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The core properties of DDFV recalled

Some conclusions from Part I:

@ DDFV appears to be quite successful in approximating gradients
and fluxes, but the advantage of aproximation of the solution
itself via a double/triple set of DOFs seems doubitful

@ the analytical framework of DDFV schemes mainly consists of

@ meshes, discrete spaces, gradient and divergence operators

@ duality calculus for these operators
@ strong consistency for V? (exactness on affine functions),

a weak (dual) consistency property for div”

A remark
@ DDFV (like standard finite volume schemes) uses conservative
fluxes at interfaces of volumes ("local conservativity"). The local
conservativity leads to discrete duality and dual consistency of
div”, which are core properties... itself, it's not a core property!

@ Inturn, Discrete Duality is a kind of conservativity property
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Three drawbacks of standard DDFV

Drawbacks of standard DDFV:

@ Too many unknowns involved
(cells + vertices of the primal mesh; even worse in 3D CeVeFE),
without apparent benefit for the solution approximation

@ In case of jump-discontinuous diffusion tensors,
the more sophisticated m-DDFV scheme [Boyer, Hubert’08]
has a much better convergence order than standard DDFV.
m-DDFV requires resolution of extra equations, per interface.

@ The convergence analysis requires proving that 9t and 2t*
components converge to the same limit... For this sake,
addition of a penalization operator looking like —h7 AT (T
[A., Bendahmane, Karlsen’10], seems to be needed in general.



The 2D NDD scheme

...which possesses all core properties of DDFV...
(if fluxes’ conservativity is omitted)

and which is free of three DDFV drawbacks!
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2D NDD scheme
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2D NDD scheme
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@ NDD uses the DDFV meshes/discrete spaces/[.,.], { 1.
NDD diamonds D € ® are half-diamonds, compared to DDFV.
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@ NDD uses the DDFV meshes/discrete spaces/[.,.], { }
NDD diamonds D € ® are half-diamonds, compared to DDFV.
@ The NDD Discrete gradient in defined in the usual DDFV way,

with the interpolated interface value | u,,, := %(UKE + uL;D) ,
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2D NDD scheme
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@ NDD uses the DDFV meshes/discrete spaces/[.,.], { 1.
NDD diamonds D € ® are half-diamonds, compared to DDFV.

@ The NDD Discrete gradient in defined in the usual DDFV way,
with the interpolated interface value | u,,, = %(UKB + ugs)

3

@ Per-diamond weighted normals: the usual ones Np, NK* = +N3,
but also the deviated dual normal | N&" .= N&™ — INp
@ NDD Discrete Divergence is seemingly standard, up to two issues

divkF® = g > Fp-Np| |divieF? = g Ypoke Fo - N
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Pecularities and advantages of NDD

@ Obvious exactness of Discrete Gradient (it is the FE gradient!)
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Pecularities and advantages of NDD

@ Obvious exactness of Discrete Gradient (it is the FE gradient!)
@ Discrete fields have jumps across primal interfaces
~» Entries divg of NDD Discrete Divergence look standard
but the fluxes are non-conservative (against the FV orthodoxy !)
@ Entries divk- of the NDD Discrete Divergence are non-obvious:
a “deviated normal” N&* appears in the place of expected NX
~» weak consistency of div’o P? is not obvious

@ Actually the expression of "deviated normal” Ng*
is taylored for proving Discrete Duality (a mimetic inspiration!).
Indirectly, weak consistency of Discrete Divergence follows.
@ NDD is free from the three above indicated drawbacks of DDFV!
- the cell DOFs (uk)keon are not coupled ~ eliminated algebraically
via Schur complement (within each Newton iteration, if nonlinearity)
- discontinuity of diffusion tensor across K|L does not impact
convergence orders because each D is contained within one cell
. compactness claim (u™, TR u) is true without penalization
because Vpu” controls ux — 5 (Uk+ + Up+)
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Discrete Duality proved
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The 3D full-diamond NDD
(uses 3D CeVe-DDFV gradient)
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2D CVFE (co-volume) scheme gradient
& 3D CeVe-DDFV gradient recalled.
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3D full-diamond NDD scheme

Discrete Gradient for the 3D full-diamond NDD scheme
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3D full-diamond NDD scheme
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Discrete Divergence for the 3D full-diamond NDD scheme
The 3D fd-NDD gradient
is obtained like 3D-CEVe-DDFV

NB: coercivity OK if triangular faces
or topologically cartesian mesh
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’ Claim: all the core features of DDFV hold for this "3D fd-NDD" scheme




3D full-diamond NDD scheme

[e]e]e]e] }

3D full-diamond NDD construction
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Summary of 3D full-diamond NDD

@ A 3D scheme with no face/edge unknowns and with rapid algebraic
elimination of cell unknowns ~ in practice, a Nodal Scheme complexity

@ A concecrated discrete gradient but exotic dicrete divergence;
loss of flux conservation (but conservativity via Dicrete Duality)

@ Exotic divergence is a mimetic one ~» Discrete Duality OK!
@ Consistencies, compactness OK /"m-NDD", penalization not needed
@ Coercivity not OK if faces have general shape
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3D full-diamond NDD construction
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Summary of 3D full-diamond NDD

@ A 3D scheme with no face/edge unknowns and with rapid algebraic
elimination of cell unknowns ~ in practice, a Nodal Scheme complexity

@ A concecrated discrete gradient but exotic dicrete divergence;
loss of flux conservation (but conservativity via Dicrete Duality)

@ Exotic divergence is a mimetic one ~» Discrete Duality OK!
@ Consistencies, compactness OK /"m-NDD", penalization not needed
@ Coercivity not OK if faces have general shape

Q. Can one find for a 3D NDD scheme with unconditional coercivity ?

Q. 3D fd-NDD uses the CeVe-DDFV (Pierre/Hermeline/ABHK) gradient.
What about the CeVeFE (Coudiére-Hubert) gradient idea?
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The 3D split-diamond NDD
(uses 3D CeVeFE-DDFV gradient)

...here Discrete Divergence gets wildly exotic...
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The 3D CeVeFE-DDFV gradient recalled

CeVeFE-DDFV ‘
radient
g & fece " )(Kb, % coll coufes Nl) ‘dbl h P rj“h?tﬂ
) . Lhouy yerk: X
/ K, %y :EA?; u&fvavuz u} L‘A(lnvlcﬁ(l\:éb
ST =dudalofs Noalging o

Xy ¥ d?o v
1 @ @ al caers
XE el i M« “ N3 ~\dD\h#

& e

> X% + Hml R

. — WL Wl (™

X@ Jawod DS Hhvee diackiony me xk,,)([‘ ey § s

Voul = ﬁ ((ULD = Up )N + (U, — Uk )N + (U2 — UK;)N?;)




3D split-diamond NDD scheme

[e]e] o]

Discrete Gradient for the 3D split-diamond NDD scheme
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Ready for the 3D split-diamond NDD Discrete Divergence?

The 3D sd-NDD gradient
is obtained like 3D CeVeFE-DDFV

NB: coercivity always OK
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Conclusions

@ NDD enters the analytical framework of DDFV schemes:
@ meshes, discrete spaces, gradient and divergence operators
e duality calculus for these operators
@ strong consistency for V2, dual consistency for div”
~» compactness, reconstruction
but it lacks local conservation
@ NDD has the following advantages over DDFV
o rapid elimination of cell unknowns; in 3D, no face+edge unknowns
~ in practice, NDD can be seen as a nodal scheme
e direct use on piecewise continuous diffusion tensors
(no need for "m-NDD")
@ no need to penalize u™ — u™
@ there are two different kinds of 3D DDFV schemes
~+ 3D fd-NDD, coercive if faces have 3 or 4 vertices
~» 3D sd-NDD, more cumbersome but unconditionally coercive

@ the 2D co-volume scheme on general meshes is non-coercive;
the split-diamond approach offers a coercive variant (in progress)
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Thank you / Merci !
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