Numerical solutions for image processing problems Part I

Angela Handlovičová

Slovak University of Technology, Bratislava

CIRM Marseille, October 2022

Angela Handlovičová

Slovak University of Technology, Bratislava

Motivation

Karol Mikula's group of our department were working on European projects

- cooperation with biologists (CNRS-Department of development biology, Institute Pasteur and Institute Curie, Paris), bioengineers (University Bologna), computer scientist (ecole Polytechnique Paris) and supercomupting centers ((IN2P3, Lyon, STUBA, Bratislava)-European projects Embryomics and BioEmergences
- an automated reconstruction of the vertebrate early embryogenesis in space and time
- extraction of the cell trajectories and the cell lineage tree
- reconstruction of the morphogenetics fields
- comparison of untreated and treated cell populations developement

Angela Handlovičová

Steps in computational embryogenesis reconstruction

Video

- data acquisition
- image filtering
- cell nuclei center detection
- cell nuclei segmentation
- whole embryo segmentation
- cell tracking and cell trajectories extraction

 Modified Perona-Malik Equation
 Nonlinear Tensor Anisotropic Diffusion in Coherence Enhancing Image Filtering
 Level set equation

 0000000
 0000000
 00000000
 00000000

Smooth initial noisy image and preserve edges

Angela Handlovičová Numerical solutions for image processing problems Part I |注▶ ▲ 注▶ | 注|| ♪ � ()

Slovak University of Technology, Bratislava

Table of contents

- Modified Perona-Malik Equation
 - Numerical approximation
 - Convergence analysis
 - Error estimates
- 2 Nonlinear Tensor Anisotropic Diffusion in Coherence Enhancing Image Filtering
 - Numerical discretization
 - Convergence analysis
 - Error estimates
 - Practical experiment Drblikova (2008)
- 3 Level set equation and its generalizations
 - Standard explicit finite difference scheme
 - Scheme based on finite volume methodology in 2D
 - Co-volume scheme
 - Eymard et al finite volume scheme
 - Generalizations of mean curvature flow equation

4 References

Angela Handlovičová

Numerical solutions for image processing problems Part I

Slovak University of Technology, Bratislava

 Modified Perona-Malik Equation
 Nonlinear Tensor Anisotropic Diffusion in Coherence Enhancing Image Filtering
 Level set equa

 0000000
 0000000
 00000000
 00000000

Denoising the image via nonlinear difusion equations

Angela Handlovičová

Slovak University of Technology, Bratislava

Modified Perona-Malik Equation

In the sense of Catté, Lions, Morel and Coll (1992) [CLMC]

$$\partial_t u - \nabla (g(|\nabla G_\sigma * u|)\nabla u) = 0 \quad \text{in } Q_T \equiv I \times \Omega,$$
$$\partial_\nu u = 0 \quad \text{on } I \times \partial\Omega,$$
$$u(0, \cdot) = u_0 \quad \text{in } \Omega,$$

Angela Handlovičová

Slovak University of Technology, Bratislava

Data for Perona-Malik Equation

 $\Omega \subset R^2$ - rectangular domain I = [0,T] is a scaling interval Let g(s)-Lipschitz continuous decreasing function $g(0) = 1, 0 < g(s) \rightarrow 0$ for $s \rightarrow \infty$, $G_{\sigma} \in C^{\infty}(R^2)$ -smoothing kernel with compact support K_{σ} $\int_{R^2} G_{\sigma}(x) dx = 1$ $G_{\sigma}(x) \rightarrow \delta_x$ for $\sigma \rightarrow 0$, δ_x - Dirac function at point x $u_0 \in L_{\infty}(\Omega)$

Angela Handlovičová

Weak solution [CLMC]

 $u \in L_2(I, W^{1,2}(\Omega))$ satisfying the identity

$$\int_{0}^{T} \int_{\Omega} u \frac{\partial \varphi}{\partial t}(t, x) \, dx \, dt + \int_{\Omega} u_0(x)\varphi(0, x) \, dx - \int_{0}^{T} \int_{\Omega} g(|\nabla G_\sigma * u|) \nabla u(t, x) \nabla \varphi(t, x) \, dx \, dt = 0 \quad \forall \varphi \in \Psi.$$

 $\Psi = \{ \varphi \in C^{1,2}([0,T] \times \overline{\Omega}), \nabla \varphi. \vec{n} = 0 \text{ on } (0,T) \times \partial \Omega, \varphi(T,.) = 0 \}.$ Existence of unique weak solution - [CLMC]

Angela Handlovičová

Numerical solutions for image processing problems Part I

Slovak University of Technology, Bratislava

3

・ロト ・回ト ・ヨト ・ヨト

Modified Perona-Malik Equation Nonlinear Tensor Anisotropic Diffusion in Coherence Enhancing Image Filtering Level set equation

Numerical approximation

Numerical approximation

Mikula and Ramarosy (2001) [MR] scale discretization - uniform with constant scale step auspace approximation - Finite volume method

Angela Handlovičová

Numerical approximation

Scale approximation

- uniform scale step $\tau = \frac{T}{N_T}$
- u^n an approximation of u(t,x) at scale $t_n = n\tau$
- first time derivative is replaced by the backward difference $\frac{u^n u^{n-1}}{z}$
- modified Perona-Malik equation can be rewritten into the form of semi-implicit scheme: $\frac{u^n - u^{n-1}}{2} = \nabla .(q(|\nabla G_{\sigma} * u^{n-1}|) \nabla u^n)$

Angela Handlovičová

Slovak University of Technology, Bratislava

<ロト <回ト < 回ト <

Numerical approximation

Space approximation-finite volume method

- τ_h uniform mesh of Ω with cells p of measure m(p)
- N(p)- set of all neighbours for cell p
- e_{pq} the common interface of p and q -non-zero measure $m(e_{pq})$
- ${\mathcal E}$ -the set of all these edges for all volumes $p\in \tau_h$
- $x_p \in p$ representative point for every p
- For every pair $p,q \in N(p)$, $\frac{x_q-x_p}{|x_q-x_p|}$ is equal to a unit normal vector n_{pq} to e_{pq} and oriented from p to q
- $d_{pq} := |x_p x_q|$
- x_{pq} be the point of e_{pq} intersecting the segment $\overline{x_p x_q}$
- $T_{pq} := \frac{m(e_{pq})}{d_{pq}}.$
- Approximated solution is piecewise constant function in space and scale.

Angela Handlovičová

Slovak University of Technology, Bratislava

 $\frac{u^n - u^{n-1}}{\tau} = \nabla .(g(|\nabla G_\sigma * u^{n-1}|)\nabla u^n)$ Integrating the equation on finite volume p and by application of the divergence theorem we get the integral formulation

$$\frac{u_p^n - u_p^{n-1}}{\tau} m\left(p\right) = \sum_{q \in N(p)} g_{pq}^{\sigma, n-1} T_{pq} \left(u_q^n - u_p^n\right),$$

$$\begin{split} u_p^0 &= \frac{1}{m(p)} \int_p u_0(x) dx \\ g_{pq}^{\sigma,n-1} &:= g(|\nabla G_\sigma * \tilde{u}(t_{n-1},x_{pq})|) \\ \text{where } \tilde{u} \text{ is a periodic extension of the discrete image computed in the } n-1\text{-th scale step.} \end{split}$$

Angela Handlovičová

Slovak University of Technology, Bratislava

< ロ > < 同 > < 回 > < 回

Convergence analysis

Stability results

[MR]- Mikula and Ramarosy (2001) Stability and convergence properties in $L_2(Q_T)$ $\max_{0 \le l \le N_{\max}} \sum_{p \in \tau_h} (u_p^l)^2 m(p) \le C_1$ $\sum_{l=0}^{N_{\max}} k \sum_{(p,q) \in \mathcal{E}} \frac{(u_p^l - u_q^l)^2}{d_{pq}} m(e_{pq}) \le C_2$ and the constants C_1, C_2 do not depend on the h, τ .

Angela Handlovičová

Slovak University of Technology, Bratislava

< 同→ < 三

Convergence analysis

Convergence [MR]

 $\overline{u}_{h,\tau}$ -finite volume numerical solution This solution is piecewise constant on each finite volume and in each scale step. There exists $u \in L^2(Q_T)$ (weak solution of modified Perona-Malik equation)

$$\overline{u}_{h,k} \to u \text{ in } L^2\left(Q_T\right)$$

as $h, \tau \to 0$.

Convergence results for explicit scheme Krivá (2003) [Kr]

Image: A math a math

Error estimates

Error estimates Krivá, H (2005) [KrH]

Let the relation between scale and space discretization fulfils

$$\tau = Ch,$$

Then for the error estimates for Perona-Malik weak solution and numerical solution obtained via finite volume method it holds

$$\sum_{n=0}^{N_{max}} \int_{I_n} \int_{\Omega} |u(t_{n+1}, x) - \overline{u}_{h,k}(t_{n+1}, x)|^2 \le Ch$$

$$\sum_{n=0}^{m-1} \int_{I_n} \sum_{e_{pq}I} m(e_{pq}) d_{pq} \left(\frac{u_q^{n+1} - u_p^{n+1}}{d_{pq}} - \frac{1}{m(e_{pq})} \int_{e_{pq}} \nabla u \cdot \mathbf{n_{pq}} \right)^2 \le Ch.$$

Angela Handlovičová

Numerical solutions for image processing problems Part I

0

Slovak University of Technology, Bratislava

Modified Perona-Malik Equation Nonlinear Tensor Anisotropic Diffusion in Coherence Enhancing Image Filtering Level set equation

Error estimates

Numerical experiment Krivá (2011) [FVCA 6]

Figure: Image filtering by Perona-Malik model: the original image (left top) noisy image (right top) and the filtering results after 5, 10, 20 time steps < 17 ▶

Angela Handlovičová

Slovak University of Technology, Bratislava

Nonlinear tensor diffusion model Weickert (1998) [W1,W2,W3]

$$\frac{\partial u}{\partial t} - \nabla \cdot (D\nabla u) = 0, \text{ in } Q_T \equiv I \times \Omega,$$
$$u(x,0) = u_0(x), \quad \text{in}\Omega,$$
$$(D\nabla u) \cdot \mathbf{n} = 0, \quad \text{on } I \times \partial\Omega.$$

Motivation

The diffusion tensor D steers the smoothing process such that the diffusion is:

- strong in preferred directions, e.g. along edges (in 2D images) or along 2D edge surfaces (in 3D images),
- low in the perpendicular direction.

One can achieve a better connectivity of coherent structures.

Angela Handlovičová

Structure tensor

Structure tensor

•
$$u_{\tilde{t}}(x,t) = (G_{\tilde{t}} * u(\cdot,t))(x), \quad \tilde{t} > 0,$$

• $J_{\rho}(\nabla u_{\tilde{t}}) = (G_{\rho} * (\nabla u_{\tilde{t}} \nabla u_{\tilde{t}}^T))(x), \ \rho > 0,$
• $J_{\rho} = \begin{pmatrix} a & b \\ b & c \end{pmatrix}.$

The structure tensor possesses the eigenvalues $\mu_1 \ge \mu_2$ and the orthogonal eigenvectors v and w.

The orientation of w is identical with the coherence

$$\kappa_1 = \alpha, \quad \alpha \in (0,1), \ \alpha \ll 1,$$

$$\kappa_2 = \begin{cases} \alpha, & \text{if } \mu_1 = \mu_2, \\ \alpha + (1-\alpha) \exp\left(\frac{-C}{(\mu_1 - \mu_2)^2}\right), \ C > 0, \text{else} \end{cases}$$

Angela Handlovičová

Slovak University of Technology, Bratislava

Diffusion tensor

$$D = ABA^{-1} = \left(\begin{array}{cc} \lambda & \beta \\ \beta & \nu \end{array}\right),$$

where

$$A = \begin{pmatrix} v_1 & -v_2 \\ v_2 & v_1 \end{pmatrix},$$
$$B = \begin{pmatrix} \kappa_1 & 0 \\ 0 & \kappa_2 \end{pmatrix}.$$

Angela Handlovičová

Numerical solutions for image processing problems Part I

Slovak University of Technology, Bratislava

<ロ> <同> <同> < 回> < 回>

Numerical discretization

Numerical discretization Drblíková Mikula (2007)[DM]

Original equation

$$\frac{\partial u}{\partial t} - \nabla \cdot (D\nabla u) = 0,$$

Discretization in time (k is uniform time step) - semi-implicit method finite volume method in space (W is arbitrary finite volume)

$$\frac{u_W^n - u_W^{n-1}}{k} m(W) - \sum_{\sigma \in \mathcal{E}_W \cap \mathcal{E}_{int}} \int_{\sigma} (D^{n-1} \nabla u^n) \cdot \mathbf{n}_{W,\sigma} ds = 0,$$
$$\frac{u_W^n - u_W^{n-1}}{k} - \frac{1}{m(W)} \sum_{\sigma \in \mathcal{E}_W \cap \mathcal{E}_{int}} \phi_{\sigma}^n(u_{h,k}^n) m(\sigma) = 0,$$
$$\phi_{\sigma}^n(u_{h,k}^n) \approx \frac{1}{m(\sigma)} \int_{\sigma} (D^{n-1} \nabla u^n) \cdot \mathbf{n}_{W,\sigma} ds.$$

Angela Handlovičová

Slovak University of Technology, Bratislava

Image: A math a math

Numerical discretization

Five-point scheme

	E_1	
E_2	W	E_3
	E_4	

Perona-Malik equation

$$u_t - \nabla \cdot (g(|\nabla G_{\tilde{t}} * u|) \nabla u) = 0.$$

Nine-point scheme

E_1	E_2	E_3
E_4	W	E_5
E_6	E_7	E_8

Nonlinear tensor diffusion equation

 $u_t - \nabla \cdot (D\nabla u) = 0.$

Angela Handlovičová

Numerical solutions for image processing problems Part I

Slovak University of Technology, Bratislava

3

Numerical discretization

Diamond-cell finite volume scheme

Angela Handlovičová

Slovak University of Technology, Bratislava

Numerical discretization

Semi-implicit finite volume scheme

$$\phi_{\sigma}^{n}(u_{h,k}^{n}) = \bar{\lambda}_{\sigma} \frac{u_{E}^{n} - u_{W}^{n}}{h} + \bar{\beta}_{\sigma} \frac{u_{N}^{n} - u_{S}^{n}}{h}$$

Slovak University of Technology, Bratislava

-

・ロッ ・回 ・ ・ ヨ ・ ・

Angela Handlovičová

Convergence analysis

Convergence analysis Drblíková Mikula (2007)[DM]

Convergence analysis

- Lemma 1 (Uniform boundedness) There exists a positive constant C such that $||u_{h,k}||_{L^2(Q_T)} \leq C$.
- Lemma 2(Time translate estimate) For any $s \in (0, T)$ there exists a positive constant C such that

$$\int_{\Omega \times (0,T-s)} (u_{h,k} (x,t+s) - u_{h,k} (x,t))^2 \, dx dt \le Cs.$$

• Lemma 3 (Space translate estimate) For any vector $\xi \in \mathbb{R}^d$ there exists a positive constant C such that $(1)^2 + (1)^2$ C ((+ + +)

$$\int_{2\times(0,T)} (u_{h,k} (x+\xi,t) - u_{h,k} (x,t))^2 \, dx dt \le C \, |\xi|.$$

\$ Theorem

The sequence $u_{h,k}$ converges strongly in $L^2(Q_T)$ to the unique weak solution u as $h, k \to 0$.

Angela Handlovičová

Error estimates

Drblíková, H., Mikula [DHM] (2009) Error estimate

Theorem

Let the exact solution fulfill the following regularity properties:

$$\begin{aligned} \nabla u &\in L_{\infty}(Q_T), \ u_{tt} \in L_2(Q_T), \ u \in L_2(I, W^{2,2}(\Omega)), \\ \nabla u_t &\in L_2(I, L_{\infty}(\Omega)). \ \text{Let} \ e^n_W = u(x_W, t_n) - u^n_W \ \text{and} \\ e^m_{h,k}(x,t) &= \sum_{W \in \mathcal{T}_h} e^n_W \chi\{x \in W\} \chi\{t_{n-1} < t \leq t_n\}. \ \text{Then, there} \end{aligned}$$

exist a constant C, such that for sufficiently small h

$$\int_{\Omega} |e_{h,k}^{m}|^{2} dx + \sum_{n=1}^{m} \int_{\Omega} |e_{h,k}^{n} - e_{h,k}^{n-1}|^{2} dx + \sum_{n=1}^{m} \int_{t_{n-1}}^{t_{n}} \sum_{\sigma \in \mathcal{E}_{int}} (e_{E}^{n} - e_{W}^{n})^{2} dt \\ \leq C(h^{2} + k)$$

for every
$$m = 1, ..., N_{\text{max}}$$
.

Angela Handlovičová

Numerical solutions for image processing problems Part I

Slovak University of Technology, Bratislava

(日) (同) (三) (

Practical experiment Drblikova (2008)

Top: the original image and the filtered image after 10 time steps. Bottom: the edge detections of these images.

Angela Handlovičová

Slovak University of Technology, Bratislava

 Modified Perona-Malik Equation
 Nonlinear Tensor Anisotropic Diffusion in Coherence Enhancing Image Filtering
 Level set equation

 0000000
 0000000
 00000000
 00000000

Practical experiment Drblikova (2008)

Denoising the image using mean curvature flow problem

Angela Handlovičová

Slovak University of Technology, Bratislava

Level set formulation of the mean curvature flow problem Sethian Osher (1988), (1996) [S], [OS]

$$u_t - |\nabla u| \nabla \cdot \left(\frac{\nabla u}{|\nabla u|} \right) = 0, \text{ in } \Omega \times [0, T]$$

the initial condition

$$u(x,0) = u_0(x)$$
, a.e. $x \in \Omega$,

zero Dirichlet or Neumann boundary conditions

Angela Handlovičová

Numerical solutions for image processing problems Part I

Slovak University of Technology, Bratislava

Image: A math a math

Regularized level set equation

Evans-Spruck regularization (1991)[ES] given small parameter $\varepsilon > 0$

$$\frac{u_t}{\sqrt{\varepsilon^2 + |\nabla u|^2}} - \nabla \cdot \left(\frac{\nabla u}{\sqrt{\varepsilon^2 + |\nabla u|^2}}\right) = 0$$
$$|\nabla u|_{\varepsilon} = \sqrt{\varepsilon^2 + |\nabla u|^2}$$

Existence of "viscose solution" of the problem.

Angela Handlovičová

Numerical solutions for image processing problems Part I

Slovak University of Technology, Bratislava

< **1** → < **3**

Standard explicit finite difference scheme

Explicit finite difference scheme on rectangular grids

S. Osher and J. A. Sethian, (1988), J. A. Sethian, (1999) Equation in 2D- case:

$$u_t - \frac{u_{xx}(u_y^2 + \varepsilon^2) + u_{yy}(u_x^2 + \varepsilon^2) - 2u_x u_y u_{xy}}{u_x^2 + u_y^2 + \varepsilon^2} = 0$$

Discretization- squares with the side of the length hUnknowns at the *n*-th time step - $u_{i,j}^n$.

$$\begin{split} u_{xi,j}^{\ n} &= \frac{u_{i+1,j}^n - u_{i-1,j}^n}{2h}, \ u_{yi,j}^{\ n} &= \frac{u_{i,j+1}^n - u_{i,j-1}^n}{2h}, \\ u_{xxi,j}^{\ n} &= \frac{u_{i+1,j}^n - 2u_{i,j}^n + u_{i-1,j}^n}{h^2}, \ u_{yyi,j}^{\ n} &= \frac{u_{i+1,j}^n - 2u_{i,j}^n + u_{i-1,j}^n}{h^2}, \\ u_{xyi,j}^{\ n} &= \frac{u_{i+1,j+1}^n + u_{i-1,j-1}^n - u_{i-1,j+1}^n - u_{i+1,j-1}^n}{4h^2}, \end{split}$$

Angela Handlovičová

Slovak University of Technology, Bratislava

Scheme based on finite volume methodology in 2D

Discretization in time semi-implicit scheme

Uniform discrete time step $\tau = \frac{T}{N}$ the time derivative - the backward difference The nonlinear terms of the equation - previous time step

$$\frac{1}{|\nabla u^{n-1}|_{\varepsilon}} \frac{u^n - u^{n-1}}{\tau} = \nabla \cdot \left(\frac{\nabla u^n}{|\nabla u^{n-1}|_{\varepsilon}}\right)$$

Slovak University of Technology, Bratislava

Image: A math a math

Angela Handlovičová

 Modified Perona-Malik Equation
 Nonlinear Tensor Anisotropic Diffusion in Coherence Enhancing Image Filtering
 Level set equation

 0000000
 0000000
 00000000
 00000000
 00000000

Scheme based on finite volume methodology in 2D

Space discretization

We can denote p as the finite volume with measure of m(p), e^{pq} as the edge (face) between two finite volumes p and q and N(p) as the set of all finite volume neighbors

• by application of the divergence theorem we get the integral formulation

$$\int_{p} \frac{1}{|\nabla u^{n-1}|_{\varepsilon}} \frac{u^{n} - u^{n-1}}{\tau} dx = \sum_{q \in N(p)} \int_{e^{pq}} \frac{1}{|\nabla u^{n-1}|_{\varepsilon}} \frac{\partial u^{n}}{\partial \nu} ds$$

Slovak University of Technology, Bratislava

(日) (同) (三) (

Angela Handlovičová

Scheme based on finite volume methodology in 2D

Space discretization in 2D H, Mikula, Sgallari (2003)

 Ω -union of finite volumes $p, \ x_p$ -representative point in each p N(p) the set of all nodes q connected to the node p by an edge σ_{pq} cardinality $N(p)=N_p, \ |x_p-x_q|=d_{pq}$

Angela Handlovičová

Co-volume scheme

Co volume scheme in 2D

Evaluate regularized gradients on each triangle : $|\nabla u_T^{n-1}|_{\varepsilon}$ $N(\sigma_{pq})$ the set of all triangles connected with the edge σ_{pq} $c_{pq}^T = m(T \cap \sigma_{pq})$

Angela Handlovičová

Numerical solutions for image processing problems Part I

Slovak University of Technology, Bratislava

Co-volume scheme

Fully discrete semi implicit co-volume scheme

$$b_p^{n-1} m(p) u_p^n + \tau \sum_{q \in N(p)} a_{pq}^{n-1} \frac{(u_p^n - u_q^n)m(\sigma_{pq})}{d_{pq}} = b_p^{n-1} m(p) u_p^{n-1}$$

$$a_{pq}^{n-1} = \sum_{T \in N(\sigma_{pq})} \frac{c_{pq}^T}{|\nabla u_T^{n-1}|_{\varepsilon}}$$
$$b_p^{n-1} := \frac{1}{|\nabla u_p^{n-1}|_{\varepsilon}},$$
$$|\nabla u_p^{n-1}|_{\varepsilon} = \sum_{T; \ p \cap T \neq \emptyset} \frac{m(p \cap T)}{m(p)} |\nabla u_T^{n-1}|_{\varepsilon}$$

Angela Handlovičová

Slovak University of Technology, Bratislava

Co-volume scheme

Results H. Mikula, Sgallari (2003) [HMS]

Theorem There exists limit u_h^n of a subsequence $u_{h,\varepsilon}^n$, the solutions of proposed numerical scheme, for $\varepsilon \to 0$. Moreover for this solution the following estimates hold:

$$||u_h^n||_{L_{\infty}(\Omega)} \le ||u_h^0||_{L_{\infty}(\Omega)}$$
$$||\nabla u_h^n||_{L_1(\Omega)} \le ||\nabla u_h^0||_{L_1(\Omega)}, \quad 1 \le n \le N$$

Angela Handlovičová

Slovak University of Technology, Bratislava

Co-volume scheme

Modified co volume scheme in 2D

Co volume grids Evaluate gradients on each triangle $m(p) = h^2, \ m(\sigma_{pq}) = h, \ d_{pq} = h$

Angela Handlovičová

Numerical solutions for image processing problems Part I

Slovak University of Technology, Bratislava

Co-volume scheme

Fully discrete semi implicit modified co-volume scheme

$$\begin{aligned} a_{pq}^{n-1} &= \frac{1}{|\nabla u_{pq}^{n-1}|_{\varepsilon}} := \frac{1}{2} \left(\frac{1}{|\nabla u_{T_{pq}^{1}}^{n-1}|_{\varepsilon}} + \frac{1}{|\nabla u_{T_{pq}^{2}}^{n-1}|_{\varepsilon}} \right), \\ b_{p}^{n-1} &:= \frac{1}{|\nabla u_{p}^{n-1}|_{\varepsilon}} = \frac{1}{N_{p}} \sum_{q \in N(p)} \frac{1}{|\nabla u_{pq}^{n-1}|_{\varepsilon}}, \end{aligned}$$

where $T_{pq}^1, T_{pq}^2 \in N(\sigma_{pq})$.

Slovak University of Technology, Bratislava

< 同 > < 三 >

Angela Handlovičová

Co-volume scheme

Fully discrete semi implicit modified co-volume scheme

For example for triangle with points x_p, x_{q_1}, x_{r_1} we have

$$|\nabla u_{T_{pq_1}^{1-1}}^{n-1}|_{\varepsilon} = \sqrt{\frac{(u_{q_1} - u_p)^2}{h^2} + \frac{(2(u_{r_1} - u_{m_1}))^2}{h^2} + \varepsilon^2}.$$

$$b_p^{n-1} m(p) \ u_p^n + \tau \sum_{q \in N(p)} a_{pq}^{n-1} \frac{(u_p^n - u_q^n)m(\sigma_{pq})}{d_{pq}} = b_p^{n-1} \ m(p) \ u_p^{n-1}.$$

Angela Handlovičová

Slovak University of Technology, Bratislava

Co-volume scheme

Co volume scheme in 3D S.Corsaro, K.Mikula, A.Sarti, F.Sgallari [CMSS] 2006

3D implementation - every cubic voxel is splitted into 6 pyramids. The neighbouring pyramids of neighbouring voxels are joined together to form octahedron (**diamond cell** for the face) which can be itself used to evaluate gradients of solution on the face or it can be further split into 4 tetrahedras, elements of 3D triangulation on which we can evaluate nonlinearities depending on gradients.

Angela Handlovičová

Slovak University of Technology, Bratislava

Co-volume scheme

Results H., Mikula (2008) [HM]

Theorem: There exists unique solution u_h^n of the numerical scheme for any value of the regularization parameter ε and for any time step $n = 1, \ldots, N$. Moreover approximation scheme has **stability** and **consistency** property.

A (1) > A (1) > A

Eymard et al finite volume scheme

Eymard, H., Mikula: Regularized mean curvature flow

$$u_t - g\left(|\nabla u|\right) \operatorname{div} \left(\frac{\nabla u}{f\left(|\nabla u|\right)}\right) = r,$$

with the initial condition

$$u(x,0) = u_0(x), \text{ a.e. } x \in \Omega,$$

and the boundary condition

$$u(x,t) = 0$$
, a.e. $(x,t) \in \partial \Omega \times \mathbb{R}_+$,

For regularized level set equation $f(x) = g(x) = \min(\sqrt{x^2 + a^2}, b)$

Angela Handlovičová

Numerical solutions for image processing problems Part I

Slovak University of Technology, Bratislava

▲□ ► ▲ □ ► ▲

Eymard et al finite volume scheme

Hypotheses (H)

- Ω is a finite connected open subset of ℝ^d, d ∈ ℕ[⋆], with boundary ∂Ω defined by a finite union of subsets of hyperplanes of ℝ^d,
- **2** $u_0 \in H^1_0(\Omega)$,
- $\ \ \, \bullet \ \ \, r\in L^2(\Omega\times]0,T[) \ \, {\rm for \ all} \ T>0,$
- $g \in C^0(\mathbb{R}_+; [a, b])$, with 0 < a < b,
- f ∈ C⁰(ℝ₊; [a, b]) is a Lipschitz continuous (non-strictly) increasing function, and x → x/f(x) is strictly increasing on ℝ₊.

 Modified Perona-Malik Equation
 Nonlinear Tensor Anisotropic Diffusion in Coherence Enhancing Image Filtering
 Level set equation

 0000000
 00000000
 000000000
 000000000
 0000000000

Eymard et al finite volume scheme

Weak solution

Under hypotheses (H), we say that u is a weak solution if, for all $T>0,\,$

$$\begin{array}{l} \bullet \quad u \in L^2(0,T;H^1_0(\Omega)) \text{ and } u_t \in L^2(\Omega\times]0,T[) \text{ (hence } u \in C^0(0,T;L^2(\Omega))\text{)}. \end{array}$$

$$u(\cdot,0) = u_0$$

and

$$\begin{split} &\int_0^T \int_\Omega \left(\frac{u_t(x,t)v(x,t)}{g(|\nabla u(x,t)|)} + \frac{\nabla u(x,t) \cdot \nabla v(x,t)}{f(|\nabla u(x,t)|)} \right) \mathrm{d}x \mathrm{d}t = \\ &\int_0^T \int_\Omega \frac{r(x,t)v(x,t)}{g(|\nabla u(x,t)|)} \mathrm{d}x \mathrm{d}t, \\ &\forall v \in L^2(0,T; H_0^1(\Omega)). \end{split}$$

イロト イヨト イヨト イ

Eymard et al finite volume scheme

Eymard et all finite volume method in 2D

$$\begin{split} \mathcal{M} &= \{ \text{all finite volumes } p, \text{ with representative point } x_p \}, \\ \mathcal{E} &= \{ \text{ all edges } \sigma \text{ with representative point } x_\sigma \}, \\ \mathcal{E}_p \text{ is the subset of all } \sigma \in \mathcal{E} \text{ such that } \sigma \subset \partial p, \text{ for all } p \in \mathcal{M}, \\ \mathcal{N}_p \text{ is the subset of all } q \in \mathcal{M} \text{ neighboring to } p, \text{ for all } \sigma \in \mathcal{E}, \\ \mathcal{M}_\sigma \text{ is the subset of } p \in \mathcal{M} \text{ such that } \sigma \in \mathcal{E}_p. \quad \text{ for all } \sigma \in \mathbb{R} \text{ such that } \sigma \in \mathcal{E}_p. \end{split}$$

Angela Handlovičová

Eymard et al finite volume scheme

Discrete H norm Eymard, Gallouet, Herbin

 $H_{\mathcal{D}} \subset \mathbb{R}^{\mathcal{M}} \times \mathbb{R}^{\mathcal{E}} \text{ such that } u_{\sigma} = 0 \text{ for all } \sigma \in \mathcal{E}_{ext}.$

$$N_p(u)^2 = \frac{1}{|p|} \sum_{\sigma \in \mathcal{E}_p} \frac{|\sigma|}{d_{p\sigma}} (u_\sigma - u_p)^2, \ \forall p \in \mathcal{M}, \ \forall u \in H_{\mathcal{D}}.$$
 (1)

$$||u||_{1,\mathcal{D}}^{2} = \sum_{p \in \mathcal{M}} |p|N_{p}(u)^{2}$$
(2)

defines a norm on $H_{\mathcal{D}}$. Relation on interior edges

$$\frac{u_{\sigma}^{n+1} - u_p^{n+1}}{f(N_p(u^n)) \ d_{p\sigma}} + \frac{u_{\sigma}^{n+1} - u_q^{n+1}}{f(N_q(u^n)) \ d_{q\sigma}} = 0,$$
(3)

$$\forall \sigma \in \mathcal{E}_{\text{int}} \text{ with } \mathcal{M}_{\sigma} = \{p, q\}, \ \forall n \in \mathbb{N},$$
(4)

Angela Handlovičová

Slovak University of Technology, Bratislava

Eymard et al finite volume scheme

Semi-implicit scheme

Integrating regularized level set equation in every finite volume \boldsymbol{p} and using divergence theorem

$$\frac{p|(u_p^{n+1} - u_p^n)}{\tau \ g(N_p(u^n))} - \frac{1}{f(N_p(u^n))} \sum_{\sigma \in \mathcal{E}_p} \frac{|\sigma|}{d_{p\sigma}} (u_{\sigma}^{n+1} - u_p^{n+1}) = \frac{r_p^{n+1}}{\tau \ g(N_p(u^n))}, \quad \forall p \in \mathcal{M}, \ \forall n \in \mathbb{N},$$
$$u_p^0 = \frac{1}{|p|} \int_p u_0(x) \mathrm{d}x, \ \forall p \in \mathcal{M}, \quad \forall n \in \mathbb{N},$$
$$r_p^{n+1} = \int_{n\tau}^{(n+1)\tau} \int_p r(x, t) \mathrm{d}x \mathrm{d}t, \ \forall p \in \mathcal{M}, \ \forall n \in \mathbb{N}, \quad (6)$$

Angela Handlovičová

Slovak University of Technology, Bratislava

Eymard et al finite volume scheme

Discrete solutions and terms for fully implicit scheme

$$\begin{split} u_{\mathcal{D},\tau}(x,t) &= u_p^{n+1}, \\ z_{\mathcal{D},\tau}(x,t) &= \frac{u_p^{n+1} - u_p^n}{\tau}, \\ N_{\mathcal{D},\tau}(x,t) &= N_p(u^{n+1}), \\ G_{\mathcal{D},\tau}(x,t) &= d\frac{u_{\sigma}^{n+1} - u_p^{n+1}}{d_{p\sigma}}\mathbf{n}_{p\sigma}, \\ H_{\mathcal{D},\tau}(x,t) &= d\frac{u_{\sigma}^{n+1} - u_p^{n+1}}{d_{p\sigma}f(N_p(u^{n+1}))}\mathbf{n}_{p\sigma}, \\ D_{\mathcal{T}}(x,t) &= -\frac{u_p^{n+1} - u_p^n}{\tau \ g(N_p(u^{n+1}))} + \frac{r_p^{n+1}}{|p| \ \tau \ g(N_p(u^{n)1}))}, \end{split}$$

Angela Handlovičová

Slovak University of Technology, Bratislava

<ロ> <同> <同> < 回> < 回>

Numerical solutions for image processing problems Part I

w

Eymard et al finite volume scheme

Convergence result

Let Hypotheses (H) be fulfilled. Let $(\mathcal{D}_m, \tau_m)_{m \in \mathbb{N}}$ be a sequence of space-time discretizations of $\Omega \times]0, T[$, such that $h_{\mathcal{D}_m}$ and $\tau_m > 0$ tends to 0 as $m \longrightarrow \infty$. Let, for all $m \in \mathbb{N}$, $u_{\mathcal{D}_m, \tau_m}$ be such that semi implicit or fully implicit scheme hold. Then there exists a subsequence of $(\mathcal{D}_m, \tau_m)_{m \in \mathbb{N}}$, again denoted $(\mathcal{D}_m, \tau_m)_{m \in \mathbb{N}}$, and there exists a function $\bar{u} \in L^{\infty}(0, T; H^1_0(\Omega))$, weak solution, such that $u_{\mathcal{D}_m, \tau_m}$ tends to \bar{u} in $L^{\infty}(0, T; L^2(\Omega))$, $N_{\mathcal{D}_m, \tau_m}$ tends to $|\nabla \bar{u}|$ in $L^2(\Omega \times]0, T[)$.

Eymard et al finite volume scheme

Sketch of the proof

- L^∞ stability of $u_{\mathcal{D}_m,\tau_m},$ existence and uniqueness of the discrete solution
- $L^2(\Omega \times (0,T))$ estimate on discrete u_t and estimate $L^{\infty}(0,T;H_{\mathcal{D}})$ of $u_{\mathcal{D}_m,\tau_m}$
- convergence results:

 $u_{\mathcal{D}_m,\tau_m} \longrightarrow \bar{u} \text{ in } L^2(\Omega \times (0,T)). \ \bar{u} \in L^2(0,T; H^1_0(\Omega))$

• $G_{\mathcal{D}_m,\tau_m} \in L^{\infty}(0,T; L^2(\Omega)) \ G_{\mathcal{D}_m,\tau_m} \rightharpoonup \nabla \bar{u}$ weakly in $L^2(\Omega \times (0,T))^d$.

Eymard et al finite volume scheme

Sketch of the proof -continuation

•
$$H_{\mathcal{D}_m,\tau_m}
ightarrow \overline{H}$$
 and $\widetilde{H}_{\mathcal{D}_m,\tau_m}
ightarrow \overline{H}$ weakly in $L^2(\Omega \times (0,T))^d$
• $w_{\mathcal{D}_m,\tau_m}
ightarrow \overline{w}$
• $z_{\mathcal{D}_m,\tau_m}
ightarrow \overline{u}_t$ weakly in $L^2(\Omega \times (0,T))$.
• $\lim_{m \to \infty} \int_0^T \int_\Omega \frac{N_{\mathcal{D}_m,\tau_m}(x,t)^2}{f(N_{\mathcal{D}_m,\tau_m}(x,t))} dx dt = \int_0^T \int_\Omega \overline{H}(x,t) \cdot \nabla \overline{u}(x,t) dx dt.$
• $N_{\mathcal{D}_m,\tau_m}
ightarrow |\nabla \overline{u}|$ in $L^2(\Omega \times (0,T))$
• passing to the limit in equation

Angela Handlovičová

Slovak University of Technology, Bratislava

<ロ> <同> <同> < 回> < 回>

Eymard et al finite volume scheme

Example 1 noisy filtering 20 % salt-and-pepper noise

Dimensions of the image are $N_1 = N_2 = 200$.

linitial image (top left) filtering by FV after 1, 2, 3 time steps (top), and by the explicit FD after 1, 4, 30 time steps (bottom).

Angela Handlovičová

Numerical solutions for image processing problems Part I

Slovak University of Technology, Bratislava

< (1) × (1)

Eymard et al finite volume scheme

Example 2- moving circle

The exact viscosity solution - the characteristic function of $R_t = \{(x, y) \in \mathbb{R}^2, x^2 + y^2 + 2t \leq 1\}$ (the inside of the circle with centre (0, 0) and radius $r(t) = \sqrt{1 - 2t}$), [0, T] = [0, 0.25].

Initial condition (top left), fully implicit FV with n = 50, n = 250 (top), explicit FD with n = 50, n = 250 (bottom) at time 0.25 (n-number of representation points along one side)

Angela Handlovičová

Slovak University of Technology, Bratislava

Generalizations of mean curvature flow equation

Geodesic mean curvature flow equation

Geodesic mean curvature flow equation (Caselles, Kimmel, Sapiro and Chen, Vemuri, Wang)

$$u_t = |\nabla u| \nabla \cdot \left(g(|\nabla G_\sigma * u|) \frac{\nabla u}{|\nabla u|} \right)$$
$$u(0, x) = I^0(x),$$

Neumann boundary conditions

Numerical scheme combines approximation using in Perona-Malik equation (term with function G) and numerical approximation for level set equation.

Results: semi- implicit schemes:

Kačur, Mikula 1995

Weickert 1995

using co-volume scheme H. Mikula Sgallari 2003, 2006

Angela Handlovičová

Slovak University of Technology, Bratislava

Generalizations of mean curvature flow equation

Image segmentation

Subjective surface method -Sarti, Malladi, Sethian (2000) ε -regularization of the geodesic mean curvature flow equation

$$u_t = \sqrt{\varepsilon^2 + |\nabla u|^2} \nabla \cdot \left(g \frac{\nabla u}{\sqrt{\varepsilon^2 + |\nabla u|^2}} \right),$$

$$g = g(|\nabla G_{\sigma} * I^0|)$$

Numerical analysis for semi imlpicit scheme and space aproximation by finite volume method- H., Tibenský (2018) [HT]

Angela Handlovičová

Slovak University of Technology, Bratislava

Generalizations of mean curvature flow equation

Image segmentation II

Generalized version with different weigths to advective and diffusive parts

- K.Mikula., N.Peyriéras, M.Remešiková, A.Sarti (2008, FVCA5) and C.Zanella et al.(2010, IEEE TIP)

$$u_t = \mu_1 \ g |\nabla u| \nabla . \left(\frac{\nabla u}{|\nabla u|}\right) + \mu_2 \ \nabla g . \nabla u$$

efficient 3D implementations using semi-implicit scheme in curvature part and up-wind schemes in advective part - M.Remešiková, R.Čunderlik, K.Mikula

Image: A math a math

Generalizations of mean curvature flow equation

Video

K. Mikula, R.Čunderlik, O.Drbliková, M.Remešiková, M.Smišek, R.Špir (Bratislava)

P.Bourgine (Paris), N.Peyrieras (Gif-sur-Yvette), A.Sarti (Bologna)

Thank you for your attention!

Slovak University of Technology, Bratislava

Numerical solutions for image processing problems Part I

Angela Handlovičová

- ABK Andreianov, B., Bendahmare, M., Karlsen, K. H.: A Gradient Reconstruction Formula for Finite Volume Schemes and Discrete Duality. Finite Volumes for Complex Applications V., 161–168 (2008)
- ABH Andreianov, B., Boyer, F., Hubert, F.: Discrete duality finite volume schemes for Leray-Lions type problems on general 2D meshes. Numerical Methods for PDE. 23, 145–195 (2007)
- CLMC Catté F., Lions P.L., Morel J.M and Coll T.: Image selective smoothing and edge detection by nonlinear diffusion SIAM J. Numer. Anal. 29 (1992), pp. 182–193.
 - CF Carlini E., Ferretti R.: A Semi-Lagrangian approximation for the AMSS model of image processing, Applied Numerical Mathematic, 73, 16–32 (2013)

- CH Coudiére, Y., Hubert, F.: A 3D discrete duality finite volume method for nonlinear elliptic equations. Algoritmy 2009, 51–60 (2009)
- DM Drblíková O., Mikula K., Convergence analysis of finite volume scheme for nonlinear tensor anisotropic diffusion in image processing, SIAM Journal on Numerical Analysis, Vol. 46, No.1 (2007) pp. 37-60

DKM O.Drblíkov

' a, A.Handlovičová, K.Mikula, Error estimates of the finite volume scheme for the nonlinear tensor-driven anisotropic diffusion, Applied Numerical Mathematics, Vol. 59, No. 10 (2009) pp. 2548-2570

- ES Evans, L. C., Spruck, J.: Motion of level sets by mean curvature I. J. Differential Geometry. 33, 635–681 (1991)
- EGH Eymard, R., Gallouët, T., Herbin, R.: Finite volume methods. Handbook of Numerical Analysis, Ph. Ciarlet J.L. Lions eds., Vol.3, 713–1018 (2000)
- EHM Eymard, R., Handlovičová, A., Mikula, K.: Study of a finite volume scheme for the regularised mean curvature flow level set equation. IMA Journal on Numerical Analysis. Vol. 31, 813–846 (2011)
 - HK Handlovičová A., Kotorová D.: Numerical analysis of a semi-implicit DDFV scheme for the regularized curvature driven level set equation in 2D. In: Kybernetika, International journal published by Institute of Information Theory and Automation, Vol. 49, No. 6, 2013, 829 854.

Angela Handlovičová

- HMS Handlovičová, A., Mikula, K., Sgallari, F.: Semi-implicit complementary volume scheme for solving level set like equations in image processing and curve evolution. Numerische Mathematik. 93, 675–695 (2003)
 - H Handlovičová, A.: Finite volume scheme for AMSS model. Tatra Mountains Mathematical Publications, s. 49–62. (2020)
 - HM Handloviov A., Mikula K. : Stability and consistency of the semi-implicit co-volume scheme for regularized mean curvature flow equation in level set formulation. Applications of Mathematics, 53. s. 105–129. (2008)
- HM1 Handlovičová, A., Mikula, K.: Finite volume schemes for the affine morphological scale space (AMSS) model. Tatra Mountains Mathematical Publications, s. 53–70. (2021)
 K1 Kotorová, D.: Discrete duality finite volume scheme for the another scheme for the s

Angela Handlovičová

K2 Kotorová, D.: Discrete duality finite volume scheme for the curvature driven level set equation in 3D. In: Advanced in architectural, civil and environmental engineering: 22nd Annual PhD student conference, Bratislava 15.11.2012, Bratislava: Nakladateľstvo STU, 2012, 33 - 39.

Kr Krivá Z. Phd Thesis (2003)

- KrH Krivá Z. Handlovičoá A.: Error estimates for finite volume scheme for Perona-Malik Acta Math. Univ. Comenianae, 2005
- MR Mikula K., Ramarosy N.: Semi-implicit finite volume scheme for solving nonlinear diffusion equations in image processing, Numerische Mathematik 89, No.3 (2001) 561-590
- OS Osher, S., Sethian, J. A.: Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. J. of Comput. Phys. 79. 12-49 (1988)

- S Sethian, J. A.: Level set methods. Cambridge University press. (1996)
- TH Tibenský M. Handlovičová A. Convergence of the numerical scheme for regularised Riemannian mean curvature flow equation Tatra Mountains Mathematical Publications, 72. s. 123–140. (2018)
- W1 Weickert, J.: Anisotropic Diffusion in Computer Vision, Teubner-Stuttgart, (1998)

 W1 Weickert, J.: Anisotropic Diffusion in Computer Vision, Teubner-Stuttgart, (1998). [23] Weickert, J.: Coherence-enhancing diffusion of colour images. Image and Vision Computing 17, 201212, (1999).

W3 Weickert, J.: Coherence-enhancing diffusion filtering, Int. J. Comput. Vision, Vol. 31, 111127, (2002)

Angela Handlovičová