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Motivation

In this work, we are interested in solving an Helmholtz like equation:

where:  is a 2x2 symmetric positive definite matrix,A

−div(A∇u) + ia ⋅ ∇u + μu = f

 is a vecteur of ,a ℝ2

 is a real constant.μ
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where:  is a 2x2 symmetric positive definite matrix,A

−div(A∇u) + ia ⋅ ∇u + μu = f

 is a vecteur of ,a ℝ2

 is a real constant.μ

This type of equation occurs in several contexts:

The convected Helmholtz  equation 

H. Barucq et al, HDG and HDG+ methods for harmonic 
wave problems with convections, 2021 v

f

( ,  ,  )A = c0I−vvt a = − 2ωv μ = − ω2

−div((c0−vvt)∇u) − 2iωv ⋅ ∇u+ω2u = f
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Motivation

In this work, we are interested in solving an Helmholtz like equation:

−div(A∇u) + ia ⋅ ∇u + μu = f

where:  is a 2x2 symmetric positive definite matrix,A

 is a vecteur of ,a ℝ2

 is a real constant.μ

This type of equation occurs in several contexts:

The convected Helmholtz  equation ( ,  ,  )A = c0I−vvt a = − 2ωv μ = − ω2

The Gröss-Pitaevskii  equation (computation of the ground states) 

I. Danaila et al, Computation of ground states of the Gröss-Pitaevskii 
functional via Riemannian optimization, 2017 
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Motivation

In this work, we are interested in solving an Helmholtz like equation:

−div(A∇u) + ia ⋅ ∇u + μu = f

where:  is a 2x2 symmetric positive definite matrix,A

 is a vecteur of ,a ℝ2

 is a real constant.μ

This type of equation occurs in several contexts:

The convected Helmholtz  equation ( ,  ,  )A = c0I−vvt a = − 2ωv μ = − ω2

The Gröss-Pitaevskii  equation (computation of the ground states) 

The wave-ray  equation

P. Verburg et al, Multi-level wave-ray method for 2d Helmholtz equation, 2010 

( ,  ,  )A = I a = v μ = 0

−Δu+ia ⋅ ∇u = f
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Motivation

In this work, we are interested in solving an Helmholtz like equation:

−div(A∇u) + ia ⋅ ∇u + μu = f

where:  is a 2x2 symmetric positive definite matrix,A

 is a vecteur of ,a ℝ2

 is a real constant.μ

Goal:    Propose an efficient iterative algorithm of resolution

In short, it is as difficult as solving the Helmholtz equation !!

O.G. Ernst et al, Why is it difficult to solve the Helmholtz equation ? 2012 
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2.   Link with Helmholtz equation

4.   An alternated iterative algorithm

5.   Conclusion

3.   Convergence analysis on a toy problem
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Link with the Helmholtz equation

Let us consider u solution to

−div(A∇u) + ia ⋅ ∇u + μu = f

Then, setting  with   one get thatu = eık⋅xv′￼ k =
1
2

A−1a

−div(A∇v′￼) + (μ−
∥a∥2

A−1

4 ) v′￼= f′￼
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−div(A∇u) + ia ⋅ ∇u + μu = f

Then, setting  with   one get thatu = eık⋅xv′￼ k =
1
2

A−1a

−div(A∇v′￼) + (μ−
∥a∥2

A−1

4 ) v′￼= f′￼

Remark: Even if , we see that the problem is not coercive if  is large.μ ≥ 0 ∥a∥
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Now, taking the change of variables  where  is a matrix, we get(x, y) ← T(x, y) T

−div(TATt ∇v) + (μ−
∥a∥2

A−1

4 ) v = f̃
′￼

A simple idea then to obtain the Helmholtz equation is to take  where .T = G−1 A = GGt

Remark: The choice of the transformation is not unique !
F.Q. Hu et al, On the use of Prandtl-Glauert-Lorentz transformation for acoustic 
scattering by rigid bodies with a uniform flow,  2019 

Y. Gao et al, Wave scattering in layered orthotropic media I: a stable PML and a high-
accuracy boundary integral equation method,  2021 
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Link with the Helmholtz equation

Cartesian PML formulation:

−div(A∇u) + ia ⋅ ∇u + μu = f
Convected Helmholtz equation
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Cartesian PML formulation:

−div(A∇u) + ia ⋅ ∇u + μu = f
Convected Helmholtz equation

−Δv+ ω̃ 2u = f
Helmholtz equation

−div(DPML ∇vPML)+ρPML ω̃ 2uPML = f

PML Helmholtz equation

Coordinates transformation

Complex stretching

(x → α(x)x)
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P. Marchner et al, Stable Perfectly Matched Layers with Lorentz transformation for the convected 
Helmholtz equation,  2019 

E. Becache et al, Perfectly matched layers for the convected Helmholtz equation,  2004 


J. Diaz et al., Stabilized Perfectly Matched layer for advective acoustics, 2003
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Illustration (Convected Hemlholtz):
,   




a = 2ωv ω = 20
v = [0.8, 0]t

A = Id − vvt
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Link with the Helmholtz equation

−div(A∇u) + ia ⋅ ∇u + μu = f
Convected Helmholtz equation Helmholtz equation

−Δv+ ω̃ 2u = f

PML Helmholtz equation

−div(DPML ∇vPML)+ρPML ω̃ 2uPML = f

Coordinates transformation

Complex stretching

(x → α(x)x)

Coordinates transformation

−div(APML ∇uPML) +
i
2

aPML ⋅ ∇uPML

+
i
2

div(aPMLuPML)+μPMLuPML = f

PML CH equation

Complex stretching

(x → α(x)x)

ABC (Absorbing Boundary Conditions):

N. Rouxelin et al, Prandtl-Glauert-Lorentz based Absorbing Boundary Conditions for 
the convected Helmholtz equation,  2021
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Cartesian PML formulation:
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Convergence analysis on a toy problem

Formulation of the problem

−div(A∇u) + ia ⋅ ∇u + μu = f

12

in     Ω
u = 0 on    ∂Ω

We will consider four configurations :

D-D D-PML PML-D PML-PML



Convergence analysis on a toy problem

Formulation of the problem

−div(A∇u) + ia ⋅ ∇u + μu = f

12

in     Ω
u = 0 on    ∂Ω

We will consider four configurations :

D-D D-PML PML-D PML-PML

In each case, we will consider a Schwarz iterative algorithm of resolution with 2 subdomains. 

ℒCHu1,n = f1

u1,n = 0 on    ∂Ω

in     Ω1

(∂x+p1,2)u1,n = (∂x+p1,2)u2,n−1 on    Γ12

β β β β



Convergence analysis on a toy problem

Formulation of the problem

−div(A∇u) + ia ⋅ ∇u + μu = f

12

in     Ω
u = 0 on    ∂Ω

We will consider four configurations :

D-D D-PML PML-D PML-PML

In each case, we will consider a Schwarz iterative algorithm of resolution with 2 subdomains. 

ℒCHu1,n = f1

u1,n = 0 on    ∂Ω

in     Ω1

(∂x+p1,2)u1,n = (∂x+p1,2)u2,n−1 on    Γ12

ℒCHu2,n = f2

u2,n = 0 on    ∂Ω

in     Ω2

(∂x+p2,1)u2,n = (∂x+p2,1)u1,n−1 on    Γ21

α α α αβ β β β



ℒCHu1,n = f1

u1,n = 0 on    ∂Ω
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Convergence analysis on a toy problem

Schwarz algorithm:
ℒCHu12,n = f2

u2,n = 0 on    ∂Ω

in     Ω2

(∂x+p2,1)u2,n = (∂x+p2,1)u1,n−1 on    Γ21
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Equivalent Schwarz algorithm for Helmholtz equation:
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Remarks: The convergence analysis can be done only for the Helmholtz equation.

To preserve the separable geometry in the Helmholtz case, we need to 
assume that  is diagonale.A
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M.J. Gander et al, Optimized schwarz methods with overlap for the helmholtz 
equation 2016



Convergence analysis on a toy problem

Convergence analysis (D-D case)
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A = Id Ω̃ = [0,1]2 Γ̃ 1,2 = {β} × [0,1]
Γ̃ 2,1 = {β} × [0,1]
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ỹΨξ = λξ

2 Ψξ, y ∈ [0,1]

Ψξ = 0, y ∈ {0,1}
where  is the complex stretched coordinate.ỹ

Remark: The eigenfunctions  form a complete basis of .(Ψξ)ξ
L2([ℓ,1 − ℓ])

L.F. Knockaert et al, On the completeness of eigenmodes in a parallel plate waveguide 
with a perfectly matched layer termination,  2002
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Interpretation: vi,n(ξ) = sin(ξπy)(Ai,n(ξ)ei𝒮(ξ)x+Bi,n(ξ)e−i𝒮(ξ)x)
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An alternated iterative algorithm
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In the PML-D or PML-PML cases, we have :

ψζ(x) ∝ sin ( ζπ(x̃(x) − x̃(0))
1 + 2iσℓ ), ζ ∈ ℕ

where  is the stretched variables :x̃(x)

x̃(x) =
x + iσ(x−ℓ) if x ∈ [0,ℓ],

x if x ∈ [ℓ,1−ℓ],
x + iσ(x − (1−ℓ)) if x ∈ [1−ℓ, ℓ] .
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An alternated iterative algorithm

In the two previous cases, D-D and D-PML cases, the transverse eigenfunctions were 

ψζ(x) ∝ sin(ζπx), ζ ∈ ℕ .

In the PML-D or PML-PML cases, we have :

ψζ(x) ∝ sin ( ζπ(x̃(x) − x̃(0))
1 + 2iσℓ ), ζ ∈ ℕ

where  is the stretched variables :x̃(x)

x̃(x) =
x + iσ(x−ℓ) if x ∈ [0,ℓ],

x if x ∈ [ℓ,1−ℓ],
x + iσ(x − (1−ℓ)) if x ∈ [1−ℓ, ℓ] .

Although this family of function is a complete basis, it is no more an orthogonal basis !!

Requires to invert the Gramian matrix  to decompose on this basis 

(if it is a Riesz basis…)

𝒢lk = (ψl, ψk)
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In the two previous cases, D-D and D-PML cases, the transverse eigenfunctions were 

ψζ(x) ∝ sin(ζπx), ζ ∈ ℕ .

In the PML-D or PML-PML cases, we have :

ψζ(x) ∝ sin ( ζπ(x̃(x) − x̃(0))
1 + 2iσℓ ), ζ ∈ ℕ

Illustration of the (real part of the) eigenfunctions   ( , ) :ψζ ℓ = 0.1 σ = 10

ζ = 1 ζ = 5 ζ = 10 ζ = 30
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An alternated iterative algorithm

In the two previous cases, D-D and D-PML cases, the transverse eigenfunctions were 

ψζ(x) ∝ sin(ζπx), ζ ∈ ℕ .

In the PML-D or PML-PML cases, we have :

ψζ(x) ∝ sin ( ζπ(x̃(x) − x̃(0))
1 + 2iσℓ ), ζ ∈ ℕ

Illustration of the condition number of the Gramian matrix :

Very ill-conditionned Gramian matrix…
… almost sure it is not a Riesz basis..!
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 Conclusion

Using PML has a strong impact on the convergence of classical iterative algorithm.

A l s o , t h e P M L 
coefficients must be 
chosen carefully !
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Using PML has a strong impact on the convergence of classical iterative algorithm.
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 Questions ?

Using PML has a strong impact on the convergence of classical iterative algorithm.

We propose an alternated algorithm based on splitting once vertically and once 
horizontally the domain. This algorithm :

improve the convergence factor in every case
and have a different behaviour depending 
on the PML BCs,

Thank you for your attention !!


