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Target calculations in geophysical fluid dynamics

Surface water breaking waves : air/water coastal flow

Mythic Surf spot in Atlantic ocean at Belhara (Pays Basque, France)
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Target calculations in geophysical fluid dynamics

Kelvin-Helmholtz instability :
one stratified fluid-phase or two-phase (liquid/gas) gravity
waves

‘Warm air
\% 7 7

Cool air

Wind Shear

—

Kelvin-Helmholtz clouds in atmosphere
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How to construct an efficient numerical method ?

Essential features for numerical solutions of multiphase flows :

@ Variable density Navier-Stokes incompressible or low Mach number flows
@ Two-phase flows with large density /viscosity ratios : pw/pa =~ 10%

@ Moving interface 3 (between fluid immiscible phases) with large shape
deformations

@ Surface tension with possibly large capillarity coefficient on 3
@ Coriolis rotation + suitable turbulence modelling

@ Multi-physics coupling : temperature, salinity, Marangoni effect...

Reference books :

A. Prosperetti and G. Tryggvason (2007). Computational methods for
multiphase flow

G. Tryggvason, R. Scardovelli, and S. Zaleski (2011). Direct numerical
simulations of Gas-Liquid multiphase flows
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How to construct an efficient numerical method ?

Main ingredients of a numerical solver in a bounded domain Q with
r:=00=rpul’y CoNI'y=20) :
@ Efficient velocity-pressure coupling with divergence-free constraint ?
o for large density/viscosity ratios
e for Dirichlet boundary condition on velocity : v = vp on I'p,
eg.vp=20
o for Neumann open boundary condition : given stress vector
o(v,p))n=gonI'n,eg g=—pon

© Accurate sharp (# diffuse) interface capturing or front tracking methods ?

e Volume of Fluid (VOF) methods : Hirt & Nichols (1981) —
e.g. VOF-PLIC of Youngs (1982), Sarthou et al. (2008)

o Level-set methods (LSM) :
Thomasset & Dervieux (1979), Osher & Sethian (1988), Sethian
(1999), Osher & Fedkiw (2002)

o Immersed Interface Methods :
Leveque & Li (1994), Li & Ito (2006), PhA. & Li (2017), Sarthou et
al. (2020)

o Arbitrary Lagrangian-Eulerian (ALE) methods

o Lagrangian front tracking with advected interface markers :
Hua & Tryggvason (2013) — Angot et al. (2016)
o Phase-field (dlffuse mterface) methods, e.g. with Cahn-Hilliard

Main features and ingredients



Summary

© Velocity-pressure coupling with divv = 0

© Theoretical foundations of VPP, methods

© The family of VPP, methods for constant density
@ The family of VPP, methods for variable density
© Sharp test cases with VPP./K-VPP. methods

@ Conclusion and perspectives

Introduction Main features and ingredients



Outlines

© Velocity-pressure coupling with divv = 0

Velocity-pressure coupling with divwv = 0



Objectives : efficient velocity-pressure coupling ?

Focus on the constraint of free velocity divergence divv = 0

@ Fully-coupled solver : ill-conditioned matrix of indefinite type
= Need efficient local preconditioners that are specific to the space
discretization elements (FV, FE, DG,...)

@ How to efficiently deal with the free-divergence constraint with splitting
methods (prediction-correction steps) ?

@ How to overcome most drawbacks of

o Uzawa-augmented Lagrangian iterative methods
Hestenes (1969) — Powell (1969) — Fortin & Glowinski (1983) ...
Khadra et al., Int. J. Numer. Meth. Fluids (2000) (for MAC mesh)
e scalar incremental projection or pressure correction methods
Chorin (1968) — Temam (1969) — Goda (1979) — Van Kan (1986) ...
Review : Guermond, Minev, Shen, CMAME (2006)

@ Some improvements with the scalar penalty-projection method
o Open Neumann stress B.C. : Jobelin et al., J. Comput. Phys. (2006)
— PhA. et al., Int. J. Finite Volumes (2009)
e Variable-density flow : Jobelin et al., Comput. Mech. (2008)

Velocity-pressure coupling with divyv = 0 State of the art



The orthogonal H.H. decomposition of L2(2)?

Basics of pressure correction methods, e.g. Temam’s book 1986
in a bounded open set Q of R?

LX2(Q)‘=HaG with
H = {u € L*()%; divu = 0, u-nr = 0 on I‘}
G = H'= {u €M u=Ve, ¢ € Hl(n)/R}

Hence, for all vector field v € Lz(ﬂ)d, we have the unique decomposition :
v=vy +v¢ Wwith wve=VeopeG

and vy =roty € H, divey = 0 if Q simply connected
Standard solution for a scalar potential ¢ if v € Hain () :
Poisson problem with Neumann B.C.

A¢p =divv in Q
Vé¢:nr=v-n on I, since / divvde = (v-n,1)_1/21
Q
Then: vy =V¢ and vy =v— Vo

ST S NS TSRS TIPSl Scalar incremental projection (SIP) methods



The Navier-Stokes problem with given density

with Dirichlet or open (Neumann) B.C. and p := p(z,t) given

Q C R4 (d < 3), bounded and connected Lipschitz domain
with the Lipschitz continuous boundary I' = 892 = I'p U 'y and
T'oNIn=20

p(Bv+ (v-V)v) —pAv+Vp=f nQx(0,T)
dive =0 inQ x (0,T)
v=wvp onTIp X (0,T)
—pn+puVon=g onIn x (0,T)
v(t=0)=wvo inN

Neumann B.C., i.e. pseudo-stress or full stress vector given :

o(v,p)-n:= —pn+2pudv)-n=g onIlyn x (0,T)

1
where d(v) := 2 (V'v + (V'U)T) symmetric part of velocity gradient

Velocity-pressure coupling with divv = 0 Scalar incremental projection (SIP) methods
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The scalar incremental projection (SIP) method

with Dirichlet or open (Neumann) B.C. and p := p(z,t) given
e.g. first-order time accuracy (Euler), extension to 2nd-order...
Originally introduced for p = e¢st and v = 0 on I and ad-hoc extended...

1 5"4‘1 _ ,U'n 1
Pt (7 + (v™ V)ﬁ”“) — p AT 4 vp = it

ot
(1) ~n+41
Uirp =YD
(_pn n + /1/ V5n+1- n)|1"N — g
n+1 ~n+1
nt+1 U — v v n+4+1 -0
DR T + Vo
divo™t =0
div ( fil Vo tt) = divemT!
= (3) Vo tngr, =0
Sy =0

(1) 4+ (2) must be consistent with first-order Euler fully-coupled N.S. system
= ¢! = p"t!' — p™ (pressure increment in time)

ST S NS TSRS TIPSl Scalar incremental projection (SIP) methods



Motivation : overcome most drawbacks of SIP

Main drawbacks of any projection method including a scalar
pressure correction step with a Poisson-like equation

@ spurious pressure boundary layer in space with velocity Dirichlet B.C. due
to the artificial B.C. introduced on pressure inherently !
@ non optimal pressure error estimate for 2nd-order time schemes :
splitting errors : velocity @ (6t?) — pressure O(&t%)
@ poor accuracy for open (or outflow) boundary conditions :
splitting errors : velocity O(dt) — pressure O(Jt%) (standard SIP)
or O(ét%) — O(6t) (rotational version)

@ poor convergence and locking effect for large density, viscosity,
permeability ratios...

Conjecture : mainly due to the inherent scalar formulation of the method and
to the spatial derivative of mass density

= It degrades the original vector formulation and produces a loss of
consistency...

= Design a fully vector-consistent splitting method for the velocity

ST S NS TSRS TIPSl Scalar incremental projection (SIP) methods
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Objective : efficient velocity-pressure coupling ?

Focus on the constraint of free velocity divergence divv = 0

= Key idea : introduce a splitting penalty method for the velocity...
both prediction and correction steps now solved for the velocity vector
= Fully vector consistent splitting method with velocity correction

= New point of view :
Instead of determining the pressure field p (the Lagrange multiplier)
Calculate an accurate and curl-free approximation of Vp
(the force inducing motion)

= Primary unknowns are now (v, Vp) instead of (v, p)

= Counterpart : approximate divergence-free projection in the semi-discrete
setting but the penalty parameter € can be taken as small as desired.

RS T N T =l New approach : Vector Penalty-Projection (VPP) 13



Outlines

© Theoretical foundations of VPP, methods

of VPP, methods
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A new fast decomposition of L2(2)¢ : DHHD I

PhA., Caltagirone and Fabrie, Appl. Math. Lett. (2013)

Key idea : design a suitable approximation by penalization of the curl-free
component vy = V¢ of v such that : v = vy 4+ vg¢, vy € H

divvy =divv and rotwvy =0 in @ with wvg-nr=wv-n on T’

= The so-called vector penalty-projection elliptic problem for all € > 0 :

evg — V (diveg) = =V (divv) in Q
Vgmr =v-n on T
vy = lv (div (vy — v)) := V¢°, rotvy =0
= 1
P° = gdiv (vy — v)
N.B. Extra regularity : (vg — vi) € Ho,qiv(2) N Hyot () — Hl(ﬂ)
= Very well-conditioned whatever the mesh step h for € small enough :
effective conditioning independent of both € and h due to adapted right-hand

side!

Theoretical foundations of VPP methods Fast discrete Helmholtz-Hodge decompositions




A new fast decomposition of L2(2)¢ : DHHD I

Weak form of (VPP,) with the adapted right-hand side
For any v € Hgs, (2), using a standard Green’s formula (integration by part),
vs, € Haio () satisfies :

e/ vfl,-cpd:c—i—/(divvf’b) (div ) dx
e Q

— (div (vg — v), ¢- n>_1/27r = /Q(div v) (div ) dz,
for all ¢ € Haiv ()
Notice a posteriori that (VPPy) implies that : div (v§ — v) € H'(£2)

Then, the boundary term vanishes with :
© Essential B.C. : ¢-n =0 on I, then ¢ € Ho,div (2)
@ Natural B.C. : div (v, — v) = 0 on T, i.e. "do nothing" for Neumann
stress B.C.
= Apply Lax-Milgram theorem for the solvability analysis in Has. (€2)
= Then (VPP,,) supplies the extra regularity :
v§ € Ho,ain (2) N Hyot () — HY(Q)

Theoretical foundations of VPP methods Fast discrete Helmholtz-Hodge decompositions
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Optimal accuracy of fast DHHD methods

PhA., Caltagirone and Fabrie, Appl. Math. Lett. (2013)

Theorem (Analysis of the vector penalty-projection (VPP,).)

For any v € Haiv () and all e > 0, there exists a unique solution v'f; mn
Ha;, () to the vector penalty-projection (VPP ).

Moreover, vg, is curl-free : rot vy, = 0, v, = V¢© € G and
div (v — v) € H'(2) N L3(RQ) for all e > 0. Then, we can choose
¢ € H'(2) N L3(Q) such that div (v — v) = € ¢°.

Besides, we have the following error estimates for alle > 0 :

lve —valls + Il — &°ll2 + [ldiv (v — v3)llx < () [[v]loe

N.B. Extra regularity : (vg — v5) € Ho,div () N Hrpot () — HI(Q)

= Approximate divergence-free projection
= Optimal accuracy of (VPP,) as O(g) with & as small as desired up to
machine precision

Typically : € = 10™** with double precision

Theoretical foundations of VPP methods Fast discrete Helmholtz-Hodge decompositions
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Solution cost of fast DHHD : (VPP) or (RPP)

10"
Res

10"
Res|

10* 10*

10* 10*

10" 10"

-16 1 1 1 1 -16 1 1 1 1
10% 2 g 6 Nier 8 100 2 1 6 Niter 8

Convergence history of normalized residual of ILU(0)-BiCGstab2 solver for (RPP) or
(VPP) problems with € = 10~ for different MAC mesh sizes 32 X 32 (red),

128 X 128 (green), 512 X 512 (blue) and 2048 X 2048 (black)

LerT : Rotational Penalty-Projection (RPP)

RIGHT : Vector Penalty-Projection (VPP)

= Asymptotic optimal solver convergence within 2 or 3 iterations whatever h
with € as small as desired up to machine precision !

tical foundations of VPP methods Fast discrete Helmholtz-Hodge decompositions 18



Solution cost of (VPP) step by PCG solvers

PhA. and Cheaytou, Commun. in Comput. Phys. (2019)
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Iterations Number

Convergence history of the normalized residual (by initial residual) of PCG solver for
(VPP) problem at T = 28t with 6t = 1 and € = 10~10 for different mesh sizes
LerT : Standard Conjugate Gradient (no preconditioner)

RicHT : Incomplete Choleski Preconditioned CG : IC(0)-PCG

=> Asymptotic optimal solver convergence within 4 iterations of IC(0)-PCG when ¢ is
small enough whatever the mesh size h

al foundatio of VPPg methods

Fast discrete Helmholtz-Hodge decompositions



A splitting method for saddle-point problems

Recall : convergence rate of conjugate gradient method

Solve with I = Id matrix of order n,
B = —Divp, : m X n matrix with rank(B) = m < n, BT = Grady, :

(eI + B"B)3. = —B"B%

A.:=cI + B'B system matrix

T
. Condz(Ae) — g + )\ma:(B B) =0 (%)

‘We have :

Number of iterations of preconditioned conjugate gradient solver :
Niter < O (V&)  bound for the worst case...

The splitting penalty method :

@ the system matrix Ac is ill-conditioned for ¢ < 1

@ but the system itself can be extremely well-conditioned due to the
adapted right-hand side!

Theoretical foundations of VPP methods A splitting penalty method for saddle-point



P.D.E. with adapted r.h.s. : a simple example

The simplified invertible case (continuous setting) :

Let © C R? be a bounded open domain, u € H§(Q) given and € > 0

Let us consider the problem (toy model) : find u. € HE(£2) such that :

EUs — Aue = —Au, in
ue =0, on T := 9N

We have the weak form, for all v € Hg () :

e/(ug —u)’udm+/ V(ue —u) - Vode = —e/ uvdx
Q Q Q
and thus taking v = u. — u, we easily get with Poincaré inequality :

lue —ull; o < (@) [[V(ue —u)llgq < C(Q) llullyq e

N.B. Here —A with Dirichlet B.C. is an invertible operator
=> Hence we can take € = 0 and the solution is then trivial ug = u!

Theoretical foundations of VPP methods A splitting penalty method for saddle-point



P.D.E. with adapted r.h.s. : a simple example

The simplified invertible case (discrete setting) :
= asymptotic expansion of the solution u.

Let A := —A} be the n X n symmetric positive definite matrix of the
discrete Laplacian operator with homogeneous Dirichlet B.C.

It amounts to solve the linear system with an adapted r.h.s. :
(eI + A)u. = Au.
We have :
A= (eI+A)=A (I—l—sA_l)
._ €4 Amaz(A) . 1
Kk := condz(A:) = e T Amin(A) —e—o0 condz2(A) = O e

If e < 1/||A™"||, we get the asymptotic expansion with a Neumann geometric

serie :
(I + sA_l)_1 = i(—l)kekA_k
k=0
= U = (I+€A_1)_l u=u—cA 'u+e® A ?u— ...

Theoretical foundations of VPP methods A splitting penalty method for saddle-point
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P.D.E. with adapted r.h.s. : a simple example

The simplified invertible case (discrete setting) :
= asymptotic erpansion of the solution u.

Thus, with an adapted r.h.s. and e < 1 :
(eI+A)uc=Au = u.=u—+0(e)

= zero-order term independent on A and the mesh step h!

But recall with a non adapted r.h.s. (usual case) and e < 1 :

eI+ Au.=f = u.=A1u+0(e)

A splitting penalty method for saddle-point

Theoretical foundations of VPP methods
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The nice and surprising result for saddle-point

Non-invertible case with A := BTB (B := —div},) : sketch of proof for a
splitted saddle-point system with an adapted r.h.s.

PhA., Caltagirone and Fabrie, Appl. Math. Lett. 1 (2012)

(1) (eI +BTB)3. = —-BTB%
with A¢ := eI+ BTB system matrix being ill-conditioned

A key formula : Woodbury’s formula (1949), a generalization of Sherman-Morrison’s
formula :

1 -1 -1
(I-|——BTB) :I—BT<sI—|—BBT) B, €>0
154

Theorem (Solution of linear system (1) for e sufficiently small.)

For any m X m full-rank matriz B with rank(BT) = rank(B) = m

(= ker(BT) = {0} and the Schur complement S := BBT (Lagrange multiplier
operator) is non singular)

and if e < 1/||S™1||, we can do the asymptotic expansion with Neumann geometric
serie and after either SVD or QR factorization, we get :

Ve = —Iov + O(e), where Ig = diagonal matriz with only 1 or O entries

(whatever h) such that the O entries correspond to the null eigenvalues of BT B.

Theoretical foundations of VPP methods A splitting penalty method for saddle-point

24



Outlines

© The family of VPP, methods for constant density

The family of VPP methods for constant density
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First-order vector penalty-projection method

Fast and fully vector-consistent VPP, splitting method :

PhA., Caltagirone and Fabrie, FVCAG6 (2011) — Appl. Math. Lett. (2012)
PhA. and Cheaytou, CiCP (2019) : 2nd-order with BDF2 for open B.C.

5n+1 _m

- | .
+ (- vt — QAv"'H +Vpr =t inQ

ot
&) pntt = 'UZ'H onI'p
c(@ L, p™)n:i= —p"n+2ud@"* ) n=g¢g""" onlyn
sntl _gn
e—s— -V (dive™H?) = v (divemtt)  in @
(2) "t n =0 orenforce v"t' =0 onTp

"t n =0 onTpn

or dive™tt = —dive™t! ie. "do nothing" : (divv"""l)‘FN =0 onTln

1
ot = gntl L gntt apd pntl =pn — gdiv vt inQ

Pressure gradient correction to avoid round-off errors for very small
;U\n+1 _ "
vpntl = vp™ — — @

A T I T T  Approximate divergence-free splitting methods 26



The fast vector penalty-projection method

The artificial compressibility method revisited within two steps
~n+4+1 _ ~n
v v + (v"-V)%n-i-l _ iA5n+1 + Vpn — fn+1
ot Re
™ 1 " 1
_ = co~n+41 —— o~n+41
B Te— - v (dlvv ) - v (le’U )

,Un-i-l — an—{-l + an-l—l

~n+1 _ ~n 1
V(Pn+1 —-p") = LA A v (divvn+1)
ot €
VPP. & a new two-step artificial compressibility method
,Un-‘,-l _

- om + ('Un' V)%""—l _ RLA;En—i-l + Vpn+1 — fn+1
e

n+1l _ . n
(e 5t) % +divomtl =0

=> But far better to correct the pressure gradient : no effect of round-off errors for
very small values of &

= Better convergence than the one-step artificial compressibility method of Chorin
(1967) and Temam (1968) which suffers from a temporal boundary layer of pressure
see [PhA. and Fabrie, Disc. Cont. Dyn. Syst. (2012)] (analysis of continuous version)

AT A I T  The artificial compressibility method revisited
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Unconditional stability of the VPP, method

PhA., Caltagirone and Fabrie, Hal manuscript (2015)

Theorem (Global solvability and stability of the VPP, method.)

For any f € L2(0,T; H—1(2)%), v° € L?(R2)9 and p® € L2(N) given, the VPP,
method is well-posed for all 0 < 6t < T and e > 0, i.e. for allm € N such that

(n + 1) dt < T, there exists a unique solution

(®" T, o+l pntly € HE(Q)? x HL(Q)% x L3(Q) to the VPPe scheme such

that :
1
vn+ ‘st— o™ + (’Un' V);E'n—l—l _ Rl Agn—i—l + Vpn+1 — fn+1 in Q
€
n+1l1 _ . n
(e 6t) % + divo™tl =0 in

which is the discrete problem effectively solved by the splitting scheme.

Moreover, we have unconditional stability of the VPPe method for both velocity and
pressure in the natural norms 1°° (0, T; L2(Q2)4) N 12(0, T; H'(2)?) and

12(0,T; L?(R)), respectively.

=> with compactness arguments (Aubin-Lions-Simon), we have :

Convergence to N.S. weak solutions in 3-D when € = dt tends to 0

The family of VPP methods for constant density Convergence analysis of VPP for Navier-Stokes 28



Optimal error estimates of the VPP, method

Second-order time accuracy with BDF2 scheme and open B.C. :
See [PhA. and Cheaytou, M2AN 2022 (submitted)]

Velocity or pressure errors : €™ := v(t"™) — v™ and ©" := p(t"™) — p™

Theorem (Error estimates of VPP, for Stokes with open B.C.)

With suitable sufficient regularity of the continuous solution (v, p) and well-prepared
initial conditions, we have for all 0 < 6t < max(1,T) and 0 < & < O(dt) : for all
n € N such that (n +1)dt < T,

() le™ I3 + eot lxm 13 + 2 CIVeR L3 < © (3t + < bt)
(i4) Z 8t ||t — ﬁ / w1 dgl|2 < C (5t% + € 5t)
— «Q

(i3) Z 8t || divo® T2 = Z 5t ||diveP T2 < C (8t3 + ) e 8t2.
k=0 k=0

= Better splitting errors for Dirichlet B.C. in O(e 6§t + €2 6§t3/2) instead of
O (e dt), see [PhA. and Cheaytou, Math. Comp. (2018)]

= Error bounds confirmed by numerical results

The family of VPP methods for constant density Convergence analysis of VPP for Navier-Stokes 29



Numerical results with MAC Cartestan mesh

Green-Taylor vortices : Navier-Stokes with Dirichlet B.C.
Divergence (discrete 1°°(0,T'; L?(£2)) norm) versus penalty €

—7—st=10"
107 || —*—st=10"2 y

——5t=1072

Divergence - L2-norm

o

11 1 1 1

107 10 107 107" 10°

penalty parameter &
Divergence at Re=100, t=10 - h=1/512, |res|> < 107
= ||divo™||g2 = O(e dt) = O(xT); velocity & pressure errors as O(5t?)

AT A T T  Convergence analysis of VPP, for Navier-Stokes 30




Numerical results with MAC Cartestan mesh

Stokes flow with homogeneous Neumann stress B.C.

10° 7
o
Il
1 ”"
10 I >
e
£ ve
= e
E s, P2
s L 10° ‘e
¢ 4 A
& = ‘e
3 g ‘e
1 ] ‘e
5 . .
3 £ 10° L7 Py
= 2 s/
15 @ P %
% a 4
> E o 4
% 10 . . — 1=()
o ’ = = = slope 1.8
153 .
’ = = =slope 2
-5 L4
10°F
.
P
107 107 - -
107 107 107" 10° 107 107 107 10°
time step time step

BDF2-VPP. with OBC2 : time convergence rates at T=2, mesh size h = 1/128,
e=10"0andr =0

LEFT : velocity error L2-norm

RIGHT : pressure gradient error L2-norm

= Optimal second-order accuracy : both velocity & pressure gradient
errors as O (dt?) : see [PhA. and Cheaytou, CiCP 2019]

The family of VPP, methods for cor . de Convergence analysis of VPP, for Navier-Stokes




Outlines

@ The family of VPP. methods for variable density

The family of VPP methods for variable density
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A model for incompressible multiphase
Navier-Stokes problems with capillary effects

p(Orv+ (v-V)v) —2div (ud(v)) + Vp=f in Q x (0,T)
divv =0 in Q x (0,T)
O +v- V=0 inQ2x (0,T)
or Otp+v-Vp=0 in Q2 x (0,T)
with :
1

@ the strain rate tensor : d(v) := 5 (V'u + (V’U)T>

@ f includes gravity force : p g and surface tension on X : o k nx ds
&> stress jump embedded conditions : [o(v,p)-n]y = o kns

@ cither use a phase fraction (color) function : ¢ € [0, 1] — at interface X :
¢ = 0.5 with VOF-PLIC method or use a level-set function ¢ = 0

@ or use a Lagrangian front tracking method with a chain of markers

@ possibly coupled with the advection-diffusion equation for temperature 7~
or salinity S

@ given laws : p = p(7,S) and p = pu(7T, S) for each phase

The family of VPP methods for variable density Fast VPP for multiphase N.S. flows 33



A model for incompressible multiphase
Navier-Stokes problems with capillary effects

The fast VPP, method, first-order linearly implicit scheme :

PhA., Caltagirone and Fabrie, 6th F.V.C.A. Conf. (2011) — Appl.
Math. Lett. 2 (2012)

~n+1l _ . n
o (% T (o™ v)'5"+1> — 2div (u" d(%”“)) +Vp" ="

% o ot v (div §n+1) —-v (div ﬁn-i-l)

,U’"-Jrl — ;{]n+1 + 6n+1
n
¢n+1 = pn—‘,—l _ pn from V¢n+1 = V(pn+1 _ pn) — _% ;v\'n,-l-l
n+l _  n
VOF-PLIC interface capturing : % +o" Vet =0
nt+l _ n
or by Lagrangian front tracking : % + o™t Vp" =0

The family of VPPe methods for variable density

Fast VPP for multiphase N.S. flows 34



Kinematic version K-VPP. for edge-based MAC

PhA., Caltagirone and Fabrie, C.R. Math. Acad. Sci. (2016)

n %n—l-l — " " Y X n ~n41 n n .
o T_|_(1, -V)7 — div (2;1, d(v )>+VP =f in Q

'ﬁﬁj'l =0 on T

(b) Divergence-free velocity penalty-projection (VPP) : purely kinematic step

ev"t — v (dive™+) = v (aive" ) in @

’15|"F+1 =0 onT

(e) Velocity correction : ot =gt L gttt iy 0

(d) Find the effective density p™ such that :V (p" ¢" 1) = p" 3"t  in Q

with ¢™11 reconstructed from its gradient 3"t := vepnt?!

(e) Explicit locally consistent pressure gradient correction : dynamic step
p"
ot
(f) Advection by Lagrangian front-tracking of density :

1
Vet —pt) = =2 e = S Vet i @
pn—‘,-l _ pn
ot

A T TR Tl  Fast Kinematic-VPP, for multiphase N.S. flows

+vn+1.Vpn =0 in




Edge-based generalized MAC unstructured mesh

A.C.F., Appl. Math. Lett. (2013) — C.R. Math. Acad. Sci. 2016

Topology of the 3-D primal mesh with vertices, edges, faces and an interface X :

P, Py, ¢ unknowns located at all vertices a or b and velocity components v- t on each
edge [a, b]

= Important mimetic properties exactly satisfied in the discrete way :

rot »(Vror) = 0 and div p(rot »1;,) = 0, Yh > 0 for any scalar ¢ or
vector potential ¥ (up to machine precision)

= Discrete compatibility condition satisfied Vi (p ¢) = pv with :

rot n(pv) = prot LU + Vrp AU = Vipp AD = 0 since rot b = 0
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Vo

Reconstruction of potential ¢ such that : v :

@ Scalar potential ¢ reconstructed by integrating its known gradient
v = V¢ along all the edges in the primal mesh

@ Starting from one point where ¢ := 0 arbitrarily, we have along any edge
[a,b] :

b b
/ v-tde := / V¢-tde = ¢pp — pa, on any edge [a,b]

which gives the value ¢ when ¢, is already known and so on...
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Conservation properties on edge-based generalized
MA C-type unstructured meshes

Discrete exterior calculus identities on a random Delaunay mesh for any typical
analytic scalar field ¢ or vector field ).
LEFT : rot pb,(Vipe) = £1.710715 in Q
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Calculation of density p such that : V(p ¢) = pv

Primary mesh topology and interface X represented by a chain of connected
Lagrangian markers

From one side using the generalized average formula, there exists p constant
along the segment [a, b] such that :

b b b
[ pvtdn=p [ tdn=p(0n—6u)= [ V(po)tde

a

= p satisfies the compatibility condition : V(p ¢) = pv = p V¢ along the
edge [a, b]
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Calculation of density p such that : V(p ¢) = pv

From another side, with ¢ := X N [a, b] and the distance d(a, b) := |b — a| :

b c
/pﬁ-tdac:/ pU- tda:+/ pv-tder = (palc—al+ pu|b—c|)v-t

:(pa|c—a|+pb|b—c|>/
[b— al

lc —al
b—al’
Comparing the two expressions, we get the effective density p associated to the
edge [a, b] as a weighted average :

= (apa+ (1 —a)pp) (Pp — ¢a), Wwith a:=

Plap) = @pa + (1 — ) pp, on any intersected edge [a,b], 0 < a < 1.
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An accurate front-tracking Lagrangian advection

a) Calculate the barycentric velocity vy (@) of each marker point @ from the velocity
components v™T1. ¢ on the edges bordering the primal cell where the marker lies

b) Move the markers such that ’(t) = vy (t, ) by calculating the new position with
the Heun Runge-Kutta explicit scheme (RK2 or RK4 with the K-VPP method of
second-order in time) :

2"t =™ 4 % (v:”(mn) + v;H'l(zn + &t vg(m"))) .

c) Detect the cells in the primal mesh which are crossed by the updated marker chain
with a ray-tracing technique issued from computer graphics procedures and according
to that, update the phase function € at the vertices

d) Calculate the intersection points s € [a, b] between the marker chain segments and
the edges [a, b] of the crossed cells in the primal mesh

e) From xx, calculate the dividing function « on each edge [a, b] oriented by t and
cutted across by X

f) Update the density p(&), the viscosity p(€) and the effective density
Pla,b] = @ Pa + (1 — &) py, on any intersected edge [a, b]

g) Compute the local curvature k(x) at each marker point @ using the osculator circle
crossing three consecutive points

h) Compute the force source term modelling the capillary effects f
to be included in the force balance on any intersected edge

i) Solve for the flow at time t"*1 = (n + 1)&t with the method of velocity-pressure
coupling.

i=ockVEfon X

c

= Good mass conservation of the different phases observed practically
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Accurate calculation of the local curvature k(x)

Local curvature k() calculated at each marker point « by using the osculator circle
defined by @ and its two neighbours in 2-D

@ Exact when the interface X is a circle of radius R or a sphere in 3-D :
k = 1/R (circle) or kK = 2/R (sphere)
= Numerically verified up to machine precision
@ For an ellipse of radius a and b in the polar coordinates :
ab
(a2 sin? @ + b2 cos? 0)3/2’

k(0) = with @ € [0, 27].

10"

10 10* 10° N 10

= Second-order accuracy in the L2-norm w.r.t. the mean distance between two

connected interface-markers
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Outlines

© Sharp test cases with VPP./K-VPP. methods

Sharp test cases with VPP, /K-VPP. methods
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Numerical results for multiphase Navier-Stokes

Eulerian cartesian grid framework with sharp interface capturing

p (8t v+ (v- V)v) — 2div (nd(v)) + Vp = f in 2 x (0,T)
dive =0 in Q x (0,T)
Otp+v-Vp=0 in Q x (0,T)
with :

@ fixed Eulerian cartesian grid (non boundary/interface-fitted)
= no Lagrangian moving mesh, no ALE method...

@ space discretization with Finite Volumes on the MAC staggered grid or
edge-based MAC generalized unstructured meshes

@ cither sharp interface capturing with VOF-PLIC method [Youngs, 1982]

p(¢) = p1 (1 — H(p —0.5)) + p2 H(p — 0.5)
m(p) = p1 (1 — H(p —0.5)) + p2 H(p — 0.5)

@ or Lagrangian front tracking with chains of markers

@ fictitious domain approach with a penalized viscosity pus/py = 1/m — +o0,
with 0 < <K 1, to get rigidity of solid particles
see [PhA. 1999 — PhA., Bruneau and Fabrie 1999 — Khadra et al. 2000]
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Sharp test case for fluid-structure interaction

ACF11-ball : free fall of an heavy rigid ball in air at time t = 0.15
and Re = 7358 (mesh convergence reached)

VPP. method with e = 10~°, mesh size=256 x 512, dt = 0.0002

' @\m@ ‘

Cylinder diameter d = 0.05, ps = 109, pr =1, pus = 1012, py = 10—5, domain
0.1 X 0.2, cylinder initially with no motion at height y = 0.15.

LEFT : isobars and isoline ¢p = 0.5 of the phase function at interface.

RicHT : vertical velocity field and horizontal velocity isolines — vpqi; = gt verified !
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Static equilibrium of a droplet : Laplace’s law

First numerical method which eliminates the spurious eddies!
See e.g. book |Tryggvason, Scardovelli and Zaleski (2011)]

Laplace uniform capillary pressure pc = o kK = o /R = 400 Pa (whatever density)
in a disk droplet of radius R = 2.5 1073 m for a constant surface tension

o = 1 N/m (no gravity force, only the capillary force f,. := o kK V& on X)

LeFT : Unstructured mesh non-fitted to the interface-markers circle

RicHT : Unstructured mesh fitted to the interface 3

=> Null velocity field in both cases with no parasite current
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Multiphase flows : two-phase bubble dynamics

2-D gas bubble rising in a liquid : dimensionless numbers
Hysing et al., IINMF (2009) : two benchmark problems with
different density/viscosity ratios and surface tension o

lg

steel

L

Air bubble initial diameter d in a vertical cavity L X H, g = 9.81 m /s>
p1/pg = 10 to 103, p; /pug = 10 to 100, surface tension coefficient
T gas/liquid = 0.07197 N/m (at 25 °C) to 2.50 N/m (large surface tension)

Characteristic gravitational velocity Ug := +/g d,
Reynolds number Re := p; Ug d/p;, E6tvos number Eo := p; ng d/o

Sharp test cases with VPP, /K-VPP. methods Two-phase bubble dynamics : weak stresses
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Standard benchmark for multiphase flows 1

2-D dispersed two-phase bubble dynamics

Hysing et al., IINMF (2009) : first benchmark pb with small
density /viscosity ratios and surface tension

VPP. method with e = 10~8, mesh size=128 X 256, 6t = 0.007143
and VOF-PLIC interface capturing

Motion of a circular bubble with surface tension at time ¢ = 3 - bubble initial
diameter d = 0.05m, p1/p2 = 1000/100 = 10, p1/p2 = 1/0.1 = 10,
o = 2.45 N/m, domain 0.1 X 0.2, bubble initially circular with no motion at height
y = 0.05 — g = 9.81 m/s?, ref. gravitational velocity Ug := 1v/gd = 0.700 m/s,
Reynolds number Re := p1 Ug d/p1 = 35, Eétvos number Eo := p1 ng d/o =10
LEFT : isobars and isoline ¢ = 0.5 of the phase fraction function at interface
CENTER : horizontal velocity field
RIGHT : superposition of isoline ¢ = 0.5 at interface for (UAL), (SIP), (VPP) and
vertical velocity field (in absolute referential)
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Sharp benchmark of two-phase bubble dynamics I1

Air bubble rising in a liquid melted steel with VPP, or K-VPP,
PhA., Caltagirone and Fabrie, 4th T.I. Conf. 2015 — CRMAS 2016

lg

steel

L

Air bubble initial diameter d = 1e¢m, L = 4cm, H = 10cm, g = 9.81 m /52
pL/pg = 8500 or 104, p;/pg ~ 54, T air/steel = 1.50 N/m (large surface tension)
Ug :=+/gd = 0.313m/s, Re = 26 632, Eo := p1 U2 d/o = 5.55

Isothermal computations at 7~ = 800 — 900 °C (melted steel) — ¢ = 10~8
Symmetric/Non-symmetric flows with large shape deformations
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Sharp benchmark of two-phase bubble dynamics I1

K-VPP, with ¢ = 1071%, mesh size=128 x 256, N = 128
Lagrangian front tracking markers, 6t such that CFL = 0.5

LEFT : pressure field p € [—9235, 0] Pa (p = 0 at bottom left) at time ¢ = 0.05 s
CENTER : vertical velocity field v, € [—0.48, 1.55] m /s and streamlines at

t = 0.05 s — RiGgHT : Some bubble positions and shapes during time and vertical
velocity field v, at final time ¢ = 0.2 s.
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© Conclusion and perspectives
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Concluston

Accurate, fast and robust methods for constant or variable density flows
Second-order accuracy in time with BDF2 or Crank-Nicolson schemes : Ok

Open (Neumann stress) boundary conditions : Ok

Optimal error estimates for Navier-Stokes problems with Dirichlet
or Neumann B.C. : Ok

Generalization of VPP, /K-VPP,. methods for low-Mach number flows
= now the parameter € must be chosen such that :

M2

VE or YM?>=pV3(edt) K1

edt =xT=7vX85 =

where

® X7, Xs : isothermal or isentropic compressibility coefficients of the
fluid

v := ¢p/cy > 1, i.e. ratio of heat capacities of the fluid

Mach number : M := V/¢

V : given reference velocity

¢ : speed of acoustic waves in the fluid

Conclusion and perspectives
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Some perspectives...

@ Theoretical analysis for homogeneous Navier-Stokes :
unconditional stability, convergence, error estimates
= Ok for both Dirichlet and open boundary conditions

@ Convergence analysis in the time-space fully discrete setting :
in progress...

@ Theoretical analysis for non-homogeneous multiphase Navier-Stokes :
open problem without regularization for VPP,
but seems Ok for K-VPP,

@ Magnetohydrodynamics (MHD) or plasma transport problems :
=divB =0

@ fluid-structure interaction problems with Discrete Mechanics :
Caltagirone and PhA., Turbulence & Interactions Conf. (2018)
in Proceedings book, Springer (2021)

THANK YOU FOR ATTENTION

Conclusion and perspectives 53



	Velocity-pressure coupling with divbold0mu mumu vvvvvv=0
	State of the art
	Scalar incremental projection (SIP) methods
	New approach: Vector Penalty-Projection (VPP)

	Theoretical foundations of VPP methods
	Fast discrete Helmholtz-Hodge decompositions
	A splitting penalty method for saddle-point

	The family of VPP methods for constant density
	Approximate divergence-free splitting methods
	The artificial compressibility method revisited
	Convergence analysis of VPP for Navier-Stokes

	The family of VPP methods for variable density
	Fast VPP for multiphase N.S. flows
	Fast Kinematic-VPP for multiphase N.S. flows

	Sharp test cases with VPP/K-VPP methods
	Free fall of a heavy rigid ball: large density ratio
	Two-phase capillary statics: Laplace's law
	Two-phase bubble dynamics: weak stresses
	Two-phase bubble dynamics: strong stresses

	Conclusion and perspectives

