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Introduction



Goal

Consider the incompressible Navier-Stokes problem:
Otu+ (u-V)u—div(o(u,p)) =f in Qx][0,T],
div(u) =0 in  Qx|[0,T],
u=20 on 9Q x [0, T],
u(0) =upe in  Q

2 1
with o(u,p) = R—Du — pld and Du = E(Vu + V).
e

~~ develop a non-overlapping iterative Schwarz algorithm with DDFV schemes



Example of Domain Decomposition algorithm

Limit problem:

Schwarz iterates:




Historical background

Laplace problem:
¢ Schwarz (1870) — overlapping
¢ Lions (1990) — non-overlapping

Isotropic diffusion :
¢ Achdou-Japhet-Nataf-Maday (2002), Cautrés-Herbin-Hubert (2004), ...

Anisotropic diffusion :
+ Gander-Halpern-Hubert-Krell (2018)

Advection-diffusion-reaction :
¢ Gander-Halpern (2007), Halpern-Hubert (2014)

Navier-Stokes equations :
+ Finite differences : Blayo-Cherel-Rousseau (2016)
¢ Finite elements : Lube-Miiller-Otto (2001), Girault-Riviére-Wheeler (2005) ...
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+ Finite differences : Blayo-Cherel-Rousseau (2016)
¢ Finite elements : Lube-Miiller-Otto (2001), Girault-Riviére-Wheeler (2005) ...

incompressibility constraint, local interface conditions
take convection into account, no restriction on Reynolds




Discrete Duality Finite Volume method
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DDFV meshes

Primal mesh

= (ux)xeom
Dual mesh
o
U = (ug* )x* com*

Diamond mesh

D
~ VDUT, pl

Our unknowns are:
.
uT = (W, u™") and p®




DDFV operators(1/2)

Discrete gradient

The operator V® : (R?)* — (M2(R))® where

VDuT(x,_ — X¢) = U — g,

VDU‘I(XL* — Xg* ) = Upx — Ugx.

1 = A
VU = 2 [ ) © Fon - Mo (i — e ) @ Wy mpe].
D

[S. Krell, Stabilized DDFV schemes for the incompressible Navier-Stokes equations, 2011]
DT D, T
~ diviu® = Tr(Vu™).

vDu‘I +t (vDu‘I)
5 .

~ DPuT =

2 -
o (T, pP) = EDDU‘—pDId.




DDFV operators (2/2)

Discrete divergence

div® : €® € (Ma(R))® — divTe® € (R2)T where:

1
divie® = — D moPigy, Yk € M
K o COK
1
D m i, Ver € IMF U 99
K™ o* COx*

divi" ¢® =

Discrete duality property

On the continuous Ievel:/ div€ -u = — / §:Vu +/ n-u
Q Q o0

On the discrete level:

[[div=e®, uT]ls = —(£° : V2uT)o + (2 (£°)A, v* (u™))an

[S. Krell, Stabilized DDFV schemes for the incompressible Navier-Stokes equations, 2011]



DDFV operators (2/2)

Discrete divergence

div® : €® € (Ma(R))® — divTe® € (R2)T where:

1
divie® = — > m, &k, Yk € M
farig o COK
D m i, Ver € IMF U 99
K™ o* COx*

divi" ¢® =

Discrete duality property

On the continuous Ievel:/ div€ - u = —/ §:Vu +/ &n-u
Q Q [2]9}
On the discrete level:
T D T D .9, T D (D F (0T
[[div=E™, u™]]ls = —(§7 : V7u™)o + (v~ (), v~ (u™))on
[S. Krell, Stabilized DDFV schemes for the incompressible Navier-Stokes equations, 2011]

Brezzi-Pitkaranta stabilization term

1 d2 +d?
A= ST = P —p) WedD
® s=p|p’egp D



DDFV discretization for Navier-Stokes problem with
B-schemes



DDFV for Navier-Stokes : (P)

At each time step we solve:

ug —
mg Ké. K+Zma]:dl(:ml(fk Vk € M
t o COK
U — Uy
e T T D Me T = mefe Ve et
o* COK
div®(u¥) — B2 AP =0 Yo €D

with u?™ = " = 0 and > pen Mp® =0.




DDFV for Navier-Stokes : (P)

At each time step we solve:

ug — u
mx%—l— Z my Fox = mify Yk € M

o COK
Ugx — Uy
e - — K 5 LA Z Myx Fougr = Mysfex  Vx* € M*
o* COK*
div®(u¥) — B2 AP =0 Yo €D

with u9™ = 4" — 0 and ZDEQ mpyp® =0 .

The fluxes are a sum of a "diffusion” and a "convection” term:

o(u,p)-ﬁJr/U(u-

St
=
c

Mo Fox = ma(‘rgK+F§'K)z/

o

—

The diffusion fluxes: m, F<, = —m,o?(uT,p®) Aok
The convection fluxes, with B : R — R*:

ug +u
T) + my B (Fu) (t — ),

[C. Chainais, J. Droniou, Finite volume schemes for non-coercive elliptic problems with neumann boundary conditions, 2011]

C
Mo Foy = My Fox (



Well-posedness of (P)

Theorem (Well-posedness)

Let 8 > 0.
Assume that B be is an even Lipschitz continuous function such that B(s) > 0,
Vs € R. Then the scheme (P) is well-posed.

If B(s) = 0 = centered discretization

If B(s) = %|s| = upwind discretization

Generalization of the result of [S. Krell, Stabilized DDFV schemes for the
incompressible Navier-Stokes equations, 2011]
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Non-overlapping DDFV Schwarz algorithm for
Navier-Stokes problem

21



The Navier-Stokes problem

Find u: Q7 — R? and p : Q7 — R such that:

Otu+ (u- V)u—div(o(u,p)) =f in
div(u) =0 in

with T >0, u=0o0n 99, ug = up; € (L2(Q))? .

Qr =Q x [07 T]
Qr

22



The Navier-Stokes problem

Find u: Q7 — R? and p: Q7 — R such that:
{Btu + (u- V)u—div(o(u,p)) =f

div(u) =0

in Qr=Qx[0,T]
in QT

with T >0, u=0on 8Q, ug = up; € (L(Q))? .

Domain decomposition:

9}]

Q

Q=0 UQ

23



The Navier-Stokes problem

Find u: Q7 — R? and p: Q7 — R such that:
Oru+ (u-Vi)u—div(o(u,p)) =Ff in Qr=Qx[0,T]
diviu)=0 in Qr
with T >0, u=0on 9Q, ug = uj € (L=°(Q))?% .

Domain decomposition:

931 Q5

Q=0 U
Transmission conditions on [, £ iteration index:
VN P 1
o(u;,pj) - iij — §(uj 1) (uf) + Au;
= (r(uffl, pfﬁl) A —
l—1

div(uff) + apf = —div(uf.;‘fl) + ap;

where ii; is the outer normal to Q;, A, a > 0.
24



DDFV on composite meshes

DDFV meshes.

[M.J. Gander L. Halpern, F. Hubert, S. Krell, Optimized Schwarz Methods for Anisotropic Diffusion with DDFV discretizations, 2018]
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DDFV scheme for the subdomain problem

We define the DDFV discretization for the transmission conditions, to which we refer
by

Ti Q;
Lo r(ug;,po;, Vg, fa, by, g0,) = 0 !

the following system:

ug — U
my K5t Ch T meFox=mde ke
o COK
Ugx — Uy *
e Kéitl( Z My Fawgr = myxfx Vk* € mj Ul W
o* CoK* u u
= K L
(O T

myx= % Z m, *]: * gk + Myanok* WK* = mK*fK* Vk* € BDJT;-‘I
o*COK* ULV,

div’(u®) — BhZAPp® =0 Vo €D\ D]

with u®®4.0 = 0 and uamivD = 0, plus the transmission conditions on T .

26



Transmission conditions

Transmission conditions on [ at the continuous level:
a(u,p)-ﬁ—%(u-r’l’u—l—)\u:h
diviu)+ap=g
Discrete transmission conditions :

1
—Fox + EFO'KUL + Aug =hy Vo € OM; -

1
—Wyx + E(UK* o) U + Augx =y Vk* € am}k,r
div®(uT) — Bh2APD®Y fap’ =g W€ ’DJI-—

with A\, > 0 and the flux:

My Fox = —myo2(u,p°) figx +mo Fox (w) + mo, B (Fox) (ux — uy),
— —

my Fd

o oK

mg F.

Sk
Theorem

The scheme Egj::?(ugj, P;s \Ugj, f<, hgj , g’Dj) = 0 is well-posed.

27



Iterative domain decomposition solver

Choose h%, € ROMrUOMr ong g € R®j,
J

Compute (uéj_7 pZ@j, \Uéj) € RY x RSJ x RO™'r solution to

S 0—1

o F (u 0% WE fr b ,g =0
Compute the new values of héj and of gél__ by:
he 7 _Lp e
oK; 5 O'Kfur.i + uLi?

1
£ ) = = £ ¥4
hK; = \IIK; — E(uK;« fox) Uy + /\uKi*,

1
g]fj = ( my, div® (U‘I ) + By, h2 AP pr, + o, pD)

ij

28



Convergence study of the First Schwarz algorithm

Let (S) be the First Schwarz algorithm. Then:
(§) —= (P)

where (P) is problem (P) with modified fluxes on the interface:

mafa'l( = *maUD(uz’P ) ok + My Fox (UK er UL) + maé(Fch) (ug —uy)

—_—
d
me Foy ~
7 mg FSy
= - Ugx + U =
My Fouge= —myx02(uT, 2 ) fpnex + mys F e (72 + myx B (F, e ) (ugr — ugx)
ma*}"g*K*

Tc
m_x 'FU*K*

Theorem (Convergence of the First Schwarz algorithm)

¢ Suppose my = 2my, = 2ij.
The solution of the First DDFV Schwarz algorithm (S) converges when ¢ — oo to
the solution of the DDFV scheme (P) on Q0 .

[T. Goudon, S. Krell, G. Lissoni, Convergence study of a DDFV scheme for the Navier- Stokes equations arising in the domain
decomposition setting, 2020]
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Convergence study of the Second Schwarz algorithm

Let (S) be the second Schwarz algorithm. Then:

where (S) is algorithm (S) with modified fluxes on the interface:

ug + ug

My Fox = —mya®(u™,p®°) Aok + my Fox ( ) + My B (Fox) (ux — uy)
—_——

me F4

o/ oK Zc
me F Sy

= Uy + Up*
ma*]:o'*K* = 7ma*o-D(uT7p©)ﬁo'*K* +ma*Fo‘*K* ( 2

d
m_sx JF'
- —_ M
orK m_xFC, .
A

Theorem (Convergence of the Second Schwarz algorithm)

¢ Suppose my = 2my; = 2my,.

The solution of the Second DDFV Schwarz algorithm (S) converges when £ — co
the solution of the classical DDFV scheme (P) on 0, with the choice B = %|s| on the
primal mesh and B = 0 on the dual mesh.

30



Numerical results
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Numerical tests

We consider the following exact solutions to the Navier-Stokes problem:

_ (—2mcos(nx) sin(27y) exp(—5ntr?),
u(t, x,y) = ( ﬂsi(r::zs;x) goss(éﬂy})/e:pl()—SnZirz) ) ’

2
p(t,x,y) =— %(4 cos(27x) + cos(4my)) exp(—10tnm?).
The algorithms, in all the following simulations, are initialized with initial random

guesses hy and g3 for j =1,2. The time step is 6t = 10~* and B = |s|.
J J
As a stopping criterion, we impose:

max (ef; |2, M5, l2) < 10~°

Mesh}. Mesh?.
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Convergence of the algorithms

(S) and (S) have the same behavior — Focus on (S)
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Convergence of the algorithms

(S) and (S) have the same behavior — Focus on (S)
The convergence is influenced by:

¢ Value of \ ¢ Value of 3
¢ Value of ¢ Mesh geometry
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Convergence of the algorithms

(S) and (S) have the same behavior — Focus on (S)

The convergence is influenced by:

¢ Value of \ ¢ Value of 3
¢ Value of « ¢ Mesh geometry

Fix = 1, B = 107!, and Mesh}
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Comparison on mesh refinement

Optimization of A and « on (Meshl)m, m=1,2,3,4:

1800

1600

1400

1200

1000

100 200 300 400 500 600 700 800 900 1000

15 2 25

a=1,=10"1 A =100,8=10"1

Mesh% Mesh% Mesh% Mesh}f

A 15236 293.36 404.63 929.36
a 05 0.5 0.5 0.6




Simulation of a flow in a pipe

2 S S e SN R pa g

R

HH T
..‘.‘:::::::::::::::::::::::::::::::::::::::::::::
e aaassisiasidisasiasasaiasaisansninsasainaniss

Left domain — 4464 cells. Right domain — 4096 cells.

Initial condition: uj,; = (0,0)
Time-dependent inflow on x = 0 and outflow on x = 2.2 is:

g = 0.412sin(wt/8)(6y(0.41 — y),0).

Stopping criterion :
max ||e‘: ll2, 0% ||2 <1073
n=10"3m?s~!, §t = 0.0016
0 < Re(t) < 100
A=200,a=1,8=0.01

37



Velocity profile comparison

First component of the velocity solution to the Navier-Stokes problem on Q:

e —

-

Limit problem (P), at T = 2s.

Schwarz algorithm (S) with B =0, at T = 2s.
Convergence in 299 iterations (with A = 200, = 1, 8 = 0.01).
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Velocity profile comparison

First component of the velocity solution to the Navier-Stokes problem on Q:

e —

-

Limit problem (P), at T = 2s.

Schwarz algorithm (S) with B =0, at T = 2s.
Convergence in 107 iterations (with A = 50, a = 0.5, 8 = 0.01).
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Velocity profile comparison

First component of the velocity solution to the Navier-Stokes problem on Q:

Schwarz algorithm (S) with B =0, at T = 6s.
Convergence in 377 iterations (with A\ = 200, = 1, 8 = 0.01).
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Velocity profile comparison

First component of the velocity solution to the Navier-Stokes problem on Q:

Schwarz algorithm (S) with B =0, at T = 6s.
Convergence in 178 iterations (with A = 50, « = 0.5, 3 = 0.01).
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Velocity profile comparison - multi domains

Schwarz algorithm (S) with B =0, at T = 6s.
Convergence in 300 iterations (with A = 200, = 1, 8 = 0.01).

Schwarz algorithm (S) with B =0, at T = 6s.
Convergence in 482 iterations (with A = 200, « = 1, 8 = 0.01).

We compare the number of iterations at convergence at T = 6s between the case of
2, 4 and 5 subdomains :

f subdomains 2 4 5

f iterations 377 482 663

42



Drag and lift coefficients

Cdmax = 2.9985, 3 =2.9999, [  =2.09775

Cd ,max

Cd ,max

D

. . . . . . . _0s . . . . . . .
! 2 3 N ° e 7 0 1 2 3 4 5 6 7 8

Volker, Reference values for drag and lift of a two-dimensional time-dependent flow around a cylinder, 2004]
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Drag and lift coefficients

Cl.max = 0.5183, ¢P"" = 0.5100, ¢f* = 0.5442

C/,max Cl,max
06 . . . . . - = 0.5 - . . . . — .
T
ot 0st ) || | [l .
02| I ||‘ 1N
02 H ‘ ‘ | |
o1} Mi ‘| n
P ..1'.|....[ L) A
0 111 ‘ r ‘ T
Vi R
0.1 | Y ‘\ ‘ | | |
ol | \| ‘| | I
03t |‘ | H \‘l
o vl ‘| !
0.4 [ ‘l |‘
0.5 : : : : M :
085 1 2 3 T 5 G 7 s 1 2 3 4 5 8 7 8

[V. John, Reference values for drag and lift of a two-dimensional time-dependent flow around a cylinder, 2004]
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Conclusions and Perspectives
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Conclusions

= general discretization of the Navier-Stokes problem
= design of transmission conditions

= design of two iterative solvers

= convergence of the algorithms

= numerical experiments
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Conclusions
= general discretization of the Navier-Stokes problem
= design of transmission conditions
= design of two iterative solvers
= convergence of the algorithms
= numerical experiments

Perspectives

= analysis and theoretical optimization of the parameters
= more numerical tests

Grazie per |'attenzione!
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Brezzi-Pitkaranta stabilization

Brezzi-Pitkaranta stabilization term

d2 + d?

1 '
ADpi):f Z D(DipD) Vo € D

m
° s=p|D’e&p 5

/nAp«— 2: ‘/xvpnsn

s=D|D’ €&p

/Ap N i, PLs) = P(0) .
dDQD

5= Dm’es

/ Ap ~ (P(%r)—P (%))

5= Dm’esb

Tcx

9
§ocoooo
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Non linear convection term

To discretize :

/ (un . ﬁak)un+1
(o8

Fox(u") == > Gep(u") ifoc€

s€6gNEp

We impose:

where R R
Ul + U

n = n =
Gs,D(u ) = m572 cNgp ~> /u - Ngp.
5

We have conservativity:
5= [XK7XK*]‘,

Fox = — Vo =x|L
oK oLy | Ko

X &
*
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Comparison between First and Second algorithm

First Schwarz algorithm, (S):

Aopt 200 A 100

@ 1 opt 0.25
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Comparison between First and Second algorithm

Second Schwarz algorithm, (S):

100 200 300 400 500 600 700 800 900 1,000

ot 200 A 100
Qopt 0.25
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Influence on X\ of 5 and the mesh type

Optimization of A on Mesh%:

— e |
——po0 450
oy |
o g0t |
3sof|L
1
soof| |
il
250 !
|t ]
|\ o
0| | . e
|\ -
150 X el
\ e
\ e
100 /."
g I
50 - _
-
T I o W M %0 # @0 @ o

a=1 a=1=10"1
B 104 1072 107! 1 Mesh}  Mesh?  Cartesian
A 436.81 122 122 25.2
# iter 818 53 40 246 A 146.2 130.1 105.91
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Influence on \ of it

Optimization of X for a = 1,3 = 10~ with different time steps:

T =

LEWV‘ —+—dt=10¢
dt=5x10""

o | —an

5t=10"% §t=10"* St=5x10"*% t=10""°

A 2118 146.2 212.9 515.63
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