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Introduction do electrocardiology

The propagation of a fast and sharp wavefront synchronizes the heart, rhythmically
→ reaction-diffusion equations
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The monodomain model

∂tV + Iion(V ,w) = div (D∇V ) ,

∂tw = G (V ,w),

where (time in ms and space in cm):
V [mV ] is the transmembrane voltage,
Iion = Iion(V ,w) [A.F−1] is the normalized ioinc current per unit surface,
D = G

AmCm
[cm2.ms−1] is the normalized diffusion tensor,

w contains all auxiliary variables
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Anisotropy

D =
3∑

k=1

dkuk(x)uk(x)T

(u1, u2, u3) is a Freinet basis associated to the
fiber, and the laminae.
0 < d1 ≤ d2 ≤ d3 are normalized electrical
conductivity coefficients
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Ionic models

The ionic current Iion, and the function G are given by a so-called ionic model
which approximates all ionic processes in the cardiac cells:

Phenomenological models (Fitzugh-Nagumo, Aliev-Panfilov, Mitchell-Schaeffer,...) are
simple,
Hodgkin-Huxley type models (Beeler-Reuter, Ten Tusscher et al, Luo-Rudy,..) are more
complex. Markov chains variants (Iyer et al...) are nowadays widely used by biologists.
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Aliev-Panfilov

The Aliev-Panfilov model is a simple 2-equations model:

Iion = −κV (V − a)(V − 1)− wV ,

g(V ,w) =

(
ε+ µ1

w

µ2 + V

)
(−w − κV (V − b − 1)) .

Homogeneous monodomain + Aliev-Panfilov
→ bistable system which preserves V ∈ (Vmin,Vmax)

Its simplicity allows to obtain theoretical results; e.g. estimation of propagation velocity
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Hodgkin-Huxley formalism

Mimics the behavior of molecular actors in the cell membrane:

Iion(V ,w) =
∑

j Ij where the Ijs are expressed as functions of gating variables

Example: INa = gNam
3hj(V − ENa), where

ENa = RT
F ln

(
[Na+]e
[Na+]i

)
is Nernst’s potential,

m, h, j are gating variables given by d
dtm = m∞(V ,w)−m

τm(V ,w)

w ∈ RN , where N ranges from 8 to 100+, contains
all gating variables like m, 0 ≤ m ≤ 1
other variables, and notably ion concentrations, [Na]i ,e > 0
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Complete exemple: CRN [CRN98]
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Main numerical difficulties

Most codes use for practical computional studies are based on P1 or equivalent methods with a
mesh length ' 100µm (which is too coarse!), and time step ' 10µs... And adapt Am.

Admissibility of unknowns
I voltage Vmin ≤ V (t, x) ≤ Vmax, OK for TPFA, cf [CP06]
I gating variables 0 ≤ mk(t, x) ≤ 1 (HH models), or specific bound (simple models)
I ion concentrations [X ] > 0 (Nernst equilibrium)

Stiffness
I in time due to physiological processes (e.g. fast Na+ channels) – ODEs,
I in space due to depolarization fronts

Propagation failure (PF)
I no propagation when the mesh is too coarse
I wrong propagation velocity

Complex propagation patterns (spiral waves)
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Questions

1 Construction, analysis, numerical experiments of a high-order FV method [CT17]
I How does high-order methods behave in this context ?
I Coarser meshes may allow for larger time steps ? Explicit ?
I FV techniques may be used to control the ionic concentration ([Na]i,e > 0) or gating

variables (0 ≤ m ≤ 1) for increased stability ?
2 Construction of a parallel (OpenMP) implementation [CT19]

I What strategy for a scalable scheme, and implementation, order up to 6.
I How efficient is it for HOFVM ?

3 On-going work: extension to MPI techniques, and to 3D problems
I Accuracy and scalability tests on up to 1024 subdomains
I Order increased to 8
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Semi-discrete scheme

cell-centered FV scheme: unknowns are mean values of V and w in each cell K :

d

dt
VK + IK =

1
|K |

∑
ei∈EK

FKe · nKe ,

d

dt
wK = GK ,

The scheme is determined by the choices of
I the numerical flux of diffusion FKe · nke
I the numerical reaction terms IK , and GK

Idea: polynomial approximations of V and w [CM14], and quadrature rules [Dun85]
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Approximation on cell edges – Diffusion

Given a degree m > 0
1 we define a polynomial reconstruction of degree m on each interface e ∈ E :

Ve(x , y) =
∑

i+j≤m
γi ,j ,e(x − xe)i (y − ye)j

2 the 1
2(m + 1)(m + 2) coeffs Γe = (γi ,j ,e)i ,j are obtained by computing the minimum of

J(Γe) =
1
2

∑
C∈Se

ωC ,e (Ve(xC , yC )− VC )2 ,

3 where Se is a neighborhood of e, with #Se ≥ 1
2(m + 1)(m + 2)
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Approximation on cell edges – Diffusion

Given a degree m > 0
1 we define a polynomial reconstruction of degree m on each interface e ∈ E :

Ve(x , y) = Xe(x , y)Γe , Xe(x , y) =
[
(x − xe)i (y − ye)j

]T
i+j≤m

2 the 1
2(m + 1)(m + 2) coeffs Γe = (γi ,j ,e)i ,j are obtained by computing the minimum of

J(Γe) =
1
2

∑
C∈Se

ωC ,e (Ve(xC , yC )− VC )2 ,

3 where Se is a neighborhood of e, with #Se ≥ 1
2(m + 1)(m + 2)
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Solving the local quadratic optimisation problems

Therefore, Γe is the solution of the system:(
XT
e ΩeXe

)
Γe = XT

e ΩeV,

where
matrix of the basis functions evaluated at cell centers in Se :

Xe = (Xe(xC , yC ))C∈se =
[
(xC − xe)i (yC − ye)j

]
C∈Se

i+j≤m

diagonal matrix of the weights Ωe = diag (ωC ,e)C∈Se
vector of the unknowns on the stencil: V = (VC )C∈Se .
In practice, XT

e ΩeXe is a matrix of size 1
2(m + 1)(m + 2)

invertible as soon as #Se is large enough
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Computing the diffusion flux

D(x , y)nKe · ∇Ve(x , y) = D(x , y)nKe · ∇Xe(x , y)Γe

we compute once (offline) the matrix

Ye =
(
XT
e ΩeXe

)−1
XT
e Ωe , such that Γe = YeV

we use a quadrature formula to obtain the flux FKe · nKe

FKe · nKe = |e|
∑
q

ωq [D(xq, yq)nKe · ∇Xe(xq, yq)Ye ]V

we precompute (offline) the [D(xq, yq)nKe · ∇Xe(xq, yq)Ye ]
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Approximation on cells – Reaction

Given a degree p > 0
1 we define a polynomial reconstruction of degree p on each cell K :

ṼK (x , y) = VK +
∑

1≤i+j≤p
λi ,j ,K

[
(x − xK )i (y − yK )j − 1

|K |

∫
K

(x − xK )i (y − yK )jdxdy

]

which is such that 1
|K |
∫
K ṼK (x , y) = VK

2 the 1
2(p + 1)(p + 2) coeffs ΛK = (λi ,j ,K )i ,j are obtained from the minimization of

J(ΛK ) =
1
2

∑
C∈SK

ωC ,K

(
〈ṼK 〉C − VC

)2
,

3 where SK is a neighborhood of K , with #SK ≥ 1
2(p + 1)(p + 1)
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Approximation on cells – Reaction

Given a degree p > 0
1 we define a polynomial reconstruction of degree p on each cell K :

ṼK (x , y) = VK + (XK (x , y)− 〈XK 〉K ) ΛK , where 〈·〉K =
1
|K |

∫
K
·

which is such that 1
|K |
∫
K ṼK (x , y) = VK

2 the 1
2(p + 1)(p + 2) coeffs ΛK = (λi ,j ,K )i ,j are obtained from the minimization of

J(ΛK ) =
1
2

∑
C∈SK

ωC ,K

(
〈ṼK 〉C − VC

)2
,

3 where SK is a neighborhood of K , with #SK ≥ 1
2(p + 1)(p + 1)
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The local quadratic optimisation problems
Again, the vector ΛK is solution to(

XT
K ΩKXK

)
ΛK = XT

K ΩK (V− VK ) ,

where
matrix of the basis functions with 0 mean value on K :

XK = (〈XK 〉C − 〈XK 〉K )C∈SK

diagonal matrix of the weights ΩK = diag (ωC ,K )C∈SK
vector of the unknown on the stencil : V = (VC )C∈SK .

In practice, XT
K ΩKXK is a matrix of size 1

2(p + 1)(p + 1)− 1
invertible as soon as #SK is large enough
We use the same polynomial approximation for V and all variables w = (w1, . . .wN)
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Computing the reaction terms

we compute once (offline) the matrix

YK =
(
XT
K ΩKXK

)−1
XT
K ΩK , such that ΛK = YK (V− VK )

we use a quadrature formula to obtain the reaction terms

IK =
∑
q

ωqJion

(
ṼK (xq, yq), w̃K (xq, yq)

)
, DK =

∑
q

ωqD
(
ṼK (xi , yi ), w̃K (xi , yi )

)
where ṼK (x , y) = VK + (XK (x , y)− 〈XK 〉K )YK (V− VK )

we precompute (offline) the (XK (xq, yq)− 〈XK 〉K )YK
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Summary

The scheme definition requires
I the choice of the polynomial degrees m > 0 (edges) and p > 0 (cells),
I rules to build the stencils Se and SK : n levels of neighbours (neighbours = shared vertex)
I weights: ωC ,K = (XC − XK )−s , with s > 0, same for ωC ,e
I quadrature formulas

F on the edges: Gauss-Legendre exact for polynomials of degree m − 1
F on the cells: formulas on triangles from [Dun85]

The local matrices are computed offline
The implementation is matrix-free
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A few remarks

1 unknown per quadrature point vs cell reconstruction for the variables w :
I 1 unkwown / quadrature point: no need for interpolation by cell but many more nonlinear

unknowns,
I cell reconstruction: quadrature and evaluation of the polynomial at the quadrature points

(expensive), but less memory requirement.

Preservation of admissibility:
a posteriori limitation on each quadrature point,

No preconditionning, though XTΩX are ill-conditionnned matrices (Vandermonde)
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Time integration

Explicit schemes:
I ionic model requires small ∆t
I high order → “reasonable” mesh
I preservation of admissibility is easier

We want ∆t = O(h2), then time order = (required space order)/2
Preservation of admissibility: SSP-RK

I Forward Euler, SSP-RK(2,2), SSP-RK(3,3), SSP-RK(5,4), SSP-RK(10,5)
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Convergence result

Theorem

For the equation
∂tu = ∆u + f (u), (1)

with homogeneous Neumann boundary conditions, L2 initial data, f ∈ Cp+1(R) and Lipshitz,
under the additional coercivity property: ∃β > 0 such that,

β |e|21 := β
∑
e∈E

∣∣∣∣eL− eK
dKL

∣∣∣∣2 |e| dKL ≤∑
e∈E

FK ,e(eh)
eL− eK
dKL

|e| dKL,

then, the spatial error is

‖eh(t)‖2 ≤ O(hmin(m,p+1))eCt , |eh(t)|1 ≤ O(hmin(m,p+1))eCt .
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Remarks

We don’t known how to prove the discrete coercivity in general – as usual
Experimentally, the L2 error is ‖eh(t)‖2 ≤ O(hmin(m+1,p+1))eCt
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Proof

A key point is an unusual regularity assumption, that writes in terms of the matrices

Ye =
(
XT
e ΩeXe

)−1
XT
e Ωe , YK =

(
XT
K ΩKXK

)−1
XT
K ΩK

such that

Γe = YeV, ΛK = YK (V− VK )

1 Write the error equation
2 Identify the errors of consistency on the diffusion, and reaction terms
3 Diffusion: quadrature error + reconstruction error – everything is linear.
4 Reaction: 3 terms
5 Finalize with coercivity and a Gronwall lemma.
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Preliminary estimate

Observation on the coefficients of Ye = (Ye,α,C )|α|≤m,C∈Se where α = (i , j)∑
|α|≤m

(
XT
e ΩeXe

)
β,α

Ye,α,C =
(
XT
e Ωe

)
β,C

= (ΩeXe)C ,β ,∑
|α|≤m

O
(
h|β|+|α|

)
Ye,α,C = O

(
h|β|
)
,

∑
|α|≤m

O
(
h|α|
)
Ye,α,C = O(1),

Hence, we expect that Ye,α,C = O(h−|α|) (true unless cancelations occur).
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Mesh regularity assumption

There exists a constant M > 0 uniform with respect to the family of meshes, such that

max
x∈K
K∈Se

|x− xe | ≤ Mh,

max
x∈C

C∈SK

|x− xK | ≤ Mh,

∀ |α| ≤ m, C ∈ Se , |Ye,α,C | ≤ Mh−|α|,

∀1 ≤ |α| ≤ p, C ∈ SK , |YK ,α,C | ≤ Mh−|α|,

In practice, extending the stencil allows to recover the property.
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Exemple on a Cartesian grid

p = 2, ΩK = Id, and 9-point stencils are considered, the matrix YK is:

YK =



−1
6h

−1
6h

−1
6h 0 0 0 1

6h
1
6h

1
6h

−1
6h 0 1

6h
−1
6h 0 1

6h
−1
6h 0 1

6h
1

10h2
3

10h2
1

10h2
−1
5h2 0 −1

5h2
1

10h2
3

10h2
1

10h2

1
4h2 0 −1

4h2 0 0 0 −1
4h2 0 1

4h2

1
10h2

−1
5h2

1
10h2

3
10h2 0 3

10h2
1

10h2
−1
5h2

1
10h2
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Consistency for the diffusion flux I

FKe(u)− FKe(u) = FKe(u)−Qe(∇u · nKe)︸ ︷︷ ︸
quadrature error

+Qe(∇u · nKe)− FKe(u)︸ ︷︷ ︸
Reconstruction error

,

Quadrature error:

FK ,e(u)−Qe(∇u · nK ,e) =
1
|e|

∫
e
∇u · nK ,edσ −Qe(∇u · nK ,e) = O(hm)

Reconstruction error:

Qe(∇u · nK ,e)− FK ,e(u) = Qe (∇(u −Reu) · nK ,e) ,

where Reu := Ṽe is the reconstruction on the edge e made on the mean values of u on
the cells C ∈ Se .
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Consistency for the diffusion flux II

The reconstruction Reu is exact for polynomials of degree ≤ m. Hence, after the Taylor
expansion of u:

Reu(x) = u(xe) + Du(x)(x− xe) + . . .+ Dmu(x)(x− xe)m +Re

(
|x− xe |m+1 R0(x)

)
,

Use the assumption of the reconstruction matrix Ye :

Re

(
|x− xe |m+1 R0(x)

)
= XTY e


...

〈|x− xe |m+1 R0(x)〉C
...


C∈Se

= O
(
|x− xe |m+1

)
→ O(hm) for the flux (gradient)

YC (IMB/Liryc/Inria-Carmen) HOFVM in cardiology October 21th, 2022 28 / 45



Consistency for the reaction source term
The total error of consistency is

1
|K |

∫
K
f (u)dx−QK f (ũK ) =

1
|K |

∫
K
f (u)dx−QK (f (u))︸ ︷︷ ︸

O(hp+1)(quadrature error)

+QK

(
f (u)− f (RKu)

)︸ ︷︷ ︸
:=AK

+QK

(
f (RKu)− f (ũK )

)
︸ ︷︷ ︸

:=BK

The term AK is bounded like before + Lipschitz condition on f .
The term BK is more difficult to estimate. We find that∑

K

BK eK |K | = O(1) ‖eh‖22

Finally, the total error of consistency on the reaction term is∑
K∈M

eK

(∫
K
f (u)dx− |K | QK f (ũK )

)
= O(h2p+2) +O(1) ‖eh‖22 .
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Order of convergence – sequential
Forward Euler, SSPRK(2,2), SSPRK(3,3)
Ad hoc choice of Iion in order to have an analytical solution

e2 :=
∑
K∈M

|K | |uK − 〈u〉K |2 =
∑
K∈M

|K |

∣∣∣∣∣uK −∑
q

ωqu(xq)

∣∣∣∣∣
2

.

h p=2 ord. p=3 ord. p=4 ord. p=5 ord.

1.2E-2 2.4E-5 n/a 6.8E-6 n/a 2.9E-6 n/a 9.5E-7 n/a
6.1E-3 5.6E-6 2.09 5.1E-7 3.75 1.3E-7 4.51 2.1E-8 5.52
3.1E-3 1.3E-6 2.09 3.2E-8 3.97 5.2E-9 4.60 3.7E-10 5.80
1.5E-3 3.2E-7 2.03 2.0E-9 4.04 2.4E-10 4.46 6.3E-11 2.57

Table: L2 errors for the analytical test case
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Planar waves – AP, D = 1.e − 1 – sequential

∆t = min

(
∆tmax,

C

D
h2
)
, ∆tmax = 0.1ms

Mesh h ∆t order 2 order 4 order 6

1 9.87E-002 1.00E-001 3.25E-001 3.97E-001 4.40E-001
2 4.80E-002 4.61E-002 3.79E-001 4.22E-001 4.43E-001
3 2.24E-002 1.00E-002 4.09E-001 4.37E-001
4 1.05E-002 2.21E-003 4.21E-001 4.43E-001
5 5.34E-003 5.70E-004 4.22E-001

Table: Velocity – Aliev-Panfilov: D = 1.0× 10−1, c = 4.43× 10−1cm/ms.
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Planar waves – AP, D = 1.e − 2 – sequential

Mesh h ∆t order 2 order 4 order 6

1 9.87E-002 1.00E-001 PF 1.63E-001 1.71E-001
2 4.80E-002 1.00E-001 PF 1.30E-001 1.40E-001
3 2.24E-002 1.00E-001 1.05E-001 1.40E-001 1.40E-001
4 1.05E-002 2.21E-002 1.37E-001
5 5.34E-003 5.70E-003 1.40E-001

Table: Velocity – Aliev-Panfilov: D = 1.0× 10−2, c = 1.40× 10−1cm/ms.
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Planar waves – AP, D = 1.e − 3 – sequential

Mesh h ∆t order 2 order 4 order 6

1 9.87E-002 1.00E-001 PF PF PF
2 4.80E-002 1.00E-001 PF PF 4.25E-002
3 2.24E-002 1.00E-001 PF 4.27E-002 4.68E-002
4 1.05E-002 1.00E-001 3.01E-002 4.18E-002 4.43E-002
5 5.34E-003 5.70E-002 3.49E-002

Table: Velocity – Aliev-Panfilov: D = 1.0× 10−3, c = 4.43× 10−2cm/ms.
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Spiral waves — 100 ms – sequential

Figure: Spiral wave (AP model) obtained on a moderately coarse mesh (top – 224µm) and a fine mesh
(bottom – 105µm) with the schemes from order 2 (left) to 6 (right), t = 100ms.

YC (IMB/Liryc/Inria-Carmen) HOFVM in cardiology October 21th, 2022 34 / 45



Spiral waves – 150 ms – sequential

Figure: Spiral wave (AP model) obtained on a moderately coarse mesh (top – 224µm) and a fine mesh
(bottom – 105µm) with the schemes from order 2 (left) to 6 (right), t = 150ms.
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Spiral waves – 200 ms – sequential

Figure: Spiral wave (AP model) obtained on a moderately coarse mesh (top – 224µm) and a fine mesh
(bottom – 105µm) with the schemes from order 2 (left) to 6 (right), t = 200ms.
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Summary, sequential computations

2nd vs 4th order: 6 to 8 times more expensive,
dividing h by 2: 3 to 20 times more expensive,
4th order is more efficient than 2nd order, better than implicit Euler + P1
AP: the higher order, the better,
Realistic models: efficiency of high order is reduced (stiffness → limitation).
Needs be faster for long-duration / realistic simulations
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Principle of parallel implementation

No numerical issue with the boundary condition
→ constrain the stencil for parallel implementation may be a good idea

Stencil Se or SK is inside the extended subdomain = subdomain + halo
Halo : 1 layer of neighbors (sharing 1 node), add more cells if really needed
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OMP, and then MPI Parallel implementation

Using scotch to split the domain → balances the # cells / # interfaces

OMP each thread computes 1 subdomain
renumbering cells and edges for contiguous data / subdomain
reaction is fine because only reading memory, and writing into subdomain
diffusion need to take care of interfaces shared by 2 subdomains (treated
separately)

MPI each process computes 1 subdomain
reaction and diffusion computed within each subdomain, using values from
the extended subdomain
shared interfaces are computed twice (once per subdomain)
data to communicate = unknowns unK in the halo
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Order of convergence and accuracy of the parallel version

h p=1 order p=3 order p=5 order

6.2E-3 5.93E-1 n/a 1.47E-1 n/a 5.95E-2 n/a
3.0E-3 1.06E-1 2.37 1.20E-2 3.45 1.42E-3 5.14
1.5E-3 1.86E-2 2.51 6.78E-4 4.14 3.08E-5 5.52

Table: L2 errors for the analytical test case – 24 subdmoains

h p=1 p=3 p=5

6.2E-3 7.61E-4 1.05E-2 1.38E-2
3.0E-3 8.27E-6 2.58E-4 3.61E-4
1.5E-3 6.34E-7 2.78E-5 7.25E-6

Table: Difference between the solution with 1 and 24 subdomains
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Scalability – OMP
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(a) Mesh #4
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(b) Mesh #5

Figure: Scalability for the AP model
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Scalability – MPI
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(a) Test case with analytic solution
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Figure: Scalability on mesh #6
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Scalability and CPU time – OMP
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(a) Scalability on mesh #4, order 6
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Figure: Numerical study for the TNNP06 model.
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Spiral wave in parallel (OMP)

(a) 1 subdomain (b) 4 subdomains (c) 24 subdomains (d) 128 subdomains

Figure: Spiral wave (AP model), t = 150ms, order 6.
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Conclusion and perspectives

High-order is very interesting in this context, notably for complex propagation patterns,
Scalable as long as the subdomains have enough (depends on the order) cells
Flexible scheme: change order, or dimension easily
good properties remain for larger MPI runs
Currently: implementation of 3D
more details:
[CT17] Yves Coudière and Rodolphe Turpault. “Very high order finite volume methods for cardiac

electrophysiology”. In: Computers & Mathematics with Applications 74.4 (2017), pp. 684–700. DOI:
https://doi.org/10.1016/j.camwa.2017.05.012.

[CT19] Yves Coudière and Rodolphe Turpault. “A domain decomposition strategy for a very high-order finite
volumes scheme applied to cardiac electrophysiology”. In: Journal of Computational Science 37 (2019),
p. 101025. DOI: https://doi.org/10.1016/j.jocs.2019.101025.
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Thanks for your attention!
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A specific subject: cardiac arrhythmias

5 million in Europe (6 – 10 %)
Major cause of stroke

Atrial Fibrillation

→ sudden cardiac death (SCD)
350 000 death/year in Europe
1/10 000 inhab/year

Ventricular Fibrillation

9 million in Europe
350 000 death/year

Heart Failure and dyssynchrony
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IHU Liryc
L’Institut de Rythmologie et modélisation Cardiaque

Combines (same location):
I clinical cardiology
I electrophysiology – cell, tissue
I imaging – 2 MR[, CT], EP lab
I Modeling
I Signal processing

training center & industrial partners

ihu-liryc.fr
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Inria Carmen
Modeling cardiac electrophysiology

We develop numerical models, study specific pathologies related to AF or VF (Brugada,
ERS...)
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We work on the body surface signals and related inverse problems.

Develop some softwares...
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Spiral waves – initial data
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