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Motivation

Karol Mikula’s group of our department were working on European
projects

cooperation with biologists (CNRS-Department of
development biology, Institute Pasteur and Institute Curie,
Paris), bioengineers (University Bologna), computer scientist
(ecole Polytechnique Paris) and supercomupting centers
((IN2P3, Lyon, STUBA, Bratislava)-European projects
Embryomics and BioEmergences
an automated reconstruction of the vertebrate early
embryogenesis in space and time
extraction of the cell trajectories and the cell lineage tree
reconstruction of the morphogenetics fields
comparison of untreated and treated cell populations
developement
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Steps in computational embryogenesis reconstruction

Video

data acquisition

image filtering

cell nuclei center detection

cell nuclei segmentation

whole embryo segmentation

cell tracking and cell trajectories extraction
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Smooth initial noisy image and preserve edges
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Denoising the image via nonlinear difusion

equations
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Modified Perona-Malik Equation

In the sense of Catté, Lions, Morel and Coll (1992) [CLMC]

∂tu−∇.(g(|∇Gσ ∗ u|)∇u) = 0 in QT ≡ I × Ω,

∂νu = 0 on I × ∂Ω,

u(0, ·) = u0 in Ω,
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Data for Perona-Malik Equation

Ω ⊂ R2 - rectangular domain I = [0, T ] is a scaling interval
Let g(s) -Lipschitz continuous decreasing function
g(0) = 1, 0 < g(s)→ 0 for s→∞,
Gσ ∈ C∞(R2) -smoothing kernel with compact support Kσ∫
R2 Gσ(x)dx = 1 Gσ(x)→ δx for σ → 0, δx- Dirac function at

point x
u0 ∈ L∞(Ω)
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Weak solution [CLMC]

u ∈ L2(I,W 1,2(Ω)) satisfying the identity

T∫
0

∫
Ω

u
∂ϕ

∂t
(t, x) dx dt+

∫
Ω

u0(x)ϕ(0, x) dx−

T∫
0

∫
Ω

g(|∇Gσ ∗ u|)∇u(t, x)∇ϕ(t, x) dx dt = 0 ∀ϕ ∈ Ψ.

Ψ = {ϕ ∈ C1,2([0, T ]×Ω),∇ϕ.~n = 0 on (0, T ) × ∂Ω , ϕ(T, .) = 0}.

Existence of unique weak solution - [CLMC]
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Numerical approximation

Numerical approximation

Mikula and Ramarosy (2001) [MR]
scale discretization - uniform with constant scale step τ
space approximation - Finite volume method
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Numerical approximation

Scale approximation

uniform scale step τ = T
NT

un an approximation of u(t, x) at scale tn = nτ

first time derivative is replaced by the backward difference
un−un−1

τ

modified Perona-Malik equation can be rewritten into the
form of semi-implicit scheme:
un−un−1

τ = ∇.(g(|∇Gσ ∗ un−1|)∇un)
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Numerical approximation

Space approximation-finite volume method

τh - uniform mesh of Ω with cells p of measure m(p)

N(p)- set of all neighbours for cell p

epq - the common interface of p and q -non-zero measure
m(epq)

E -the set of all these edges for all volumes p ∈ τh
xp ∈ p - representative point for every p

For every pair p, q ∈ N(p),
xq−xp
|xq−xp| is equal to a unit normal

vector npq to epq and oriented from p to q

dpq := |xp − xq|
xpq be the point of epq intersecting the segment xpxq

Tpq :=
m(epq)
dpq

.

Approximated solution is piecewise constant function in space
and scale.
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Numerical approximation

un−un−1

τ = ∇.(g(|∇Gσ ∗ un−1|)∇un) Integrating the equation on
finite volume p and by application of the divergence theorem we
get the integral formulation

unp − un−1
p

τ
m (p) =

∑
q∈N(p)

gσ,n−1
pq Tpq

(
unq − unp

)
,

u0
p = 1

m(p)

∫
p u0(x)dx

gσ,n−1
pq := g(|∇Gσ ∗ ũ(tn−1, xpq)|)

where ũ is a periodic extension of the discrete image computed in
the n− 1-th scale step.
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Convergence analysis

Stability results

[MR]- Mikula and Ramarosy (2001)
Stability and convergence properties in L2(QT )

max
0≤l≤Nmax

∑
p∈τh

(
ulp
)2
m(p) ≤ C1

Nmax∑
l=0

k
∑

(p,q)∈E

(
ulp − ulq

)2
dpq

m (epq) ≤ C2

and the constants C1, C2 do not depend on the h, τ .
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Convergence analysis

Convergence [MR]

uh,τ -finite volume numerical solution This solution is piecewise
constant on each finite volume and in each scale step.
There exists u ∈ L2 (QT ) (weak solution of modified Perona-Malik
equation)

uh,k → u in L2 (QT )

as h, τ → 0.

Convergence results for explicit scheme Krivá (2003) [Kr]
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Error estimates

Error estimates Krivá, H (2005) [KrH]

Let the relation between scale and space discretization fulfils

τ = Ch,

Then for the error estimates for Perona-Malik weak solution and
numerical solution obtained via finite volume method it holds

Nmax∑
n=0

∫
In

∫
Ω

|u(tn+1, x)− uh,k(tn+1, x)|2 ≤ Ch

m−1∑
n=0

∫
In

∑
epqI

m(epq)dpq

un+1
q − un+1

p

dpq
− 1

m(epq)

∫
epq

∇u · npq


2

≤ Ch.
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Error estimates

Numerical experiment Krivá (2011) [FVCA 6]

Figure: Image filtering by Perona-Malik model: the original image (left
top) noisy image (right top) and the filtering results after 5, 10, 20 time
steps
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Nonlinear tensor diffusion model Weickert (1998)
[W1,W2,W3]

∂u

∂t
−∇ · (D∇u) = 0, in QT ≡ I × Ω,

u(x, 0) = u0(x), inΩ,

(D∇u) · n = 0, on I × ∂Ω.

Motivation
The diffusion tensor D steers the smoothing process such that the
diffusion is:

strong in preferred directions, e.g. along edges (in 2D images)
or along 2D edge surfaces (in 3D images),

low in the perpendicular direction.

One can achieve a better connectivity of coherent structures.
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Structure tensor

Structure tensor

ut̃(x, t) = (Gt̃ ∗ u(·, t))(x), t̃ > 0,

Jρ(∇ut̃) = (Gρ ∗
(
∇ut̃∇ut̃T

)
)(x), ρ > 0,

Jρ =

(
a b
b c

)
.

The structure tensor possesses the eigenvalues µ1 ≥ µ2 and the
orthogonal eigenvectors v and w.
The orientation of w is identical with the coherence

κ1 = α, α ∈ (0, 1), α� 1,

κ2 =

{
α, if µ1 = µ2,

α+ (1− α) exp
(

−C
(µ1−µ2)2

)
, C>0, else
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Diffusion tensor

D = ABA−1 =

(
λ β
β ν

)
,

where

A =

(
v1 −v2

v2 v1

)
,

B =

(
κ1 0
0 κ2

)
.
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Numerical discretization

Numerical discretization Drbĺıková Mikula (2007)[DM]

Original equation
∂u

∂t
−∇ · (D∇u) = 0,

Discretization in time (k is uniform time step) - semi-implicit
method finite volume method in space (W is arbitrary finite
volume )

unW − u
n−1
W

k
m(W )−

∑
σ∈EW∩Eint

∫
σ
(Dn−1∇un) · nW,σds = 0,

unW − u
n−1
W

k
− 1

m(W )

∑
σ∈EW∩Eint

φnσ(unh,k)m(σ) = 0,

φnσ(unh,k) ≈
1

m(σ)

∫
σ(Dn−1∇un) · nW,σds.
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Numerical discretization

Five-point scheme

W E3E2

E4

E1

Nine-point scheme

W E5E4

E7

E2E1 E3

E6 E8

Perona-Malik equation

ut −∇ · (g(|∇Gt̃ ∗ u|)∇u) = 0.

Nonlinear tensor diffusion equation

ut −∇ · (D∇u) = 0.
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Numerical discretization

Diamond-cell finite volume scheme

p p p p p p p p p p p
p p p p p p

p p p p p p p p p p p p p p p p p
ppppppppppp

pppppp
ppppppppppppppppp

r

r

r

r

r

r

r

r

r

-
nW,σ

σ

xW xE

xN

xS
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Numerical discretization

Semi-implicit finite volume scheme

unW − u
n−1
W

k

1

m(W )

∑
σ∈EW∩Eint

φnσ(unh,k)m(σ) = 0,

φnσ(unh,k) = λ̄σ
unE − unW

h
+ β̄σ

unN − unS
h

.
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Convergence analysis

Convergence analysis Drbĺıková Mikula (2007)[DM]

Convergence analysis

Lemma 1 (Uniform boundedness) There exists a positive
constant C such that ‖uh,k‖L2(QT ) ≤ C.
Lemma 2(Time translate estimate) For any s ∈ (0, T ) there
exists a positive constant C such that∫
Ω×(0,T−s)

(uh,k (x, t+ s)− uh,k (x, t))2 dxdt ≤ Cs.

Lemma 3 (Space translate estimate) For any vector ξ ∈ Rd
there exists a positive constant C such that∫
Ω×(0,T )

(uh,k (x+ ξ, t)− uh,k (x, t))2 dxdt ≤ C |ξ |.

Theorem
The sequence uh,k converges strongly in L2(QT ) to the unique
weak solution u as h, k → 0.
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Error estimates

Drbĺıková, H., Mikula [DHM] (2009) Error estimate

Theorem
Let the exact solution fulfill the following regularity properties:
∇u ∈ L∞(QT ), utt ∈ L2(QT ), u ∈ L2(I,W 2,2(Ω)),
∇ut ∈ L2(I, L∞(Ω)). Let enW = u(xW , tn)− unW and
emh,k(x, t) =

∑
W∈Th

enWχ{x ∈W}χ{tn−1 < t ≤ tn}. Then, there

exist a constant C, such that for sufficiently small h

∫
Ω

|emh,k|2dx+

m∑
n=1

∫
Ω

|enh,k − en−1
h,k |

2dx+

m∑
n=1

tn∫
tn−1

∑
σ∈Eint

(enE − enW )2dt

≤ C(h2 + k)

for every m = 1, ..., Nmax.
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Practical experiment Drblikova (2008)

Top: the original image and the filtered image after 10 time steps.
Bottom: the edge detections of these images.
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Practical experiment Drblikova (2008)

Denoising the image using mean curvature

flow problem
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Level set formulation of the mean curvature flow problem
Sethian Osher (1988), (1996) [S], [OS]

ut − |∇u|∇.
(
∇u
|∇u|

)
= 0, in Ω× [0, T ]

the initial condition

u(x, 0) = u0(x), a.e. x ∈ Ω,

zero Dirichlet or Neumann boundary conditions
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Regularized level set equation

Evans-Spruck regularization (1991)[ES]
given small parameter ε > 0

ut√
ε2 + |∇u|2

−∇.

(
∇u√

ε2 + |∇u|2

)
= 0

|∇u|ε =
√
ε2 + |∇u|2

Existence of ”viscose solution” of the problem.
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Standard explicit finite difference scheme

Explicit finite difference scheme on rectangular grids

S. Osher and J. A. Sethian,(1988), J. A. Sethian, (1999)
Equation in 2D- case:

ut −
uxx(u2

y + ε2) + uyy(u
2
x + ε2)− 2uxuyuxy

u2
x + u2

y + ε2
= 0

Discretization- squares with the side of the length h
Unknowns at the n-th time step - uni,j .

ux
n
i,j =

uni+1,j − uni−1,j

2h
, uy

n
i,j =

uni,j+1 − uni,j−1

2h
,

uxx
n
i,j =

uni+1,j − 2uni,j + uni−1,j

h2
, uyy

n
i,j =

uni+1,j − 2uni,j + uni−1,j

h2
,

uxy
n
i,j =

uni+1,j+1 + uni−1,j−1 − uni−1,j+1 − uni+1,j−1

4h2
,
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Scheme based on finite volume methodology in 2D

Discretization in time semi-implicit scheme

Uniform discrete time step
τ = T

N
the time derivative - the backward difference
The nonlinear terms of the equation - previous time step

1

|∇un−1|ε
un − un−1

τ
= ∇.

(
∇un

|∇un−1|ε

)
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Scheme based on finite volume methodology in 2D

Space discretization

We can denote p as the finite volume with measure of m(p), epq as
the edge (face) between two finite volumes p and q and N(p) as
the set of all finite volume neighbors

by application of the divergence theorem we get the
integral formulation∫
p

1
|∇un−1|ε

un−un−1

τ dx =
∑

q∈N(p)

∫
epq

1
|∇un−1|ε

∂un

∂ν ds
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Scheme based on finite volume methodology in 2D

Space discretization in 2D H, Mikula, Sgallari (2003)

xp xq1

xq2

xq3

xq4

dpq1

Ω -union of finite volumes p, xp -representative point in each p
N(p) the set of all nodes q connected to the node p by an edge
σpq cardinality N(p) = Np, |xp − xq| = dpq
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Co-volume scheme

Co volume scheme in 2D

Evaluate regularized gradients on each triangle :|∇un−1
T |ε

N(σpq) the set of all triangles connected with the edge σpq
cTpq = m(T ∩ σpq)
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Co-volume scheme

Fully discrete semi implicit co-volume scheme

bn−1
p m(p) unp + τ

∑
q∈N(p)

an−1
pq

(unp − unq )m(σpq)

dpq
= bn−1

p m(p) un−1
p

an−1
pq =

∑
T∈N(σpq)

cTpq

|∇un−1
T |ε

bn−1
p :=

1

|∇un−1
p |ε

,

|∇un−1
p |ε =

∑
T ; p∩T 6=∅

m(p ∩ T )

m(p)
|∇un−1

T |ε
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Co-volume scheme

Results H. Mikula, Sgallari (2003) [HMS]

Theorem There exists limit unh of a subsequence unh,ε, the
solutions of proposed numerical scheme, for ε→ 0. Moreover for
this solution the following estimates hold:

||unh||L∞(Ω) ≤ ||u0
h||L∞(Ω)

||∇unh||L1(Ω) ≤ ||∇u0
h||L1(Ω), 1 ≤ n ≤ N
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Co-volume scheme

Modified co volume scheme in 2D

Co volume grids
Evaluate gradients on each triangle
m(p) = h2, m(σpq) = h, dpq = h
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Co-volume scheme

Fully discrete semi implicit modified co-volume scheme

an−1
pq =

1

|∇un−1
pq |ε

:=
1

2

 1

|∇un−1
T 1
pq
|ε

+
1

|∇un−1
T 2
pq
|ε

 ,

bn−1
p :=

1

|∇un−1
p |ε

=
1

Np

∑
q∈N(p)

1

|∇un−1
pq |ε

,

where T 1
pq, T

2
pq ∈ N(σpq).
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Co-volume scheme

Fully discrete semi implicit modified co-volume scheme

For example for triangle with points xp, xq1 , xr1 we have

|∇un−1
T 1
pq1

|ε =

√
(uq1 − up)2

h2
+

(2(ur1 − um1))2

h2
+ ε2.

bn−1
p m(p) unp +τ

∑
q∈N(p)

an−1
pq

(unp − unq )m(σpq)

dpq
= bn−1

p m(p) un−1
p .

xp xq1xm1

xr1
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Co-volume scheme

Co volume scheme in 3D S.Corsaro, K.Mikula, A.Sarti,
F.Sgallari [CMSS] 2006

3D implementation - every cubic voxel is splitted into 6 pyramids. The

neighbouring pyramids of neighbouring voxels are joined together to form

octahedron (diamond cell for the face) which can be itself used to

evaluate gradients of solution on the face or it can be further split into 4

tetrahedras, elements of 3D triangulation on which we can evaluate

nonlinearities depending on gradients.
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Co-volume scheme

Results H., Mikula (2008) [HM]

Theorem: There exists unique solution unh of the numerical
scheme for any value of the regularization parameter ε and for any
time step n = 1, . . . , N. Moreover approximation scheme has
stability and consistency property.
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Eymard et al finite volume scheme

Eymard, H., Mikula: Regularized mean curvature flow

ut − g (|∇u|) div

(
∇u

f (|∇u|)

)
= r,

with the initial condition

u(x, 0) = u0(x), a.e. x ∈ Ω,

and the boundary condition

u(x, t) = 0, a.e. (x, t) ∈ ∂Ω× R+,

For regularized level set equation f(x) = g(x) = min(
√
x2 + a2, b)
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Eymard et al finite volume scheme

Hypotheses (H)

1 Ω is a finite connected open subset of Rd, d ∈ N?, with
boundary ∂Ω defined by a finite union of subsets of
hyperplanes of Rd,

2 u0 ∈ H1
0 (Ω),

3 r ∈ L2(Ω×]0, T [) for all T > 0,

4 g ∈ C0(R+; [a, b]), with 0 < a < b,

5 f ∈ C0(R+; [a, b]) is a Lipschitz continuous
(non-strictly) increasing function,
and x 7→ x/f(x) is strictly increasing on R+.
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Weak solution

Under hypotheses (H), we say that u is a weak solution if, for all
T > 0,

1 u ∈ L2(0, T ;H1
0 (Ω)) and ut ∈ L2(Ω×]0, T [) (hence

u ∈ C0(0, T ;L2(Ω))).

2 u(·, 0) = u0

and ∫ T

0

∫
Ω

(
ut(x, t)v(x, t)

g(|∇u(x, t)|)
+
∇u(x, t) · ∇v(x, t)

f(|∇u(x, t)|)

)
dxdt =∫ T

0

∫
Ω

r(x, t)v(x, t)

g(|∇u(x, t)|)
dxdt,

∀v ∈ L2(0, T ;H1
0 (Ω)).
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Eymard et all finite volume method in 2D

r

r

r

r

r
σ

xp xσ xqh > 0, xq − xp = h

T = NT · τ

Ω = (0, Nh)× (0,Mh)

(xp, nτ)....unp

(xσ, nτ)....unσ

M = {all finite volumes p, with representative point xp},
E = { all edges σ with representative point xσ},
Ep is the subset of all σ ∈ E such that σ ⊂ ∂p, for all p ∈M,
Np is the subset of all q ∈M neighboring to p, for all σ ∈ E ,

Mσ is the subset of p ∈M such that σ ∈ Ep.
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Discrete H norm Eymard, Gallouet, Herbin

HD ⊂ RM × RE such that uσ = 0 for all σ ∈ Eext.

Np(u)2 =
1

|p|
∑
σ∈Ep

|σ|
dpσ

(uσ − up)2, ∀p ∈M, ∀u ∈ HD. (1)

‖u‖21,D =
∑
p∈M
|p|Np(u)2 (2)

defines a norm on HD.
Relation on interior edges

un+1
σ − un+1

p

f(Np(un)) dpσ
+

un+1
σ − un+1

q

f(Nq(un)) dqσ
= 0, (3)

∀σ ∈ Eint with Mσ = {p, q}, ∀n ∈ N, (4)
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Semi-implicit scheme

Integrating regularized level set equation in every finite volume p
and using divergence theorem

|p|(un+1
p − unp )

τ g(Np(un))
− 1

f(Np(un))

∑
σ∈Ep

|σ|
dpσ

(un+1
σ − un+1

p ) =

rn+1
p

τ g(Np(un))
, ∀p ∈M, ∀n ∈ N,

u0
p =

1

|p|

∫
p
u0(x)dx, ∀p ∈M, (5)

rn+1
p =

∫ (n+1)τ

nτ

∫
p
r(x, t)dxdt, ∀p ∈M, ∀n ∈ N, (6)
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Discrete solutions and terms for fully implicit scheme

uD,τ (x, t) = un+1
p ,

zD,τ (x, t) =
un+1
p − unp

τ
,

ND,τ (x, t) = Np(u
n+1),

GD,τ (x, t) = d
un+1
σ − un+1

p

dpσ
npσ,

HD,τ (x, t) = d
un+1
σ − un+1

p

dpσf(Np(un+1))
npσ,

wD,τ (x, t) = −
un+1
p − unp

τ g(Np(un+1))
+

rn+1
p

|p| τ g(Np(un)1))
,
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Convergence result

Let Hypotheses (H) be fulfilled. Let (Dm, τm)m∈N be a sequence
of space-time discretizations of Ω×]0, T [ , such that hDm and
τm > 0 tends to 0 as m −→∞. Let, for all m ∈ N, uDm,τm be
such that semi implicit or fully implicit scheme hold.
Then there exists a subsequence of (Dm, τm)m∈N, again denoted
(Dm, τm)m∈N, and there exists a function
ū ∈ L∞(0, T ;H1

0 (Ω)), weak solution, such that
uDm,τm tends to ū in L∞(0, T ;L2(Ω)),
NDm,τm tends to |∇ū| in L2(Ω×]0, T [).
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Eymard et al finite volume scheme

Sketch of the proof

L∞ stability of uDm,τm , existence and uniqueness of the
discrete solution

L2(Ω× (0, T )) estimate on discrete ut and estimate
L∞(0, T ;HD)of uDm,τm

convergence results:
uDm,τm −→ ū in L2(Ω× (0, T )). ū ∈ L2(0, T ;H1

0 (Ω))

GDm,τm ∈ L∞(0, T ;L2(Ω)) GDm,τm ⇀ ∇ū weakly in
L2(Ω× (0, T ))d.
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Sketch of the proof -continuation

HDm,τm ⇀ H̄ and H̃Dm,τm ⇀ H̄ weakly in L2(Ω× (0, T ))d

wDm,τm ⇀ w̄

zDm,τm ⇀ ūt weakly in L2(Ω× (0, T )).

lim
m→∞

∫ T

0

∫
Ω

NDm,τm(x, t)2

f(NDm,τm(x, t))
dxdt =

∫ T

0

∫
Ω
H̄(x, t)·∇ū(x, t)dxdt.

NDm,τm → |∇ū| in L2(Ω× (0, T ))

passing to the limit in equation
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Example 1 noisy filtering 20 % salt-and-pepper noise

Dimensions of the image are N1 = N2 = 200.
Iinitial image (top left) filtering by FV after 1, 2, 3 time steps (top), and by the explicit FD after 1, 4, 30 time

steps (bottom).
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Example 2- moving circle

The exact viscosity solution - the characteristic function of
Rt = {(x, y) ∈ R2, x2 + y2 + 2t ≤ 1} (the inside of the circle with
centre (0, 0) and radius r(t) =

√
1− 2t),[0, T ] = [0, 0.25].

Initial condition (top left), fully implicit FV with n = 50, n = 250 (top), explicit FD with n = 50, n = 250
(bottom) at time 0.25 (n-number of representation points along one side)
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Generalizations of mean curvature flow equation

Geodesic mean curvature flow equation

Geodesic mean curvature flow equation
(Caselles, Kimmel, Sapiro and Chen, Vemuri, Wang)

ut = |∇u|∇.
(
g(|∇Gσ ∗ u|)

∇u
|∇u|

)
u(0, x) = I0(x),

Neumann boundary conditions
Numerical scheme combines approximation using in Perona-Malik
equation (term with function G) and numerical approximation for
level set equation.
Results: semi- implicit schemes:
Kačur, Mikula 1995
Weickert 1995
using co-volume scheme H. Mikula Sgallari 2003, 2006
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Generalizations of mean curvature flow equation

Image segmentation

Subjective surface method -Sarti, Malladi, Sethian (2000)
ε-regularization of the geodesic mean curvature flow equation

ut =
√
ε2 + |∇u|2∇.

(
g

∇u√
ε2 + |∇u|2

)
,

g = g(|∇Gσ ∗ I0|)

Numerical analysis for semi imlpicit scheme and space
aproximation by finite volume method- H., Tibenský (2018) [HT]
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Generalizations of mean curvature flow equation

Image segmentation II

Generalized version with different weigths to advective and
diffusive parts
- K.Mikula., N.Peyriéras, M.Remešiková, A.Sarti (2008, FVCA5)
and C.Zanella et al.(2010, IEEE TIP)

ut = µ1 g|∇u|∇.
(
∇u
|∇u|

)
+ µ2 ∇g.∇u

efficient 3D implementations using semi-implicit scheme in
curvature part and up-wind schemes in advective part -
M.Remešiková, R.Čunderlik, K.Mikula
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Generalizations of mean curvature flow equation

Video

K. Mikula, R.Čunderlik, O.Drbliková, M.Remešiková, M.Smǐsek,
R.Špir
(Bratislava)

P.Bourgine (Paris), N.Peyrieras (Gif-sur-Yvette), A.Sarti (Bologna)

Thank you for your attention!
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CLMC Catté F., Lions P.L., Morel J.M and Coll T.: Image selective
smoothing and edge detection by nonlinear diffusion SIAM J.
Numer. Anal. 29 (1992), pp. 182–193.

CF Carlini E., Ferretti R.: A Semi-Lagrangian approximation for
the AMSS model of image processing, Applied Numerical
Mathematic, 73, 16–32 (2013)
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Angela Handlovičová Slovak University of Technology, Bratislava

Numerical solutions for image processing problems Part I


	Modified Perona-Malik Equation
	Numerical approximation
	Convergence analysis
	Error estimates

	Nonlinear Tensor Anisotropic Diffusion in Coherence Enhancing Image Filtering
	Numerical discretization
	Convergence analysis
	Error estimates
	Practical experiment Drblikova (2008)

	Level set equation and its generalizations
	Standard explicit finite difference scheme
	Scheme based on finite volume methodology in 2D 
	Co-volume scheme
	Eymard et al finite volume scheme
	Generalizations of mean curvature flow equation

	References

