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General Equation

Γ : [0,1] → R2

u 7→ x(u)
(1)

∂x
∂t

= −δkN⃗+ λ[(x0 − x) · N⃗]N⃗+ αT⃗ (2)

• δ > 0 constant, k curvature, N unit normal vector
• λ > 0 constant,x0 initial condition,(x0 − x) smooth function, ·

scalar product
• α tangential velocity, T unit tangent vector
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Attracting term

Fix a point
x = x(u) ∈ Γt , then

(x0 − x)(u) = argmin
v∈χu

|v|,

(3)

where
χu = {x ∈ R2 : v = x0(q)− x(u),q ∈ [0,1]} (4)
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Numerical Discretization
Intrinsic form of the PDE

Consider xt = −δkN+ λwN+ αT, where w = [(x0 − x) · N⃗].

The curve is discretized to a set of points: x0,x1, ...,xn+1.
• Let s be the unit arc-length

parametrization.
• Define T = xs and N = x⊥s

such that T ∧N = −1.
• From the Frenet-Serret

formulas we get Ts = −kN.
Then

−kN = Ts = (xs)s = xss.
We obtain the form of the so-called intrinsic partial differential
equation: xt = δxss + αxs + λwx⊥s .
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Numerical Discretization
Choice of the tangential velocity

Consider the local and the global length of the evolving curve

g = |xu|, L =

∫ 1

0
gdu,

g
L
≈

|xi−xi−1|
h
L

=
|xi − xi−1|

Lh
=

|xi − xi−1|
L

n+1

where h = 1
n+1 and n + 1 is the number of segments.

We want
uniformly distributed points, then g

L → 1
Using the Frenet-Serret formulas we obtain

(
g
L
)t =

g
L
(kβ + αs − ⟨kβ⟩Γ)

where ⟨kβ⟩Γ = 1
L

∫
Γ kβ.

Define
(
g
L
)t = ω(1 − g

L
) ω > 0

We obtain
αs = ⟨kβ⟩Γ − kβ + ω(

L
g
− 1)
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Space Discretization
Flowing finite volume method

Let us consider the intrinsic form of the PDE
xt − αxs = δxss + λwx⊥s

hi = |xi − xi−1|

pi = [xi− 1
2
,xi+ 1

2
]

xi+ 1
2
=
xi + xi+1

2
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Space Discretization
Flowing finite volume method

Integrating over the finite volume pi we obtain∫ x
i+ 1

2

x
i− 1

2

xtds −
∫ x

i+ 1
2

x
i− 1

2

αxsds = δ

∫ x
i+ 1

2

x
i− 1

2

xssds + λ

∫ x
i+ 1

2

x
i− 1

2

wx⊥s ds (5)

The values α,w are considered to be constant over the finite
volume and will be indicated as αi ,wi .

Using the Newton-Leibniz formula and approximating xs by a finite
difference we obtain

hi + hi+1

2
(xi)t +

αi

2
(xi − xi+1)−

αi

2
(xi − xi−1) =

= δ(
xi+1 − xi

hi+1
− xi − xi−1

hi
) + λwi(

xi+1 − xi−1

2
)⊥

(6)
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Space Discretization
Inflow-implicit/Outflow-explicit scheme

xt + αxs = 0
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Inflow-implicit/Outflow-explicit scheme

hi + hi+1

2
(xi)t +

αi

2
(xi − xi+1)−

αi

2
(xi − xi−1) =

= δi(
xi+1 − xi

hi+1
− xi − xi−1

hi
) + λwi(

xi+1 − xi−1

2
)⊥

(7)

xt − αxs = δxss + λwx⊥s

bin
i− 1

2
= max(−αi ,0),bout

i− 1
2
= min(−αi ,0)

bin
i+ 1

2
= max(αi ,0),bout

i+ 1
2
= min(αi ,0)

(8)

hi + hi+1

2
(xi)t +

1
2
(bin

i+ 1
2
+ bout

i+ 1
2
)(xi − xi+1) +

1
2
(bin

i− 1
2
+ bout

i− 1
2
)(xi − xi−1)

= δ(
xi+1 − xi

hi+1
− xi − xi−1

hi
) + λwi(

xi+1 − xi−1

2
)⊥

(9)
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Overall time discretization
Let m be the time step index and τ the length of the discrete time
step.
• time derivative: finite difference xt =

xm+1
i −xm

i
τ

• unknowns in the inflow part of the advection term implicitly
• unknowns in the outflow part of the advection term explicitly
• diffusion term implicitly
• attracting term explicitly

We obtain

xm+1
i−1 (− δ

hm
i

−
binm

i− 1
2

2
) + xm+1

i+1 (− δ

hm
i+1

−
binm

i+ 1
2

2
)+

+ xm+1
i (

hm
i+1 + hm

i

2τ
+

δ

hm
i

+
δ

hm
i+1

+
binm

i− 1
2

2
+

binm

i+ 1
2

2
) = xm

i
hm

i+1 + hm
i

2τ
+

−
boutm

i+ 1
2

2
(xm

i − xm
i+1)−

boutm

i− 1
2

2
(xm

i − xm
i−1) + λwm

i (
xm

i+1 − xm
i−1

2
)⊥

(10)

PhD candidate : Giulia Lupi Supervisor : Prof. Karol Mikula Team members: Seol Ah Park (STUBA)Smoothing by evolving curves
Discrete Duality Finite Volume Method and Applications 17-21 October 2022
12 / 25



Overall time discretization
Let m be the time step index and τ the length of the discrete time
step.
• time derivative: finite difference xt =

xm+1
i −xm

i
τ

• unknowns in the inflow part of the advection term implicitly

• unknowns in the outflow part of the advection term explicitly
• diffusion term implicitly
• attracting term explicitly

We obtain

xm+1
i−1 (− δ

hm
i

−
binm

i− 1
2

2
) + xm+1

i+1 (− δ

hm
i+1

−
binm

i+ 1
2

2
)+

+ xm+1
i (

hm
i+1 + hm

i

2τ
+

δ

hm
i

+
δ

hm
i+1

+
binm

i− 1
2

2
+

binm

i+ 1
2

2
) = xm

i
hm

i+1 + hm
i

2τ
+

−
boutm

i+ 1
2

2
(xm

i − xm
i+1)−

boutm

i− 1
2

2
(xm

i − xm
i−1) + λwm

i (
xm

i+1 − xm
i−1

2
)⊥

(10)

PhD candidate : Giulia Lupi Supervisor : Prof. Karol Mikula Team members: Seol Ah Park (STUBA)Smoothing by evolving curves
Discrete Duality Finite Volume Method and Applications 17-21 October 2022
12 / 25



Overall time discretization
Let m be the time step index and τ the length of the discrete time
step.
• time derivative: finite difference xt =

xm+1
i −xm

i
τ

• unknowns in the inflow part of the advection term implicitly
• unknowns in the outflow part of the advection term explicitly

• diffusion term implicitly
• attracting term explicitly

We obtain

xm+1
i−1 (− δ

hm
i

−
binm

i− 1
2

2
) + xm+1

i+1 (− δ

hm
i+1

−
binm

i+ 1
2

2
)+

+ xm+1
i (

hm
i+1 + hm

i

2τ
+

δ

hm
i

+
δ

hm
i+1

+
binm

i− 1
2

2
+

binm

i+ 1
2

2
) = xm

i
hm

i+1 + hm
i

2τ
+

−
boutm

i+ 1
2

2
(xm

i − xm
i+1)−

boutm

i− 1
2

2
(xm

i − xm
i−1) + λwm

i (
xm

i+1 − xm
i−1

2
)⊥

(10)

PhD candidate : Giulia Lupi Supervisor : Prof. Karol Mikula Team members: Seol Ah Park (STUBA)Smoothing by evolving curves
Discrete Duality Finite Volume Method and Applications 17-21 October 2022
12 / 25



Overall time discretization
Let m be the time step index and τ the length of the discrete time
step.
• time derivative: finite difference xt =

xm+1
i −xm

i
τ

• unknowns in the inflow part of the advection term implicitly
• unknowns in the outflow part of the advection term explicitly
• diffusion term implicitly

• attracting term explicitly
We obtain

xm+1
i−1 (− δ

hm
i

−
binm

i− 1
2

2
) + xm+1

i+1 (− δ

hm
i+1

−
binm

i+ 1
2

2
)+

+ xm+1
i (

hm
i+1 + hm

i

2τ
+

δ

hm
i

+
δ

hm
i+1

+
binm

i− 1
2

2
+

binm

i+ 1
2

2
) = xm

i
hm

i+1 + hm
i

2τ
+

−
boutm

i+ 1
2

2
(xm

i − xm
i+1)−

boutm

i− 1
2

2
(xm

i − xm
i−1) + λwm

i (
xm

i+1 − xm
i−1

2
)⊥

(10)

PhD candidate : Giulia Lupi Supervisor : Prof. Karol Mikula Team members: Seol Ah Park (STUBA)Smoothing by evolving curves
Discrete Duality Finite Volume Method and Applications 17-21 October 2022
12 / 25



Overall time discretization
Let m be the time step index and τ the length of the discrete time
step.
• time derivative: finite difference xt =

xm+1
i −xm

i
τ

• unknowns in the inflow part of the advection term implicitly
• unknowns in the outflow part of the advection term explicitly
• diffusion term implicitly
• attracting term explicitly

We obtain

xm+1
i−1 (− δ

hm
i

−
binm

i− 1
2

2
) + xm+1

i+1 (− δ

hm
i+1

−
binm

i+ 1
2

2
)+

+ xm+1
i (

hm
i+1 + hm

i

2τ
+

δ

hm
i

+
δ

hm
i+1

+
binm

i− 1
2

2
+

binm

i+ 1
2

2
) = xm

i
hm

i+1 + hm
i

2τ
+

−
boutm

i+ 1
2

2
(xm

i − xm
i+1)−

boutm

i− 1
2

2
(xm

i − xm
i−1) + λwm

i (
xm

i+1 − xm
i−1

2
)⊥

(10)

PhD candidate : Giulia Lupi Supervisor : Prof. Karol Mikula Team members: Seol Ah Park (STUBA)Smoothing by evolving curves
Discrete Duality Finite Volume Method and Applications 17-21 October 2022
12 / 25



Overall time discretization
Let m be the time step index and τ the length of the discrete time
step.
• time derivative: finite difference xt =

xm+1
i −xm

i
τ

• unknowns in the inflow part of the advection term implicitly
• unknowns in the outflow part of the advection term explicitly
• diffusion term implicitly
• attracting term explicitly

We obtain

xm+1
i−1 (− δ

hm
i

−
binm

i− 1
2

2
) + xm+1

i+1 (− δ

hm
i+1

−
binm

i+ 1
2

2
)+

+ xm+1
i (

hm
i+1 + hm

i

2τ
+

δ

hm
i

+
δ

hm
i+1

+
binm

i− 1
2

2
+

binm

i+ 1
2

2
) = xm

i
hm

i+1 + hm
i

2τ
+

−
boutm

i+ 1
2

2
(xm

i − xm
i+1)−

boutm

i− 1
2

2
(xm

i − xm
i−1) + λwm

i (
xm

i+1 − xm
i−1

2
)⊥

(10)PhD candidate : Giulia Lupi Supervisor : Prof. Karol Mikula Team members: Seol Ah Park (STUBA)Smoothing by evolving curves
Discrete Duality Finite Volume Method and Applications 17-21 October 2022
12 / 25



Overall time discretization
Attracting term

Fix xm
i and for j = 1, ..,n + 1

• Consider the line r passing through the points x0
j−1,x0

j ,

• Find the line s such that:s ⊥ r and xm
i ∈ s. Find q ∈ r ∩ s.

• Consider d = d(q,xm
i ). If q ∈ [x0

j−1,x0
j ] and d < minD then:

x0 − xm
i = q− xm

i
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Influence of the attracting term
Comparison

Figure: Comparison of the evolution of the initial curve (red) for δ fixed
and different values of λ after 400 time steps.Results are shown for λ = 0
(blue),λ = 1(light blue),λ = 5(pink) and λ = 10(green)
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Macrophages trajectories
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Macrophages trajectories
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Macrophages trajectories
Stopping Criterion

We considered the mean Hausdorff distance between two discrete
curves A,B defined as

δ̄H(A,B) = 1
n

n∑
i=1

min
b∈B

d(ai ,b),

δ̄H(B,A) =
1
n

n∑
i=1

min
a∈A

d(bi ,a),

d̄H(A,B) = δ̄H(A,B) + δ̄H(B,A)

2
,

(11)

where A = {a0, ...,an+1}, B = {b0, ...,bn+1} are discrete sets and
A = {a1, ...,an+1},B = {b1, ...,bn+1} are sets of segments
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Macrophage trajectories
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Macrophage trajectories
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Smoothed Velocity Estimation
Time Estimation

The formula for the new real-time is given by

T n+1
i = T n

i +
αn

i τ

Ln+1 (12)

• T n+1
i and T n

i are the new real-time and the real-time in the
previous time step

• αn
i is the tangential velocity

• τ the time step
• Ln+1 is the total length of the curve in the current time step
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Smoothed Velocity Estimation
Velocity Estimation

Finally, we calculated the velocity using the central difference
scheme

V (x , y) = (
xi+1

1 − xi−1
1

Ti+1 − Ti−1
,
xi+1

2 − xi−1
2

Ti+1 − Ti−1
) (13)
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Time and Velocity Estimation
Velocity Estimation

PhD candidate : Giulia Lupi Supervisor : Prof. Karol Mikula Team members: Seol Ah Park (STUBA)Smoothing by evolving curves
Discrete Duality Finite Volume Method and Applications 17-21 October 2022
23 / 25



Time and Velocity Estimation
Velocity Estimation
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