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The core properties of DDFV recalled

Some conclusions from Part I:

DDFV appears to be quite successful in approximating gradients
and fluxes, but the advantage of aproximation of the solution
itself via a double/triple set of DOFs seems doubtful

the analytical framework of DDFV schemes mainly consists of

meshes, discrete spaces, gradient and divergence operators
duality calculus for these operators
strong consistency for ∇D (exactness on affine functions),
a weak (dual) consistency property for divT

A remark

DDFV (like standard finite volume schemes) uses conservative
fluxes at interfaces of volumes ("local conservativity"). The local
conservativity leads to discrete duality and dual consistency of
divT , which are core properties... itself, it’s not a core property!

In turn, Discrete Duality is a kind of conservativity property
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Three drawbacks of standard DDFV

Drawbacks of standard DDFV:

Too many unknowns involved
(cells + vertices of the primal mesh; even worse in 3D CeVeFE),
without apparent benefit for the solution approximation

In case of jump-discontinuous diffusion tensors,
the more sophisticated m-DDFV scheme [Boyer, Hubert’08]
has a much better convergence order than standard DDFV.
m-DDFV requires resolution of extra equations, per interface.

The convergence analysis requires proving that M and M∗

components converge to the same limit... For this sake,
addition of a penalization operator looking like −hT∆M∪M?

uT

[A., Bendahmane, Karlsen’10], seems to be needed in general.



Core properties / drawbacks of DDFV 3D CeVeFE-DDFV 3D full-diamond NDD scheme 3D split-diamond NDD scheme Conclusions

The 2D NDD scheme

...which possesses all core properties of DDFV...
(if fluxes’ conservativity is omitted)

and which is free of three DDFV drawbacks!
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2D NDD scheme [A., Quenjel preprint’22]
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2D NDD scheme [A., Quenjel preprint’22]

NDD uses the DDFV meshes / discrete spaces /
[[
., .
]]
,
{{
., .
}}

.
NDD diamonds D ∈ D are half-diamonds, compared to DDFV.
The NDD Discrete gradient in defined in the usual DDFV way,

with the interpolated interface value uσD := 1
2

(
uK?
D

+ uL?
D

)
,

Per-diamond weighted normals: the usual ones ND, NK?

D = ±N?D
but also the deviated dual normal ÑK?

D := NK?

D − 1
2 ND

NDD Discrete Divergence is seemingly standard, up to two issues

divKFD := 1
|K |

∑
D∼K

FD · ND divK?FD := 1
|K?|

∑
D∼K? FD · ÑK?

D
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Pecularities and advantages of NDD

Obvious exactness of Discrete Gradient (it is the FE gradient!)
Discrete fields have jumps across primal interfaces
; Entries divK of NDD Discrete Divergence look standard
but the fluxes are non-conservative (against the FV orthodoxy !)
Entries divK? of the NDD Discrete Divergence are non-obvious:
a “deviated normal” ÑK?

D appears in the place of expected NK?

D
; weak consistency of divT◦ PD is not obvious
Actually the expression of "deviated normal" ÑK?

D
is taylored for proving Discrete Duality (a mimetic inspiration!).
Indirectly, weak consistency of Discrete Divergence follows.
NDD is free from the three above indicated drawbacks of DDFV!
· the cell DOFs (uK )K∈M are not coupled ; eliminated algebraically

via Schur complement (within each Newton iteration, if nonlinearity)
· discontinuity of diffusion tensor across K|L does not impact

convergence orders because each D is contained within one cell
· compactness claim (uM, uM?

→ u) is true without penalization
because ∇DuT controls uK − 1

2 (uK? + uL?)



Core properties / drawbacks of DDFV 3D CeVeFE-DDFV 3D full-diamond NDD scheme 3D split-diamond NDD scheme Conclusions

Pecularities and advantages of NDD

Obvious exactness of Discrete Gradient (it is the FE gradient!)
Discrete fields have jumps across primal interfaces
; Entries divK of NDD Discrete Divergence look standard
but the fluxes are non-conservative (against the FV orthodoxy !)
Entries divK? of the NDD Discrete Divergence are non-obvious:
a “deviated normal” ÑK?
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D
is taylored for proving Discrete Duality (a mimetic inspiration!).
Indirectly, weak consistency of Discrete Divergence follows.
NDD is free from the three above indicated drawbacks of DDFV!
· the cell DOFs (uK )K∈M are not coupled ; eliminated algebraically

via Schur complement (within each Newton iteration, if nonlinearity)
· discontinuity of diffusion tensor across K|L does not impact

convergence orders because each D is contained within one cell
· compactness claim (uM, uM?

→ u) is true without penalization
because ∇DuT controls uK − 1

2 (uK? + uL?)



Core properties / drawbacks of DDFV 3D CeVeFE-DDFV 3D full-diamond NDD scheme 3D split-diamond NDD scheme Conclusions

Pecularities and advantages of NDD

Obvious exactness of Discrete Gradient (it is the FE gradient!)
Discrete fields have jumps across primal interfaces
; Entries divK of NDD Discrete Divergence look standard
but the fluxes are non-conservative (against the FV orthodoxy !)
Entries divK? of the NDD Discrete Divergence are non-obvious:
a “deviated normal” ÑK?
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Discrete Duality proved [A., Quenjel preprint’22]

. . .
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The 3D full-diamond NDD
(uses 3D CeVe-DDFV gradient)
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2D CVFE (co-volume) scheme gradient
& 3D CeVe-DDFV gradient recalled.
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Discrete Gradient for the 3D full-diamond NDD scheme

3D fd-NDD
gradient
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Discrete Divergence for the 3D full-diamond NDD scheme

The 3D fd-NDD gradient
is obtained like 3D-CEVe-DDFV
NB: coercivity OK if triangular faces

or topologically cartesian mesh

3D fd-NDD divergence adapted to
[[
., .
]]

= 1
3

∑
K · · ·+

2
3

∑
K . . .

Claim: all the core features of DDFV hold for this "3D fd-NDD" scheme
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3D full-diamond NDD construction

Summary of 3D full-diamond NDD
A 3D scheme with no face/edge unknowns and with rapid algebraic
elimination of cell unknowns ; in practice, a Nodal Scheme complexity

A concecrated discrete gradient but exotic dicrete divergence;
loss of flux conservation (but conservativity via Dicrete Duality)

Exotic divergence is a mimetic one ; Discrete Duality OK!

Consistencies, compactness OK / "m-NDD", penalization not needed

Coercivity not OK if faces have general shape

Q. Can one find for a 3D NDD scheme with unconditional coercivity ?
Q. 3D fd-NDD uses the CeVe-DDFV (Pierre/Hermeline/ABHK) gradient.

What about the CeVeFE (Coudière-Hubert) gradient idea?
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The 3D split-diamond NDD
(uses 3D CeVeFE-DDFV gradient)

...here Discrete Divergence gets wildly exotic...
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The 3D CeVeFE-DDFV gradient recalled

CeVeFE-DDFV
gradient

∇DuT := 1
3|D|

(
(uLD − uKD )ND + (uL?

D
− uK?

D
)N?D + (uL#

D
− uK#

D
)N#
D

)
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Discrete Gradient for the 3D split-diamond NDD scheme

CeVeFE-DDFV
gradient

∇DuT := 1
3|D|

(
(uLD − uKD )ND + (uL?

D
− uK?

D
)N?D + (uL#

D
− uK#

D
)N#
D

)
3D sd-NDD gradient
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Ready for the 3D split-diamond NDD Discrete Divergence?

The 3D sd-NDD gradient
is obtained like 3D CeVeFE-DDFV
NB: coercivity always OK

3D sd-NDD divergence (!) adapted to
[[
., .
]]

= 1
3

∑
K · · ·+

2
3

∑
K (!)

Claim: all the core features of DDFV hold for this "3D sd-NDD" scheme
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Conclusions

NDD enters the analytical framework of DDFV schemes:
meshes, discrete spaces, gradient and divergence operators
duality calculus for these operators
strong consistency for ∇D, dual consistency for divT

; compactness, reconstruction
but it lacks local conservation
NDD has the following advantages over DDFV

rapid elimination of cell unknowns; in 3D, no face+edge unknowns
; in practice, NDD can be seen as a nodal scheme
direct use on piecewise continuous diffusion tensors
(no need for "m-NDD")
no need to penalize uM − uM∗

there are two different kinds of 3D DDFV schemes
; 3D fd-NDD, coercive if faces have 3 or 4 vertices
; 3D sd-NDD, more cumbersome but unconditionally coercive

the 2D co-volume scheme on general meshes is non-coercive;
the split-diamond approach offers a coercive variant (in progress)
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Thank you / Merci !
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