Core properties / drawbacks of DDFV 000	3D full-diamond NDD scheme	3D split-diamond NDD scheme	Conclusions 00

From the DDFV ideas to Nodal Discrete Duality (NDD) schemes on general meshes

Boris Andreianov Institut Denis Poisson, University of Tours

joint work with

El Houssaine Quenjel Centrale-Supéléc, Pomacle, France

Workshop "DDFV Method and Applications" CIRM, Luminy, Oct. 2022

Core properties / drawbacks of DDFV	3D CeVeFE-DDFV 000000	3D full-diamond NDD scheme	3D split-diamond NDD scheme	Conclusions

Remarks on the standard DDFV schemes

2 The 2D NDD (nodal discrete duality) scheme

- 3 The 3D full-diamond NDD scheme
- 4 The 3D split-diamond NDD scheme

5 Conclusions

Core properties / drawbacks of DDFV •OO	3D CeVeFE-DDFV 000000	3D full-diamond NDD scheme	3D split-diamond NDD scheme	Conclusions 00

Remarks on standard DDFV

Core properties / drawbacks of DDFV OOO	3D CeVeFE-DDFV 000000	3D full-diamond NDD scheme	3D split-diamond NDD scheme	Conclusions OO
-				

The core properties of DDFV recalled

Some conclusions from Part I:

- DDFV appears to be quite successful in approximating gradients and fluxes, but the advantage of aproximation of the solution itself via a double/triple set of DOFs seems doubtful
- the analytical framework of DDFV schemes mainly consists of
 - meshes, discrete spaces, gradient and divergence operators
 - duality calculus for these operators
 - strong consistency for $\nabla^{\mathcal{D}}$ (exactness on affine functions), a weak (dual) consistency property for div^T

A remark

- DDFV (like standard finite volume schemes) uses conservative fluxes at interfaces of volumes ("local conservativity"). The local conservativity leads to discrete duality and dual consistency of div^T, which are core properties... itself, it's not a core property!
- In turn, Discrete Duality is a kind of conservativity property

Core properties / drawbacks of DDFV OOO	3D CeVeFE-DDFV 000000	3D full-diamond NDD scheme	3D split-diamond NDD scheme	Conclusions OO

The core properties of DDFV recalled

Some conclusions from Part I:

- DDFV appears to be quite successful in approximating gradients and fluxes, but the advantage of aproximation of the solution itself via a double/triple set of DOFs seems doubtful
- the analytical framework of DDFV schemes mainly consists of
 - meshes, discrete spaces, gradient and divergence operators
 - duality calculus for these operators
 - strong consistency for $\nabla^{\mathcal{D}}$ (exactness on affine functions), a weak (dual) consistency property for $\text{div}^{\mathcal{T}}$

A remark

- DDFV (like standard finite volume schemes) uses conservative fluxes at interfaces of volumes ("local conservativity"). The local conservativity leads to discrete duality and dual consistency of div^T, which are core properties... itself, it's not a core property!
- In turn, Discrete Duality is a kind of conservativity property

Core properties / drawbacks of DDFV OOO	3D CeVeFE-DDFV 000000	3D full-diamond NDD scheme	3D split-diamond NDD scheme	Conclusions 00
-				

The core properties of DDFV recalled

Some conclusions from Part I:

- DDFV appears to be quite successful in approximating gradients and fluxes, but the advantage of aproximation of the solution itself via a double/triple set of DOFs seems doubtful
- the analytical framework of DDFV schemes mainly consists of
 - meshes, discrete spaces, gradient and divergence operators
 - duality calculus for these operators
 - strong consistency for $\nabla^{\mathcal{D}}$ (exactness on affine functions), a weak (dual) consistency property for $\text{div}^{\mathcal{T}}$

A remark

- DDFV (like standard finite volume schemes) uses conservative fluxes at interfaces of volumes ("local conservativity"). The local conservativity leads to discrete duality and dual consistency of div^T, which are core properties... itself, it's not a core property!
- In turn, Discrete Duality is a kind of conservativity property

Core properties / drawbacks of DDFV	3D CeVeFE-DDFV	3D full-diamond NDD scheme	3D split-diamond NDD scheme	Conclusions
	000000	00000	0000	00

Three drawbacks of standard DDFV

Drawbacks of standard DDFV:

- Too many unknowns involved (cells + vertices of the primal mesh; even worse in 3D CeVeFE), without apparent benefit for the solution approximation
- In case of jump-discontinuous diffusion tensors, the more sophisticated m-DDFV scheme [Boyer, Hubert'08] has a much better convergence order than standard DDFV. m-DDFV requires resolution of extra equations, per interface.
- The convergence analysis requires proving that M and M* components converge to the same limit... For this sake, addition of a penalization operator looking like -h^T Δ^{MUM*} u^T [A., Bendahmane, Karlsen'10], seems to be needed in general.

Core properties / drawbacks of DDFV 000	3D CeVeFE-DDFV ●00000	3D full-diamond NDD scheme	3D split-diamond NDD scheme	Conclusions OO

The 2D NDD scheme

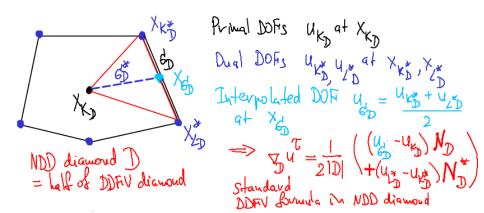
...which possesses all core properties of DDFV... (if fluxes' conservativity is omitted) and which is free of three DDFV drawbacks!

Core properties	drawbacks	DDFV

3D CeVeFE-DDFV 0●0000 3D full-diamond NDD scheme

3D split-diamond NDD scheme

Conclusions 00

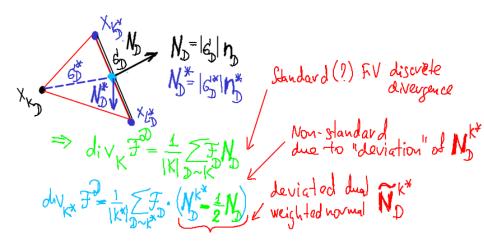


Core properties / drawbacks of DDFV	3D CeVeFE-DDFV	3D full-diamond N
	00000	

mond NDD scheme 3D spli

3D split-diamond NDD scheme

Conclusions 00



3D CeVeFE-DDFV

3D full-diamond NDD scheme

3D split-diamond NDD scheme

Conclusions 00

- NDD uses the DDFV meshes / discrete spaces / [.,.], {.,.}.
 NDD diamonds D ∈ D are half-diamonds, compared to DDFV.
- The NDD Discrete gradient in defined in the usual DDFV way, with the interpolated interface value $u_{\sigma_{\mathcal{D}}} := \frac{1}{2} (u_{K_{\mathcal{D}}^*} + u_{L_{\mathcal{D}}^*})$,
- Per-diamond weighted normals: the usual ones N_{D} , $N_{D}^{K^{\star}} = \pm N_{D}^{\star}$ but also the deviated dual normal $\boxed{\widetilde{N}_{D}^{K^{\star}} := N_{D}^{K^{\star}} - \frac{1}{2}N_{D}}$
- NDD Discrete Divergence is seemingly standard, up to two issues

$$\mathsf{div}_{\mathcal{K}}\mathcal{F}^{\mathfrak{D}} := \frac{1}{|\mathcal{K}|} \sum_{\mathcal{D} \sim \mathcal{K}} \mathcal{F}_{\mathcal{D}} \cdot \mathbf{N}_{\mathcal{D}}$$

$$\operatorname{div}_{K^{\star}}\mathcal{F}^{\mathfrak{D}} := \frac{1}{|K^{\star}|} \sum_{\mathcal{D} \sim K^{\star}} \mathcal{F}_{\mathcal{D}} \cdot \widetilde{\mathbf{N}}_{\mathcal{D}}^{K^{\star}}$$

3D CeVeFE-DDFV

3D full-diamond NDD scheme

3D split-diamond NDD scheme

 $\operatorname{div}_{K^*} \mathcal{F}^{\mathfrak{D}} := \frac{1}{|K^*|} \sum_{\mathcal{D} \sim K^*} \mathcal{F}_{\mathcal{D}} \cdot \mathbf{N}_{\mathcal{D}}^{K^*}$

Conclusions 00

- NDD uses the DDFV meshes / discrete spaces / [.,.], {.,.}.
 NDD diamonds D ∈ D are half-diamonds, compared to DDFV.
- The NDD Discrete gradient in defined in the usual DDFV way, with the interpolated interface value $u_{\sigma_{\mathcal{D}}} := \frac{1}{2} (u_{K_{\mathcal{D}}^{\star}} + u_{L_{\mathcal{D}}^{\star}})$,
- Per-diamond weighted normals: the usual ones N_{D} , $N_{D}^{K^{\star}} = \pm N_{D}^{\star}$ but also the deviated dual normal $\boxed{\widetilde{N}_{D}^{K^{\star}} := N_{D}^{K^{\star}} - \frac{1}{2}N_{D}}$
- NDD Discrete Divergence is seemingly standard, up to two issues

$$\mathsf{div}_{\mathcal{K}} \mathcal{F}^{\mathfrak{D}} := \frac{1}{|\mathcal{K}|} \sum_{\mathcal{D} \sim \mathcal{K}} \mathcal{F}_{\mathcal{D}} \cdot \mathbf{N}_{\mathcal{D}}$$

3D CeVeFE-DDFV

3D full-diamond NDD scheme

3D split-diamond NDD scheme

Conclusions 00

- NDD uses the DDFV meshes / discrete spaces / [[.,.]], {.,.}.
 NDD diamonds D ∈ D are half-diamonds, compared to DDFV.
- The NDD Discrete gradient in defined in the usual DDFV way, with the interpolated interface value $u_{\sigma_{\mathcal{D}}} := \frac{1}{2} (u_{K_{\mathcal{D}}^{\star}} + u_{L_{\mathcal{D}}^{\star}})$,
- Per-diamond weighted normals: the usual ones N_{D} , $N_{D}^{K^{\star}} = \pm N_{D}^{\star}$ but also the deviated dual normal $\boxed{\widetilde{N}_{D}^{K^{\star}} := N_{D}^{K^{\star}} - \frac{1}{2}N_{D}}$
- NDD Discrete Divergence is seemingly standard, up to two issues

$$\mathsf{div}_{\mathcal{K}} \mathcal{F}^{\mathfrak{D}} := \frac{1}{|\mathcal{K}|} \sum_{\mathcal{D} \sim \mathcal{K}} \mathcal{F}_{\mathcal{D}} \cdot \mathbf{N}_{\mathcal{D}}$$

$$\operatorname{\mathsf{div}}_{K^{\star}}\mathcal{F}^{\mathfrak{D}} := \frac{1}{|K^{\star}|} \sum_{\mathcal{D} \sim K^{\star}} \mathcal{F}_{\mathcal{D}} \cdot \widetilde{\mathbf{N}}_{\mathcal{D}}^{K^{\star}}$$

- Obvious exactness of Discrete Gradient (it is the FE gradient!)
- Discrete fields have jumps across primal interfaces
 → Entries div_K of NDD Discrete Divergence look standard but the fluxes are non-conservative (against the FV orthodoxy !)
- Entries div_{K*} of the NDD Discrete Divergence are non-obvious: a "deviated normal" N^{K*}_D appears in the place of expected N^{K*}_D → weak consistency of div^T_O ℙ^D is not obvious
- Actually the expression of "deviated normal" N_D^{K*} is taylored for proving Discrete Duality (a mimetic inspiration!). Indirectly, weak consistency of Discrete Divergence follows.
- NDD is free from the three above indicated drawbacks of DDFV!
 - the cell DOFs $(u_{\kappa})_{\kappa \in \mathfrak{M}}$ are not coupled \rightarrow eliminated algebraically via Schur complement (within each Newton iteration, if nonlinearity)
 - discontinuity of diffusion tensor across *K*|*L* does not impact convergence orders because each \mathcal{D} is contained within one cell
 - compactness claim $(u^{\mathfrak{M}}, u^{\mathfrak{M}^*} \to u)$ is true without penalization because $\nabla_{\mathcal{D}} u^{\overline{T}}$ controls $u_{\mathcal{K}} - \frac{1}{2}(u_{\mathcal{K}^*} + u_{L^*})$

3D CeVeFE-DDFV 0000●0 3D full-diamond NDD scheme

3D split-diamond NDD scheme

Conclusions

Pecularities and advantages of NDD

- Obvious exactness of Discrete Gradient (it is the FE gradient!)
- Discrete fields have jumps across primal interfaces
 → Entries div_K of NDD Discrete Divergence look standard but the fluxes are non-conservative (against the FV orthodoxy !)
- Entries div_{K*} of the NDD Discrete Divergence are non-obvious: a "deviated normal" N^{K*}_D appears in the place of expected N^{K*}_D → weak consistency of div^T_O ℙ^D is not obvious
- Actually the expression of "deviated normal" N_D^{K*} is taylored for proving Discrete Duality (a mimetic inspiration!). Indirectly, weak consistency of Discrete Divergence follows.

• NDD is free from the three above indicated drawbacks of DDFV!

- the cell DOFs $(u_K)_{K \in \mathfrak{M}}$ are not coupled \rightarrow eliminated algebraically via Schur complement (within each Newton iteration, if nonlinearity)
- discontinuity of diffusion tensor across *K*|*L* does not impact convergence orders because each \mathcal{D} is contained within one cell
- compactness claim $(u^{\mathfrak{M}}, u^{\mathfrak{M}^*} \to u)$ is true without penalization because $\nabla_{\mathcal{D}} u^{\overline{T}}$ controls $u_{\mathcal{K}} - \frac{1}{2}(u_{\mathcal{K}^*} + u_{L^*})$

3D CeVeFE-DDFV 0000●0 3D full-diamond NDD scheme

3D split-diamond NDD scheme

Conclusions

- Obvious exactness of Discrete Gradient (it is the FE gradient!)
- Discrete fields have jumps across primal interfaces
 → Entries div_K of NDD Discrete Divergence look standard but the fluxes are non-conservative (against the FV orthodoxy !)
- Entries div_{K*} of the NDD Discrete Divergence are non-obvious: a "deviated normal" N^{K*}_D appears in the place of expected N^{K*}_D → weak consistency of div^T_O ℙ^D is not obvious
- Actually the expression of "deviated normal" N
 ^{K^{*}}
 is taylored for proving Discrete Duality (a mimetic inspiration!).
 Indirectly, weak consistency of Discrete Divergence follows.
- NDD is free from the three above indicated drawbacks of DDFV!
 - the cell DOFs $(u_{\kappa})_{\kappa \in \mathfrak{M}}$ are not coupled \rightarrow eliminated algebraically via Schur complement (within each Newton iteration, if nonlinearity)
 - discontinuity of diffusion tensor across *K*|*L* does not impact convergence orders because each \mathcal{D} is contained within one cell
 - compactness claim $(u^{\mathfrak{M}}, u^{\mathfrak{M}^*} \to u)$ is true without penalization because $\nabla_{\mathcal{D}} u^{\overline{T}}$ controls $u_{\mathcal{K}} - \frac{1}{2}(u_{\mathcal{K}^*} + u_{L^*})$

3D CeVeFE-DDFV 0000●0 3D full-diamond NDD scheme

3D split-diamond NDD scheme

Conclusions

- Obvious exactness of Discrete Gradient (it is the FE gradient!)
- Discrete fields have jumps across primal interfaces
 → Entries div_K of NDD Discrete Divergence look standard but the fluxes are non-conservative (against the FV orthodoxy !)
- Entries div_{K*} of the NDD Discrete Divergence are non-obvious: a "deviated normal" N^{K*}_D appears in the place of expected N^{K*}_D → weak consistency of div^T_O ℙ^D is not obvious
- Actually the expression of "deviated normal" N
 ^{K*}
 is taylored for proving Discrete Duality (a mimetic inspiration!).
 Indirectly, weak consistency of Discrete Divergence follows.
- NDD is free from the three above indicated drawbacks of DDFV!
 - the cell DOFs (*u_K*)_{K∈𝔅} are not coupled → eliminated algebraically via Schur complement (within each Newton iteration, if nonlinearity)
 - discontinuity of diffusion tensor across K/L does not impact convergence orders because each \mathcal{D} is contained within one cell
 - compactness claim $(u^{\mathfrak{M}}, u^{\mathfrak{M}^*} \to u)$ is true without penalization because $\nabla_{\mathcal{D}} u^{\overline{\mathcal{T}}}$ controls $u_{\mathcal{K}} - \frac{1}{2}(u_{\mathcal{K}^*} + u_{\mathcal{L}^*})$

3D CeVeFE-DDFV 0000●0 3D full-diamond NDD scheme

3D split-diamond NDD scheme

Conclusions

- Obvious exactness of Discrete Gradient (it is the FE gradient!)
- Discrete fields have jumps across primal interfaces
 → Entries div_K of NDD Discrete Divergence look standard but the fluxes are non-conservative (against the FV orthodoxy !)
- Entries div_{K*} of the NDD Discrete Divergence are non-obvious: a "deviated normal" N^{K*}_D appears in the place of expected N^{K*}_D → weak consistency of div⁷_O ℙ^① is not obvious
- Actually the expression of "deviated normal" N
 ^{K*}
 is taylored for proving Discrete Duality (a mimetic inspiration!).
 Indirectly, weak consistency of Discrete Divergence follows.
- NDD is free from the three above indicated drawbacks of DDFV!
 - the cell DOFs $(u_{\kappa})_{\kappa \in \mathfrak{M}}$ are not coupled \sim eliminated algebraically via Schur complement (within each Newton iteration, if nonlinearity)
 - discontinuity of diffusion tensor across *K*|*L* does not impact convergence orders because each \mathcal{D} is contained within one cell
 - compactness claim $(u^{\mathfrak{M}}, u^{\mathfrak{M}^*} \to u)$ is true without penalization because $\nabla_{\mathcal{D}} u^{\overline{\mathcal{T}}}$ controls $u_{\mathcal{K}} - \frac{1}{2}(u_{\mathcal{K}^*} + u_{\mathcal{L}^*})$

3D CeVeFE-DDFV 0000●0 3D full-diamond NDD scheme

3D split-diamond NDD scheme

Conclusions 00

- Obvious exactness of Discrete Gradient (it is the FE gradient!)
- Discrete fields have jumps across primal interfaces
 → Entries div_K of NDD Discrete Divergence look standard but the fluxes are non-conservative (against the FV orthodoxy !)
- Entries div_{K*} of the NDD Discrete Divergence are non-obvious: a "deviated normal" N^{K*}_D appears in the place of expected N^{K*}_D → weak consistency of div^T_O ℙ^D is not obvious
- Actually the expression of "deviated normal" N
 ^{K*}
 is taylored for proving Discrete Duality (a mimetic inspiration!).
 Indirectly, weak consistency of Discrete Divergence follows.
- NDD is free from the three above indicated drawbacks of DDFV!
 - the cell DOFs $(u_{\kappa})_{\kappa \in \mathfrak{M}}$ are not coupled \sim eliminated algebraically via Schur complement (within each Newton iteration, if nonlinearity)
 - discontinuity of diffusion tensor across *K*|*L* does not impact convergence orders because each \mathcal{D} is contained within one cell
 - compactness claim $(u^{\mathfrak{M}}, u^{\mathfrak{M}^{\star}} \to u)$ is true without penalization because $\nabla_{\mathcal{D}} u^{\overline{T}}$ controls $u_{K} - \frac{1}{2}(u_{K^{\star}} + u_{L^{\star}})$

Core properties / drawbacks of DDFV	3D CeVeFE-DDFV	3D full-diamond NDD scheme	3D split-diamond NDD scheme	Conclusions
	000000			

Discrete Duality proved [A., Quenjel preprint'22]

. . .

Core properties / drawbacks of DDFV	3D CeVeFE-DDFV	3D full-diamond NDD scheme	3D split-diamond NDD scheme	Conclusions
000	000000	●0000		OO

The 3D full-diamond NDD (uses 3D CeVe-DDFV gradient)

3D CeVeFE-DD

3D full-diamond NDD scheme

3D split-diamond NDD scheme

Conclusions

2D CVFE (co-volume) scheme gradient & 3D CeVe-DDFV gradient recalled.

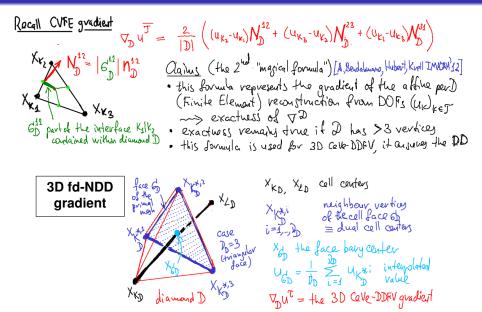
3D CeVeFE-DDFV

3D full-diamond NDD scheme

3D split-diamond NDD scheme

Conclusions 00

Discrete Gradient for the 3D full-diamond NDD scheme



3D CeVeFE-DDFV

3D full-diamond NDD scheme

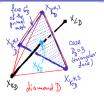
3D split-diamond NDD scheme

Conclusions 00

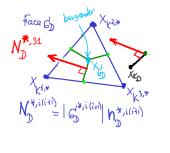
Discrete Divergence for the 3D full-diamond NDD scheme

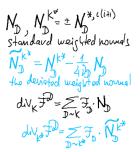
The 3D fd-NDD gradient is obtained like 3D-CEVe-DDFV

NB: coercivity OK if triangular faces or topologically cartesian mesh



3D fd-NDD divergence adapted to $[.,.] = \frac{1}{3} \sum_{K} \cdots + \frac{2}{3} \sum_{K} \cdots$





Claim: all the core features of DDFV hold for this "3D fd-NDD" scheme

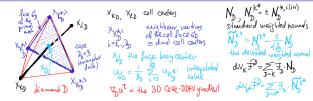
3D CeVeFE-DDFV

3D full-diamond NDD scheme

3D split-diamond NDD scheme

Conclusions 00

3D full-diamond NDD construction



Summary of 3D full-diamond NDD

- A 3D scheme with no face/edge unknowns and with rapid algebraic elimination of cell unknowns → in practice, a Nodal Scheme complexity
- A concecrated discrete gradient but exotic dicrete divergence; loss of flux conservation (but conservativity via Dicrete Duality)
- Exotic divergence is a mimetic one ~> Discrete Duality OK!
- Consistencies, compactness OK / "m-NDD", penalization not needed
- Coercivity not OK if faces have general shape

 Q. Can one find for a 3D NDD scheme with unconditional coercivity ?
 Q. 3D fd-NDD uses the CeVe-DDFV (Pierre/Hermeline/ABHK) gradient. What about the CeVeFE (Coudière-Hubert) gradient idea?

3D CeVeFE-DDFV

3D full-diamond NDD scheme

3D split-diamond NDD scheme

Conclusions 00

3D full-diamond NDD construction



Summary of 3D full-diamond NDD

- A 3D scheme with no face/edge unknowns and with rapid algebraic elimination of cell unknowns → in practice, a Nodal Scheme complexity
- A concecrated discrete gradient but exotic dicrete divergence; loss of flux conservation (but conservativity via Dicrete Duality)
- Exotic divergence is a mimetic one → Discrete Duality OK!
- Consistencies, compactness OK / "m-NDD", penalization not needed
- Coercivity not OK if faces have general shape
- Q. Can one find for a 3D NDD scheme with unconditional coercivity ?
- **Q.** 3D fd-NDD uses the CeVe-DDFV (Pierre/Hermeline/ABHK) gradient. What about the CeVeFE (Coudière-Hubert) gradient idea?

Core properties / drawbacks of DDFV	3D CeVeFE-DDFV 000000	3D full-diamond NDD scheme	3D split-diamond NDD scheme ●000	Conclusions OO

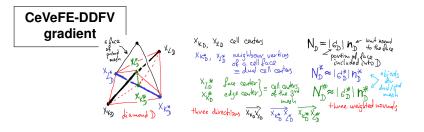
The 3D split-diamond NDD (uses 3D CeVeFE-DDFV gradient)

...here Discrete Divergence gets wildly exotic...

Core properties / drawbacks of DDFV	3D CeVeFE-DDFV	3D full-diamond NDD scheme

3D split-diamond NDD scheme

The 3D CeVeFE-DDFV gradient recalled



$$\nabla_{\mathcal{D}} u^{\overline{\mathcal{T}}} := \frac{1}{3|\mathcal{D}|} \left((u_{L_{\mathcal{D}}} - u_{K_{\mathcal{D}}}) \mathbf{N}_{\mathcal{D}} + (u_{L_{\mathcal{D}}^{\star}} - u_{K_{\mathcal{D}}^{\star}}) \mathbf{N}_{\mathcal{D}}^{\star} + (u_{L_{\mathcal{D}}^{\#}} - u_{K_{\mathcal{D}}^{\#}}) \mathbf{N}_{\mathcal{D}}^{\#} \right)$$

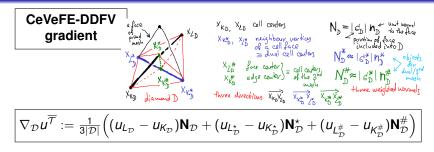
3D CeVeFE-DDFV

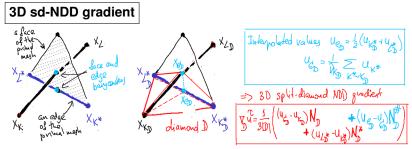
3D full-diamond NDD scheme

3D split-diamond NDD scheme

Conclusions 00

Discrete Gradient for the 3D split-diamond NDD scheme





3D CeVeFE-DDFV

3D full-diamond NDD scheme

3D split-diamond NDD scheme

Conclusions

Ready for the 3D split-diamond NDD Discrete Divergence?

The 3D sd-NDD gradient is obtained like 3D CeVeFE-DDFV **NB:** coercivity always OK

3D sd-NDD divergence (!) adapted to $[.,.] = \frac{1}{3} \sum_{K} \cdots + \frac{2}{3} \sum_{K} (!)$

$$N_{\mathcal{D}}, N_{\mathcal{D}}^{k*} = \pm N_{\mathcal{D}}^{*}, N_{\mathcal{D}}^{\#} \text{ are the usual} \text{ Usual div}_{k} \mathcal{F}^{2} = \frac{1}{|k|} \sum_{\mathcal{D} \times k} \mathcal{F} \cdot \mathcal{N}_{\mathcal{D}}^{*}$$

$$\frac{1}{|k|} \sum_{\mathcal{D} \times k} \mathcal{F} \cdot \mathcal{N}_{\mathcal{D}}^{*}$$

Claim: all the core features of DDFV hold for this "3D sd-NDD" scheme

Core properties / drawbacks of DDFV 000	3D CeVeFE-DDFV 000000	3D full-diamond NDD scheme	3D split-diamond NDD scheme	Conclusions ●O
Conclusions				

- NDD enters the analytical framework of DDFV schemes:
 - meshes, discrete spaces, gradient and divergence operators
 - duality calculus for these operators
 - strong consistency for $\nabla^{\mathcal{D}},$ dual consistency for $\text{div}^{\mathcal{T}}$
 - \rightsquigarrow compactness, reconstruction

but it lacks local conservation

NDD has the following advantages over DDFV

- rapid elimination of cell unknowns; in 3D, no face+edge unknowns
 → in practice, NDD can be seen as a *nodal* scheme
- direct use on piecewise continuous diffusion tensors (no need for "m-NDD")
- no need to penalize $u^{\mathfrak{M}} u^{\mathfrak{M}^*}$
- there are two different kinds of 3D DDFV schemes
 → 3D fd-NDD, coercive if faces have 3 or 4 vertices
 → 3D sd-NDD, more cumbersome but unconditionally coercive
- the 2D co-volume scheme on general meshes is non-coercive; the split-diamond approach offers a coercive variant (in progress)

Core properties / drawbacks of DDFV 000	3D CeVeFE-DDFV 000000	3D full-diamond NDD scheme	3D split-diamond NDD scheme	Conclusions ●O
Conclusions				

- NDD enters the analytical framework of DDFV schemes:
 - meshes, discrete spaces, gradient and divergence operators
 - duality calculus for these operators
 - strong consistency for $\nabla^{\mathcal{D}},$ dual consistency for $\text{div}^{\mathcal{T}}$
 - \rightsquigarrow compactness, reconstruction

but it lacks local conservation

- NDD has the following advantages over DDFV
 - rapid elimination of cell unknowns; in 3D, no face+edge unknowns
 → in practice, NDD can be seen as a *nodal* scheme
 - direct use on piecewise continuous diffusion tensors (no need for "m-NDD")
 - no need to penalize $u^{\mathfrak{M}} u^{\mathfrak{M}^*}$
- there are two different kinds of 3D DDFV schemes
 → 3D fd-NDD, coercive if faces have 3 or 4 vertices
 → 3D sd-NDD, more cumbersome but unconditionally coerci
- the 2D co-volume scheme on general meshes is non-coercive; the split-diamond approach offers a coercive variant (in progress)

Core properties / drawbacks of DDFV 000	3D CeVeFE-DDFV 000000	3D full-diamond NDD scheme	3D split-diamond NDD scheme	Conclusions ●O
Conclusions				

- NDD enters the analytical framework of DDFV schemes:
 - meshes, discrete spaces, gradient and divergence operators
 - duality calculus for these operators
 - strong consistency for $\nabla^{\mathcal{D}},$ dual consistency for $\text{div}^{\mathcal{T}}$
 - \rightsquigarrow compactness, reconstruction

but it lacks local conservation

- NDD has the following advantages over DDFV
 - rapid elimination of cell unknowns; in 3D, no face+edge unknowns
 → in practice, NDD can be seen as a *nodal* scheme
 - direct use on piecewise continuous diffusion tensors (no need for "m-NDD")
 - no need to penalize $u^{\mathfrak{M}} u^{\mathfrak{M}^*}$
- there are two different kinds of 3D DDFV schemes
 3D fd-NDD, coercive if faces have 3 or 4 vertices
 - \sim 3D sd-NDD, more cumbersome but unconditionally coercive
- the 2D co-volume scheme on general meshes is non-coercive; the split-diamond approach offers a coercive variant (in progress)

Core properties / drawbacks of DDFV 000	3D CeVeFE-DDFV 000000	3D full-diamond NDD scheme	3D split-diamond NDD scheme	Conclusions O

Thank you / Merci !