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Optimal control and time-parallelization

Optimal control problems: Minimize
T
Te) = F@T)+ [ G ul®).ct)
0
with the constraint i = f(u,c).

Context: We already have an optimal control solver.
Question: How to parallelize it ¢
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@ The Intermediate States Method



"Non-linear control" or "Bilinear control"

Linear or Nonlinear 77

Linear eq. Non-linear eq.
"Linear" control y= Ay + Be | y= f(y) + Be
Non-linear control y=A(c)y y= f(y,c)

o y =y(t,x) state

e ¢ =c(t) or ¢(t,z) control



The Intermediate States Method

Schematic description

‘ Ucible
W~ jw.e)
- = c
’
Initial points
dt ¢ /
Intermediate targets
A= ()\7)
Y j=1,---,5
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Time of control

CPU cPU crPU CPU CPU

Disclaimer : not a parareal algorithm.



The Intermediate States Method

Schematic description

And it follows:

o Independent sub-problems
J = (Jj)jzl,m,N?

@ Need for an update formula for the intermediate states



The Intermediate States Method

Schematic description

Algorithm:
Given c, A* (intermediate targets) at step k:

©® solve in parallel on [T}, Tjt1]

max Jj(cj) — c?“,
J

@ define "t as the concatenation of ck'H

k+1

® define A1 in a “relevant way” with ¢**1, so that the consistency lemma

holds.



Outline

® Quantum control problems



Quantum control problems

Quantum Control

Example of quantum control: Schrédinger Equation:

Op(x,t) _ A V@) = p@)e)]b( )

! ot 2m

Cost functional:

T
J(©) = Wltrargu V(. T)) = [ o) @)

T
<= 2= targer = ¥, T3 = [ a<t>c2<t>dt>

...to be maximized.



Quantum control problems

Quantum Control

T
T(e;0, %) = 2R (Wrarger (., T)) — /0 () 3(t)dt

723%/ $)10; + i — pe(t)| (., 1)dt.



Quantum control problems

Quantum Control

Optimality system:
{ G, t) = (H — c(t)u(@))y (e, 1)
Vyd =
Yz, t =0) = Yo(x)
{ igpx(x,t) = (H — e(t)p(x))x(x,t)
VwJ —
X(xa t= T) = wtarget(x)

Ved = a(t)e(t) = = < x (., t)|p|y(.,t) >



Quantum control problems

Quantum Control

Parallelization setting:

Define Ao = o, AN = Vrarget, ¢j = €|z 13,1 and fBj = 7.
N—
J|| Z 0]7)\]7)‘]4-1)

where J; are the parareal cost functionals:

Tj+1
Tiess A ) = [5(T) = Nl + [ 77 af(t)es 0%,

J

a0 = 2, (1) = .



The Intermediate States Method

Quantum Control

Theorem: Given ¢, with the previous notations, let us define A€ = ()\j) j=1,.,N—1
by:
Aj = (L= 9)0(Ty) +vix(T5),

where v; = %
Then :
A¢ = argminy (J)(c, A)).

Moreover we have:

Jj (e, A9) = J(e).

Y. Maday, J. Salomon, G. Turinici, SIAM J. Num. Anal., 45 (6) (2007)



An intermediate states method

Properties of the algorithm

Convergence?

J||(Ck+1,Ak+1) _ J”(Ck,Ak) — J||(Ck+1,Ak+1) _ J||(ck,Ak+1)
J”(ck,AkH) - J”(ck,Ak)
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Properties of the algorithm
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An intermediate states method

Properties of the algorithm

Convergence?

J||(ck+1,Ak+1) _ J”(Ck,Ak) — J||(Ck+1,Ak+1) _ J||(ck,Ak+1)
J”(ck,AkH) - J”(ck,Ak)
J||(ck+1, AR+ — J”(ck, AR,

Y

= The proof of convergence is reduced to the one of the optimization solver.



Quantum control problems

Nuclear Magnetic Resonance

Another example: Nuclear Magnetic Resonance

Aim : control spin using Magnetic fields.

Applications :
o Medical imaging
@ Quantum computing
e Porous media identification




Quantum control problems

Nuclear Magnetic Resonance

Toy model : Bloch equations

i0U(t) = [Ho+ Y wi(t)H]U(t)

Optimal control problem:
find () = (wi(t), - ,wj(t)), that solves
(" = argmax (J(Q)) = argmax (Re(U(T), Urarget)) -

K. Riahi, J. Salomon, D. Sugny, Physical Review A (2016).
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@ Various optimization solvers



Various optimization solvers
Standard Gradient method

What about the optimization solver 7
We can show that :

Ty — T
VIOl 1500 = V(€

}+1})'

FOR EVERY c!

= the intermediate target method provides a decomposition of the gradient
that enables parallelization.



Various optimization solvers
Standard Gradient method

Constant step gradient method
= Full efficiency !



Various optimization solvers

Monotonic scheme

Algebraic identity:



Various optimization solvers

Monotonic scheme

Algebraic identity:



Various optimization solvers

Monotonic scheme

Algebraic identity:



An intermediate states method

Properties of the algorithm

Convergence?

J”(ck+17Ak+1) o Jll(ck7Ak) — J“(CkJrl,AkJrl) _ J”(ck7Ak+1)
JH(Ck, AkJrl) - JH(Ck, Ak)
J”(CkJrl?AkJrl) _ J“(Ck,Ak+1)

v



An intermediate states method

Properties of the algorithm

Convergence?

J”(ck+17Ak+1) o Jll(ck7Ak) — ”(ck+1 Ak+1) J”(ck7Ak+1)
J”(ck AkJrl) _ J||( k,Ak)
J”(CkJrl Ak+1) J“(Ck,Ak+1)
[+ = P35

(A\VARAY



An intermediate states method

Properties of the algorithm

Convergence?

J”(ck+17Ak+1) o J”(Ck,Ak) — J”(ckJrl?AkJrl) _ J”(Ck7Ak+1)
JH(Ck, AkJrl) - JH(Ck, Ak)
J”(CkJrl?AkJrl) _ J“(Ck,Ak+1)
le" = |2

(A\VARAY

= Monotonicity preserved by the parallelization.



Various optimization solvers

Monotonic scheme



optimization solvers

Monotonic scheme

Various

Monotonic algorithm

+%
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alls 2 41.7%
i 4 45.8%
10 39.4%
20 27.2%




Various optimization solvers

Newton method

Newton

Here, our parallelization method not only improves the Newton convergence makes

it possible .

| N | N Time| |
1 -
4| 33.722
10 | 3.2544
20 | 0.72559
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@ Full efficiency ?



Full efficiency ?

The optimization is achieved in parallel, but 1 (¢) and x(¢) seem to require solving
on [0, 7] (full propagation) ?



Full efficiency ?

The optimization is achieved in parallel, but 1 (¢) and x(¢) seem to require solving
on [0, 7] (full propagation) ?

NO !!l' = only 9 (t;) and x(t;) are required.

= For low dimensional systems, the propagators t; — t;;1 can be computed in
parallel, when computing the gradient !



Full efficiency ?

For large systems:
o Use the parareal algorithm to achieve full propagations, see

"Parareal in time intermediate targets methods for optimal control problem’,
Y. Maday, J. Salomon, K. Riahi, Proc. of " Control and Optimization of PDEs ",

(Birkhéuser, Basel)
@ Use model reduction...
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@ Conclusion



Generic approach with respect to the solver,
Definition of the intermediate states depends on the problem,
Limit preserving parallelization strategy,

Full efficiency obtained in some cases.

Conclusion



Merci !
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