.108 -

Parallel 55.56 7.26 266.040 +10.8%

Domain dec. 224.65 1.79 57.816 -75.6%

Paralel DD 18.67 21.6 84.128 -64.5%

Efficiency comparison for different computation 
strategies



• Comparison for the different number of subdomains using Parallel-
Domain decomposition method in the experiment with 

34 992 000 000 unknowns, tested on 28 octo-core CPUs.

Number of
subdomains

CPU time
[s]

Speedup
ratio

RAM 
[GB]

Memory
saving

1 706.8 - 1 652 -

5 703.5 1.00 557 66.3%

10 700.9 1.01 420 74.5%

15 710.0 0.99 375 -77.3%

30 718.5 0.98 329 -80.0%

Parallel - Domain decomposition 1’ x 1’



• Global gravity field model with the resolution 1’ x 1’ on the Earth's 
surface, [m^2s^2].

Parallel - Domain decomposition 1’ x 1’
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Conclusion

• Since solution to the GBVP in a space domain leads to a huge linear 
system, we have shown that Bi-CGSTAB is an optimal linear solver 
due to the minimal time consumption.

• In case of speed up of solution, we have presented MPI and 
OpenMP as one of its possibilities. 

• Parallelization together with the DD method have shown an 
immense contribution to improving algorithms in reduced 
computation time and memory costs.

• After all optimizations we are able to solve experiment with 
corresponding 34 992 000 000 unknowns in acceptable time using 
minimal memory requirements 

• All numerical computations have space to improve convergence and 
data management.



Thank for your attention


