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Motivation

Motivation

Traditionally, the location of points on the Earth’s surface was given
separately by the horizontal position and vertical component - the
height above the mean sea level.

The height above the mean sea level refers to the local vertical datum
that is defined by the selected tide gauge (mareograph).
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Motivation

Motivation

However, the sea water has a different temperature, structure, is
subject to sea currents, earth’s rotation, therefore the steady level of
the seas and oceans has a different height with respect to the surface
with the same gravity potential.

So the tide gauges and thus local vertical datums are shifted.

In Europe, we have more than 12 local vertical datums, and New
Zealand, as an island country, has up to 13 local vertical datums.
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Motivation

Motivation

The case of the Laufenburg bridge or what can happen to a bridge
when one side uses Mediterranean sea level and another the North sea

Laufenburg is a town that straddles Germany and Switzerland. As
two halves of a new bridge grew closer to one another in 2003, it
became clear that one side was 54 cm higher than the other. Builders
knew that there was a 27 cm difference between the LVDs - but they
applied it with wrong sign. The German side had to be lowered before
the bridge could be completed.
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Motivation

Motivation

These practical reasons led to the idea of creating a global uniform
vertical datum.

This idea could begin to be fulfilled only with the arrival of space
satellites (CHAMP, GRACE and GOCE).

Thanks to their accurate monitoring of the Earth’s gravity field, local
vertical datums on different continents can be unified into one global
vertical datum by finding the so-called geoid defined by W0.
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Z. Minarechová (DMDG - SUT) FVM for solving ODBVP 19 October 2022 7 / 38



Formulation of the oblique derivative BVP

Formulation of the oblique derivative BVP

Geoid: It is the equipotential surface that coincides with the mean sea
surface and extends through the continents.

Reference ellipsoid: A reference ellipsoid is a mathematically defined
surface that approximates the geoid.
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Formulation of the oblique derivative BVP

Formulation of the oblique derivative BVP

The gravity field - generated by the real Earth

The gravity potential W (x), W (x) = Vg(x) + Vc(x)

- Vg(x) is the gravitational potential (Newton formula)
- Vc(x) is the centrifugal potential (Earth spin velocity).

- scalar quantity - unable to measure

The gravity (acceleration) ~g(x)
- vector quantity - direction (astronomy) and size (gravimetry)

The normal field - generated by the normal body
Defined by parameters (major semi-axis, flattening, geocentric
gravitational constant, spin velocity) that are taken from the Earth

The normal gravity potential U(x)
U(x) = Ug(x) + Uc(x)

The normal gravity ~γ(x)
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Formulation of the oblique derivative BVP

Formulation of the oblique derivative BVP

The disturbing field

The disturbing potential T (x), T (x) = W (x)− U(x) = Vg(x)− Ug(x)

The gravity disturbance δg(x),
〈∇T (x), s̄〉 = 〈∇W (x), s̄〉 − 〈∇U(x), s̄〉 ≈
〈∇W (x), t̄〉 − 〈∇U(x), s̄〉 = −g(x) + γ(x) = −δg(x), x ∈ R3.
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Formulation of the oblique derivative BVP

Formulation of the oblique derivative BVP

Let us consider the infinite computational domain R3 − S, where S
denotes the Earth and ∂S its boundary.

∆T (x) = 0, x ∈ R3 − S, (1)

∇T (x) · s(x) = −δg(x), x ∈ ∂S, (2)

T (x) → 0, as |x| → ∞. (3)
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Formulation of the oblique derivative BVP

Formulation of the oblique derivative BVP

For the FVM, we will create a finite domain Ω by adding a
boundary/boundaries

a) b)

∆T (x) = 0, x ∈ Ω ⊂ R3, (4)

∇T (x) · s(x) = −δg(x), x ∈ Γ ⊂ ∂Ω, (5)

T (x) = TSAT (x), x ∈ ∂Ω− Γ. (6)
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FVM for solving the oblique derivative BVP

FVM for solving the oblique derivative BVP

We multiply the Laplace equation (4) by −1 and integrate over the
finite volume Vi,j,k

−
∫

Vi,j,k

∆T dV = −
∫

∂Vi,j,k

∇T · n dS, (7)

and it gives us a weak formulation of the equation (4)

−
∫

∂Vi,j,k

∂T

∂n
dS = 0, (8)

where n is the unit normal vector to the boundary Vi,j,k.

We denote by xi,j,k a representative point of Vi,j,k and N1 the set of
all triples (p, q, r), |p|+ |q|+ |r| = 1, then the finite volumes
Vi+p,j+q,k+r, (i, j, k) ∈ N1 share a common edge ep,q,ri,j,k with Vi,j,k.
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FVM for solving the oblique derivative BVP

FVM for solving the oblique derivative BVP

Using this discretization we can then write

−
∑

(p,q,r)∈N1

∫
ep,q,ri,j,k

∂T

∂np,q,r
i,j,k

dS = 0, (9)

where np,q,r
i,j,k is a unit vector in the normal direction oriented from the

finite volume Vi,j,k to Vi+p,j+q,k+r.

We approximate the derivative in the normal direction

∂T

∂np,q,r
i,j,k

≈
Ti+p,j+q,k+r − Ti,j,k

dp,q,ri,j,k

, (10)

where the unknown values Ti,j,k are considered at the points xi,j,k

and dp,q,ri,j,k denotes the distance between xi,j,k and xi+p,j+q,k+r.
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FVM for solving the oblique derivative BVP

FVM for solving the oblique derivative BVP

If we assume that the derivative in the normal direction is constant on
the boundary ep,q,ri,j,k , we get

∑
(p,q,r)∈N1

m
(
ep,q,ri,j,k

)
dp,q,ri,j,k

(Ti,j,k − Ti+p,j+q,k+r) = 0. (11)

where m
(
ep,q,ri,j,k

)
is the size of the area ep,q,ri,j,k .

Finally, we take into account the boundary conditions.
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FVM for solving the oblique derivative BVP Central scheme

The central finite volume scheme

We start by decomposing the gradient T in the equation (5) into one
normal and two tangential components to Γ ⊂ ∂Ω ⊂ R3.

∇T = (∇T ·n)n+(∇T ·t1)t1+(∇T ·t2)t2 =
∂T

∂n
n+

∂T

∂t1
t1+

∂T

∂t2
t2.

We substitute it into BC (5)

∇T ·s =

(
∂T

∂n
n +

∂T

∂t1
t1 +

∂T

∂t2
t2

)
·s =

∂T

∂n
n·s+

∂T

∂t1
t1 ·s+

∂T

∂t2
t2 ·s

and we obtain

∂T

∂n
n · s +

∂T

∂t1
t1 · s +

∂T

∂t2
t2 · s = −δg. (12)
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FVM for solving the oblique derivative BVP Central scheme

The central finite volume scheme

We calculate unit vectors n, t1 and t2 using the corresponding
coordinates

a) b)

n =
xi−1,j,k − xi,j,k

|xi−1,j,k − xi,j,k|
,

t1 =
x−1,1,1i,j,k − x−1,−1,−1i,j,k

|x−1,1,1i,j,k − x−1,−1,−1i,j,k |
,

t2 =
x−1,1,−1i,j,k − x−1,−1,1i,j,k

|x−1,1,−1i,j,k − x−1,−1,1i,j,k |
, (13)
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FVM for solving the oblique derivative BVP Central scheme

The central finite volume scheme

and in a similar way we approximate the derivatives in the direction of
the vectors (12)

∂T

∂n
=

Ti−1,j,k − Ti,j,k
|xi−1,j,k − xi,j,k|

,

∂T

∂t1
=

T−1,1,1i,j,k − T−1,−1,−1i,j,k

|x−1,1,1i,j,k − x−1,−1,−1i,j,k |
,

∂T

∂t2
=

T−1,1,−1i,j,k − T−1,−1,1i,j,k

|x−1,1,−1i,j,k − x−1,−1,1i,j,k |
, (14)

where we calculate the values of T p,q,r
i,j,k as

T p,q,r
i,j,k =

1

8

∑
(l,m,n)∈B(p,q,r)

Ti+l,j+m,k+n. (15)
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FVM for solving the oblique derivative BVP Central scheme

The central finite volume scheme

We substitute these approximations into (12) to obtain an
approximating equation for the BC (5) in the form

∇T · s ≈
Ti−1,j,k − Ti,j,k
|xi−1,j,k − xi,j,k|

n · s +
T−1,1,1i,j,k − T−1,−1,−1i,j,k

|x−1,1,1i,j,k − x−1,−1,−1i,j,k |
t1 · s +

+
T−1,1,−1i,j,k − T−1,−1,1i,j,k

|x−1,1,−1i,j,k − x−1,−1,1i,j,k |
t2 · s = −δg. (16)

At the end, we add the equation into our system of linear equations
and solve it.
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FVM for solving the oblique derivative BVP Central scheme

Numerical experiments - Testing experiment No. 1

The computational domain: 〈0, π〉 × 〈0, π〉 × 〈1m, 2m〉.

The C point was located at (0.1,−0.2,−0.1), the Dirichlet BC (6)
was specified in the form T ? = 1/r, where r is distance from C, and
the oblique derivative BC (5) as −1/r2.

n1 × n2 × n3 ||T ? − T ||L2(Ω) EOC

2×2×4 6.74805.10−2 -
4×4×8 9.00317.10−3 2.90597

8×8×16 1.54266.10−3 2.54502
16×16×32 3.01950.10−4 2.35328
32×32×64 0.67123.10−5 2.16928
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FVM for solving the oblique derivative BVP Central scheme

Numerical experiments - Testing experiment No. 2

The computational domain was the same as in the previous
experiment, but we further rotated the oblique vector by ±20◦.

n1 × n2 × n3 ||T ? − T ||L2(Ω) EOC

2×2×4 6.43828.10−2 -
4×4×8 8.14779.10−3 2.98220

8×8×16 1.34261.10−3 2.60137
16×16×32 2.44307.10−4 2.45827
32×32×64 0.52002.10−5 2.23204
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FVM for solving the oblique derivative BVP Central scheme

Numerical experiments - Testing experiment No. 3

Himalayas region: B ∈ 〈20.0◦, 50.0◦〉, L ∈ 〈60.0◦, 110.0◦〉
The bottom boundary was approximated by the WGS84 ellipsoid, and
the upper boundary was at the height of 240 km.

To calculate the oblique vector we used heights generated from
SRTM30.

The number of divisions was 900× 1500× 1200, which corresponds
to the size of the finite volume 5′ × 5′ × 200m.

All BCs were generated from the EGM2008 model that is the Earth
Gravitational Model based on spherical harmonics up to degree 2160.

For a comparison, we performed the same computation with the
Neumann BC applied on the bottom boundary.
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FVM for solving the oblique derivative BVP Central scheme

Numerical experiments - Testing experiment No. 3

The quasigeoidal heights in the Himalayas

Residuals [GPU] Neumann BC Oblique derivative BC

Min. value -0.227 -0.087
Mean value 0.009 0.004
Max. value 0.332 0.095

STD 0.031 0.017
RMS 0.032 0.018
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FVM for solving the oblique derivative BVP Upwind scheme

The upwind finite volume scheme

The main idea of this approach is that we think of the BC (5) as a
stationary advection equation for the unknown disturbing potential
and we approximate it by the first-order upwind method.

We apply the divergence operator to T (x)s(x)

∇ · (T (x)s(x)) = T (x)∇ · s(x) +∇T (x) · s(x). (17)

From the equation (17), we express ∇T (x) · s(x) and substitute in
BC (5)

∇ · (T (x)s(x))− T (x)∇ · s(x) = δg(x). (18)
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FVM for solving the oblique derivative BVP Upwind scheme

The upwind finite volume scheme

We add one row of finite volumes below the bottom boundary

and integrate the equation (18) over one of the added volumes Vi,j,k
(to simplify, we will not write (x))∫

Vi,j,k

∇ · (T s) dV −
∫

Vi,j,k

T∇ · s dV =

∫
Vi,j,k

δg dV. (19)
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FVM for solving the oblique derivative BVP Upwind scheme

The upwind finite volume scheme

We assume a constant value of T in the finite volume Vi,j,k and
denote it by Ti,j,k, and integrate the left-hand side of (19)∑

(p,q,r)∈N1

∫
e
p,q,r
i,j,k

T s · np,q,r
i,j,k dS −

∑
(p,q,r)∈N1

Ti,j,k

∫
e
p,q,r
i,j,k

s · np,q,r
i,j,k dS =

∫
Vi,j,k

δg dV.

Let T p,q,r
i,j,k denote the constant approximation of the solution on the

boundary ep,q,ri,j,k and volume size Vi,j,k as m(Vi,j,k), we get

∑
(p,q,r)∈N1

T p,q,r
i,j,k

∫
e
p,q,r
i,j,k

s · np,q,r
i,j,k dS −

∑
(p,q,r)∈N1

Ti,j,k

∫
e
p,q,r
i,j,k

s · np,q,r
i,j,k dS

= δg m(Vi,j,k).
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FVM for solving the oblique derivative BVP Upwind scheme

The upwind finite volume scheme

When we set

sp,q,ri,j,k =

∫
ep,q,ri,j,k

s · np,q,r
i,j,k dS ≈ m(ep,q,ri,j,k ) s · np,q,r

i,j,k , (20)

we obtain ∑
(p,q,r)∈N1

sp,q,ri,j,k (T p,q,r
i,j,k − Ti,j,k) = δg m(Vi,j,k). (21)

Let

T p,q,r
i,j,k = Ti,j,k, if sp,q,ri,j,k > 0, (22)

T p,q,r
i,j,k = Ti+p,j+q,k+r, if sp,q,ri,j,k < 0, (23)

It corresponds to inflow when sp,q,ri,j,k < 0 and outflow when sp,q,ri,j,k > 0.
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T p,q,r
i,j,k = Ti+p,j+q,k+r, if sp,q,ri,j,k < 0, (23)

It corresponds to inflow when sp,q,ri,j,k < 0 and outflow when sp,q,ri,j,k > 0.
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FVM for solving the oblique derivative BVP Upwind scheme

The upwind finite volume scheme

After inserting equations (22) - (23) to (21) we get the equation for
the approximation of the BC (5)∑

(p,q,r)∈N in
1

sp,q,ri,j,k (Ti+p,j+q,k+r − Ti,j,k) = δg m(Vi,j,k), (24)

where N in
1 denotes neighbours on inflow boundaries of the finite

volume Vi,j,k, i.e., where sp,q,ri,j,k < 0.

Droniou J, Medl’a M, Mikula K: Design and analysis of finite volume
methods for elliptic equations with oblique derivatives; application to
Earth gravity field modelling. Journal of Computational Physics, s. 2019
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FVM for solving the oblique derivative BVP Upwind scheme

Numerical experiments - Testing experiment No. 1

The computational domain was the same as in the previous approach,
but we have more shifted C = (0.3,−0.2, 0.1) and the oblique vector
modified by an angle ±20◦.

Upwind scheme

n1 × n2 × n3 ‖T ∗ − T‖L2(Ω) EOC ‖T ∗ − T‖MAX(Γ) EOC

8×8×4 0.177728 - 0.362022 -
16×16×8 0.059441 1.58 0.177806 1.03

32×32×16 0.022542 1.39 0.083563 1.08
64×64×32 0.010819 1.05 0.041756 1.00

128×128×64 0.005143 1.07 0.019506 1.13
Central scheme

n1 × n2 × n3 ‖T ∗ − T‖L2(Ω) EOC ‖T ∗ − T‖MAX(Γ) EOC

8×8×4 0.061529 - 0.3511 -
16×16×8 0.146351 -1.25 0.209212 0.75

32×32×16 0.058753 1.31 0.050549 2.05
64×64×32 0.008090 2.86 0.053722 2.64

128×128×64 0.004520 0.83 0.024245 0.84
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FVM for solving the oblique derivative BVP Upwind scheme

Numerical experiments - Testing experiment No. 2

Global gravity field modelling - reconstruction of the EGM2008 model.

The bottom boundary was approximated by the WGS84 ellipsoid.

The upper boundary was at the height of 240 km.

The SRTM30PLUS model was used to calculate the oblique vector.

All BCs were generated from the EGM2008 model, and the obtained
numerical solution was compared to EGM2008.

The computational domain was divided in L,B,H directions into
n1 × n2 × n3 parts:

a) 540× 270× 75 (i.e. volume size: 40′ × 40′ × 3200m),
b) 1080× 540× 150 (i.e. volume size: 20′ × 20′ × 1600m),
c) 2160× 1080× 300 (i.e. volume size: 10′ × 10′× 800m),
d) 4320× 2160× 600 (i.e. volume size: 5′ × 5′× 400m).
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FVM for solving the oblique derivative BVP Upwind scheme

Numerical experiments - Testing experiment No. 2

Resol. Min. res. Max. res. Mean res. STD (total) STD (Sea) STD (Land)

40′ × 40′ -78.910 80.426 -0.392 5.238 4.771 6.228
20′ × 20′ -46.584 27.558 -0.273 1.948 1.489 2.750
10′ × 10′ -22.011 7.954 -0.265 0.904 0.327 1.578
5′ × 5′ -13.926 7.932 -0.114 0.558 0.183 0.991
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FVM for solving the oblique derivative BVP Upwind scheme

Numerical experiments - Testing experiment No. 2

Figure: The mean sea surface
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FVM for solving the oblique derivative BVP Upwind scheme

Numerical experiments - Testing experiment No. 2

Figure: Mean dynamic topography: mean sea surface - geoid
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FVM for solving the oblique derivative BVP Upwind scheme

Numerical experiments - Testing experiment No. 2

Figure: A model of sea currents
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Conclusion

Conclusion

The value of the W0 was officially adopted as a constant at the 26th

General Assembly of the International Union of Geodesy and Geophysics in
Prague in the summer of 2015. Scientists led by Dr. Laura Sánchez
determined that the value of the Earth’s gravity potential, which best
describes the mean sea surface, is

W0 = 62 636 853.4m2s−2.

One of the four groups that cooperated on this research was from the
Department of the Mathematics and descriptive geometry at Slovak
University of Technology.

Thank you for your attention.
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