Nonoverlapping domain decomposition of nonlinear p-type optimal control problems on metric graphs

by the example of gas networks

Jean-Morlet Chair 2022: Research School - Domain Decomposition for Optimal Control Problems 5-9 September, 2022

Domain decomposition of flow problems on metric graphs Why?

- Large scale networks may contain more than major 20K pipes and many nonlinear elements as compressors, valves etc. See e.g. the German gas network
- For each pipe, one needs space-time discretization for the nonlinear PDEs (e.g. Euler system, shallow water or water-hammer system) and discrete as well as continuous control variables leading to large-scale optimality systems (see Stefan Volkwein's lectures)
- In order to incorporate randomness (of the system data), we need to solve optimality systems repeatedly (see Tommaso Vanzan's talk on Monday)
- Moreover, in the control of gas networks one faces realtime constraints
- Therefore, real-time capable optimal control on large scale flow networks is beyond the current scope of numerical reallizations
- Hence, decomposition is at order at almost every turn (i.e. the optimization level, the network and the time). (See Victorita Doelan's lectures)

Domain decomposition of optimal control problems on metric graphs

The scope

Gas flow in pipe networks

Derivation of the model equations

We start with the Euler system

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x}(\rho v) = 0,$$

$$\frac{\partial}{\partial t}(\rho v) + \frac{\partial}{\partial x}(p + \rho v^2) = -\frac{\lambda}{2D}\rho v|v|.$$

We use $q = \rho va$ and neglect the inertia in the moment equation

$$\frac{\partial p}{\partial t} + \frac{c^2}{a} \frac{\partial}{\partial x} q = 0,$$

$$\frac{\partial p^2}{\partial x} = -\frac{\lambda c^2}{Da^2} q |q| =: -\gamma^2 q |q|.$$

Network modeling for friction dominated flow The doubly nonlinear parabolic PDE

We now set $y := p^2$ and obtain from the second equation

$$q = -\frac{1}{\gamma} \frac{\frac{\partial y}{\partial x}}{\sqrt{\left|\frac{\partial y}{\partial x}\right|}}.$$

With $\alpha_0 := \frac{\gamma a}{c}$, we obtain

$$\alpha_0 \frac{\partial}{\partial t} \frac{y}{\sqrt{|y|}} - \frac{\partial}{\partial x} \frac{\frac{\partial y}{\partial x}}{\sqrt{\left|\frac{\partial y}{\partial x}\right|}} = 0.$$

More generally, with $\beta_p(s) := |s|^{p-2}$ (above $p = \frac{3}{2}$) we obtain

$$\alpha_0 \frac{\partial}{\partial t} \beta_{\alpha}(y) - \frac{\partial}{\partial x} \beta_p(\frac{\partial y}{\partial x}) = 0.$$

P. A. Raviart'70

It is also possible to write this down in the p-Laplace format:

M. A. Stoner 1969

P.J. Wong, R.E. Larson 1968 A.Bamberger, M. Sorin, J.P. Yvon'79

Wellposedness

Theorem (Raviart 1970): Let $\alpha, p > 1$, $\alpha be given. Let <math>p' = \frac{p}{p-1}$. Let f, u_0 be functions such that

$$f, \frac{d}{dt}f \in L^{p'}(0, T; W^{-1,p'}(\Omega)); u_0 \in W^{1,q}(\Omega) \cap L^{\alpha}(\Omega).$$

Then there exists a function u such that

$$u \in L^{\infty}(0, T; W^{1,p}(\Omega)) \cap L^{\infty}(0, T; L^{\alpha}(\Omega))$$

$$\frac{d}{dt}(|u|^{\frac{\alpha-2}{2}u}) \in L^{2}(0, T; L^{2}(\Omega))$$

$$\frac{d}{dt}(|u|^{\alpha-2}u) \in L^{\infty}(0, T; W^{1,p'}(\Omega))$$

$$\frac{d}{dt}(|u|^{\alpha-2}u) - \sum_{1}^{m} \frac{\partial}{\partial x_{i}} \left(|\frac{\partial u}{\partial x_{i}}|^{p-2} \frac{\partial u}{\partial x_{i}} \right) = f$$

$$u(0) = u_{0}.$$

homogeneous boundary conditions

Graph notation

- Graph G = (V, E), with vertices $V = \{n_1, n_2, \dots, n_{|V|}\} = \{n_j | j \in \mathcal{J}\}$ and edges $E = \{e_1, e_2, \dots, e_{|E|}\} = \{e_i | i \in \mathcal{I}\}.$
- Edge-to-node incidence matrix

$$d_{ij} = \begin{cases} -1, & \text{if the edge } e_i \text{ starts at node } n_j, \\ +1, & \text{if the edges } e_i \text{ end at node } n_j, \\ 0, & \text{else.} \end{cases}$$

- Each edge e_i is given in general by a line segment $[0, \ell_i]$
- $e_i = [n_j, n_k]$ such that $d_{ij} = -1, d_{ik} = 1$, then $x = 0, x = \ell_i$ correspond to the nodes n_j, n_k respectively.
- More precisely, we introduce the notion x_{ij} , where $x_{ij} = 0$ if $d_{ij} = -1$, $x_{ij} = \ell_i$ if $d_{ij} = 1$.
- The edge degree is $d_j := |\mathcal{I}_j|$.
- $\mathcal{J} = \mathcal{J}^M \cup \mathcal{J}^S$, where $\mathcal{J}^M = \{j \in \mathcal{J} | d_j > 1\}$ represents the multiple nodes and $\mathcal{J}^S = \{j \in \mathcal{J} | d_j = 1\}$ the simple nodes. According to Dirichlet or Neumann boundary conditions a the simple nodes, we further decompose $\mathcal{J}^S = \mathcal{J}_D^S \cup \mathcal{J}_N^S$.

The network model

$$\alpha_{i}\partial_{t}\beta(y_{i}(x,t)) - \partial_{x}\left(\beta(\partial_{x}y_{i}(x,t))\right) = u_{i}(x,t), \qquad i \in \mathcal{I}, \ x \in (0,\ell_{i}), \ t \in (0,T),$$

$$y_{i}(n_{j},t) = y_{k}(n_{j},t), \qquad \forall i, k \in \mathcal{I}_{j}, \ j \in \mathcal{J}^{M}, \ t \in (0,T),$$

$$\sum_{i \in \mathcal{I}_{j}} d_{ij}\beta(\partial_{x}y_{i}(n_{j},t)) = 0, \qquad j \in \mathcal{J}^{M}, \ t \in (0,T)$$

$$y_{i}(n_{j},t) = 0, \qquad i \in \mathcal{I}_{j}, j \in \mathcal{J}^{S}_{D}, \ t \in (0,T),$$

$$d_{ij}\beta(\partial_{x}y_{i})(n_{j},t) = u_{j}(t), \qquad i \in \mathcal{I}_{j}, j \in \mathcal{J}^{S}_{N}, \ t \in (0,T),$$

$$y_{i}(x,0) = y_{i}^{0}(x), \qquad x \in (0,\ell_{i}),$$

$$(NET)$$

where the functions $u_i, i \in \mathcal{I}$, $u_j, j \in \mathcal{I}_j, j \in \mathcal{I}_N^S$ serve as distributed and boundary controls, respectively.

The optimal control problem

$$I_{y}(y) := \sum_{i \in \mathcal{I}} \int_{0}^{T} \int_{0}^{\ell_{i}} \frac{\kappa_{i}}{2} |y_{i}(x, t) - y_{i}^{d}(x, t)|^{2} dx dt, \ I_{T}(y(x, T)) := \sum_{i \in \mathcal{I}} \int_{0}^{\ell_{i}} \frac{\kappa_{i, T}}{2} |y_{i}(x, T) - y_{i, T}|^{2} dx$$

for the state, while the norms of the controls are penalized as follows

$$I_{u}(u) := \sum_{i \in \mathcal{I}} \frac{\nu_{i,d}}{2} \int_{0}^{T} \int_{0}^{\ell_{i}} |u_{i}(x,t)|^{2} dx dt + \sum_{j \in \mathcal{J}_{N}^{S}} \frac{\nu_{i,b}}{2} \int_{0}^{T} |u_{j}(t)|^{2} dt,$$

where $\kappa_i, \kappa_{i,T} \geq 0, \nu_{i,d}, \nu_{i,b} \geq 0$ serve as penalty parameters. We pose the following optimal control problem for (1)

$$\min_{(y,u)} I(y,u) := I_y(y) + I_T(y(\cdot,T)) + I_u(u)$$

$$s.t.$$

$$(OCP)$$

$$(y,u) \text{ satisfies } (NET).$$

The corresponding optimality system

$$\alpha_{i}\partial_{t}\beta(y_{i}(x,t)) - \partial_{x}\left(\beta(\partial_{x}y_{i}(x,t))\right) = \frac{1}{\nu_{i,d}}p_{i}(x,t),$$

$$\alpha_{i}\beta'(y_{i}(x,t))\partial_{t}p_{i}(x,t) + \partial_{x}\left(\beta'(\partial_{x}y_{i}(x,t))\partial_{x}p_{i}(x,t)\right) = \kappa_{i}(y_{i} - y_{i}^{d}), \qquad i \in \mathcal{I}, \ x \in (0,\ell_{i}), \ t \in (0,T),$$

$$y_{i}(n_{j},t) = y_{k}(n_{j},t), \ p_{i}(n_{j},t) = p_{k}(n_{j},t), \qquad \forall i, k \in \mathcal{I}_{j}, \ j \in \mathcal{I}^{M}, \ t \in (0,T),$$

$$\sum_{i \in \mathcal{I}_{j}} d_{ij}\beta(\partial_{x}y_{i}(n_{j},t)) = 0, \ \sum_{i \in \mathcal{I}_{j}} d_{ij}\beta'(\partial_{x}y_{i}(n_{j},t))\partial_{x}p_{i}(n_{j},t) = 0, \qquad j \in \mathcal{I}^{M}, \ t \in (0,T),$$

$$y_{i}(n_{j},t) = 0, \ p_{i}(n_{j},t) = 0, \qquad i \in \mathcal{I}_{j}, j \in \mathcal{J}^{S}_{D}, \ t \in (0,T),$$

$$d_{ij}\beta(\partial_{x}y_{i}(n_{j},t)) = \frac{1}{\nu_{i,b}}p_{j}(n_{j},t), \ d_{ij}\beta'(\partial_{x}y_{i}(n_{j},t))\partial_{x}p_{i}(n_{j},t) = 0, \qquad i \in \mathcal{I}_{j}, j \in \mathcal{J}^{S}_{N}, t \in (0,T),$$

$$y_{i}(x,0) = y_{i,0}(x), \ p_{i}(x,T) = -\kappa_{i,T}(y_{i}(x,T) - y_{iT}^{d}(x)), \qquad x \in (0,\ell_{i}),$$

$$(GOS)$$

where p denotes the adjoint variable (Lagrange multiplier).

We need to be careful with possibly 'flat regions'

Time discretization

- We decompose [0,T] into break points $t_0 = 0 < t_1 < \cdots < t_N = T$ with widths $\Delta t_n := t_{n+1} t_n, n = 0, \dots, N-1$
- We denote $y_i(x, t_n) := y_{i,n}(x), n = 0, ..., N-1$ and similarly for the controls.
- We consider an implicit Euler scheme and a standard quadrature rule for the time integrals represented by weights ω_n .
- We introduce the semi-discrete cost functions

$$I_{y}^{\Delta t}(y_{i}) := \sum_{i \in \mathcal{I}} \sum_{n=1}^{N-1} \omega_{n} \int_{0}^{\ell_{i}} \frac{\kappa_{i}}{2} |y_{i,n} - y_{i,n}^{d}|^{2} dx, \ I_{N}(y_{i,N}) := \sum_{i \in \mathcal{I}} \int_{0}^{\ell_{i}} \frac{\kappa_{i,T}}{2} |y_{i,N} - y_{i,N}^{d}|^{2} dx,$$

$$I_u^{\Delta t}(u) := \sum_{i \in \mathcal{I}} \frac{\nu_{i,d}}{2} \sum_{n=1}^{N-1} \omega_n \int_0^{\ell_i} |u_{i,n}|^2 dx + \sum_{j \in \mathcal{J}_N^S} \omega_i \frac{\nu_{i,b}}{2} \sum_1^N \omega_n |u_{j,n}|^2$$

Time-discrete optimal control problem

with n = 1, ..., N - 1.

$$\min_{(y,u)} I(y,u) := I_y^{\Delta t}(y) + I_T(y(\cdot,N) + I_u^{\Delta t}(u)$$

$$s.t.$$

$$\frac{1}{\Delta t} \beta(y_{i,n+1})(x) - \partial_x \left(\beta(\partial_x y_{i,n+1}(x)) = \frac{1}{\Delta t} \beta(y_{i,n})(x) + u_{i,n+1}(x), \qquad x \in (0,\ell_i),$$

$$y_{i,n+1}(n_j) = y_{k,n+1}(n_j), \qquad \forall i,k \in \mathcal{I}_j,\ j \in \mathcal{J}^M,$$

$$\sum_{i \in \mathcal{I}_j} d_{ij} \beta(\partial_x y_{i,n+1})(n_j) = 0, \qquad j \in \mathcal{J}^M,$$

$$\beta(\partial_x y_{i,n+1})(n_j) = u_{j,n+1}, \qquad d_j = 1,\ i \in \mathcal{I}_j,\ j \in \mathcal{J}_N^S,$$

$$y_{i,n+1}(n_j) = 0, \qquad i \in \mathcal{I}_j,\ j \in \mathcal{J}_D^S,$$

$$y_{i,0}(x) = y_i^0(x), \qquad i \in \mathcal{I},\ x \in (0,\ell_i),\ i \in \mathcal{I},$$

Instantaneous control

- We replace $\alpha_i := \frac{1}{\Delta t}$, $f_i^1 := \alpha_i \beta(y_{i,n})$ and omit the weights ω_n .
- For each n = 1, ..., N-1 and given $y_{i,n}$, we consider the cost functions at each time t_n :

$$\tilde{I}_{y}^{\Delta t}(y_{i}) := \sum_{i \in \mathcal{I}} \int_{0}^{\ell_{i}} \frac{\kappa_{i}}{2} |y_{i} - y_{i,n}^{d}|^{2} dx,$$

$$\tilde{I}_{u}^{\Delta t}(u) := \sum_{i \in \mathcal{I}} \frac{\nu_{i,d}}{2} \int_{0}^{\ell_{i}} |u_{i}|^{2} dx + \sum_{j \in \mathcal{J}_{N}^{S}} \frac{\nu_{i,b}}{2} |u_{j}|^{2}.$$

$$I(y,u) := \tilde{I}_y^{\Delta}(y) + \tilde{I}_u^{\Delta t}(u) =: \sum_{i \in \mathcal{I}} J_i(y_i, u_i).$$

Instantaneous control

$$\min_{(y,u)} I(y,u)$$

$$s.t.$$

$$\alpha_i \beta(y_i)(x) - \partial_x \left(\beta(\partial_x y_i(x))\right) = u_i(x) + f_i^1(x), \quad i \in \mathcal{I}, \ x \in (0, \ell_i),$$

$$y_i(n_j) = y_k(n_j), \quad \forall i, k \in \mathcal{I}_j, \ j \in \mathcal{J}^M,$$

$$\sum_{i \in \mathcal{I}_j} d_{ij} \beta(\partial_x y_i)(n_j) = 0, \quad j \in \mathcal{J}^M,$$

$$\beta(\partial_x y_i)(n_j) = u_j, \quad i \in \mathcal{I}_j, \ j \in \mathcal{J}_N^S,$$

$$y_i(n_j) = 0, \quad i \in \mathcal{I}_j, \ j \in \mathcal{J}_D^S.$$

Decomposition

Principal remarks

- We want to iteratively decompose the optimality system (GOS) on the ,global network G into subnetworks (Network tearing and Interconnection NETI), in fact here, to each individual edge. Analysis in the continuous setting!
- The decomposed optimality system (DOS) should itself be an optimality system for an optimal control problem on the subnetwork (i.e. edge) including *virtual controls* at the multiple nodes (interfaces), in the sense of J.L. Lions and O. Pironneau 1999.
- The decomposition should be non-overlapping (in the sense of P.L. Lions 1989)
 overlapping domains are not intuitive at multiple nodes. Overlapping Schwarz-type
 methods at serial connections (,cutting out stars') are also under consideration (not
 here, however), see Gon, Kwok, Tan 2022
- Space-time domain decomposition

Previous work

- General domains (manifolds, continuous level, no controls; very selective list): Early work by P. L. Lions'1989 and O. Pironneau & J.L. Lions'1999 pursued later by J.-D. Benamou'1992-99 for elliptic and parabolic problems, A. Quarteroni'1988-16, F. Nataf' 91-', M. Gander'00-, G. Ciaramella'17-,L. Halpern'00-, J. Haslinger'00-14, J. Kucera, T. Sassi (Signorini-type contact problems), E. Engström, E. Hansen'22 (Robintype p-Laplace)...M. Dryia, W. Hackbusch'97 (general finite dimensional(!) nonlinear problems)
- Time domain decomposition (continuous level; again very selective list): J.L. Lions, Y. Maday, G. Turinici'01, J. Salomon'07-, M. Gander'07-, F. Kwok'18-,G. Ciaramella'21 (semi-linear elliptic)(parareal/multiple shooting)...space-time...
- Optimal control problems: M. Heinkenschloss'00-11, M. Herty'07, S. Ulbrich'07, M. Gander,'00- F. Kwok'17-, V. Agoshkov'85-, P. Gervasio'04-16, A. Quarteroni'05/06, B. Delourme, L. Halpern, B. Nguyen'06, W. Gong, F. Kwok, Z. Tan'22 (overlapping domains) many others, for linear elliptic and parabolic problems (in almost all cases).
- Networked domains and optimal control (non-manifolds; multiple nodes in 1-D and interfaces in 2- or 3-D): J. E. Lagnese & G.L. 2003, G.L. (et al.) 2018-2022.

Example: diamond graph

- We consider the so-called diamond graph,
- We apply a Neumann condition at n_6 and a boundary control at n_1 .
- We want to steer y_4 to the constant value 1, applying running costs and terminal costs, individually.
- For the penalty data, we take $\kappa = 1.e4, \nu = 1$
- We use standard discretization in space and time, as already proposed by Bamberger'77 and Raviart'70

Example full network

Initial condition

At final time with running costs

Example

Final value control

Comparison of final states

Domain decomposition in space

The P.L. Lions algorithm extended to p-parabolic equations

$$\begin{split} \partial_{t}\beta_{i}(y^{k+1})(x,t) - \partial_{x}\left(\beta_{i}(\partial_{x}y_{i}^{k+1}(x,t)\right) &= f_{i}(x,t), \\ y_{i}^{k+1}(n_{j},t) &= 0, \\ d_{ij}\beta_{i}(\partial_{x}y_{i}^{k+1}(n_{j},t) &= 0, \\ d_{ij}\beta_{i}(\partial_{x}y_{i}^{k+1})(x_{ij},t) + \rho y_{i}^{k+1}(x_{ij},t) &= \rho\left(\frac{2}{d_{j}}\sum_{l\in\mathcal{I}_{j}}y_{l}^{k}(x_{lj},t) - y_{i}^{k}(x_{ij},t)\right), \\ -\left(\frac{2}{d_{j}}\sum_{l\in\mathcal{I}_{j}}d_{lj}\beta_{l}(\partial_{x}y_{l}^{k})(x_{lj},t) - d_{ij}\beta_{i}(\partial_{x}y_{i}^{k})(x_{ij},t)\right), \\ y_{i}^{k+1}(x,0) &= y_{i}(x); \ x \in (0,\ell_{i}), \end{split} \qquad \qquad \qquad i \in \mathcal{I}, \ x \in (0,\ell_{i}), \ t \in (0,T), \\ i \in \mathcal{I}_{j}, j \in \mathcal{I}_{D}^{S}, \ t \in (0,T), \\ i \in \mathcal{I}_{j}, j \in \mathcal{I}_{D}^{S}, \ t \in (0,T), \\ i \in \mathcal{I}_{j}, j \in \mathcal{I}_{D}^{S}, \ t \in (0,T), \\ i \in \mathcal{I}_{j}, j \in \mathcal{I}_{D}^{S}, \ t \in (0,T), \\ i \in \mathcal{I}_{j}, j \in \mathcal{I}_{D}^{S}, \ t \in (0,T), \\ i \in \mathcal{I}_{j}, j \in \mathcal{I}_{D}^{S}, \ t \in (0,T), \\ i \in \mathcal{I}_{j}, j \in \mathcal{I}_{D}^{S}, \ t \in (0,T), \\ i \in \mathcal{I}_{j}, j \in \mathcal{I}_{D}^{S}, \ t \in (0,T), \\ i \in \mathcal{I}_{j}, j \in \mathcal{I}_{D}^{S}, \ t \in (0,T), \\ i \in \mathcal{I}_{j}, j \in \mathcal{I}_{D}^{S}, \ t \in (0,T), \\ i \in \mathcal{I}_{j}, j \in \mathcal{I}_{D}^{S}, \ t \in (0,T), \\ i \in \mathcal{I}_{j}, j \in \mathcal{I}_{D}^{S}, \ t \in (0,T), \\ i \in \mathcal{I}_{j}, j \in \mathcal{I}_{D}^{S}, \ t \in (0,T), \\ i \in \mathcal{I}_{j}, j \in \mathcal{I}_{D}^{S}, j \in \mathcal{I}_$$

Example: two-link p-parabolic problem

We take the interval (0,2) and introduce the interface at x=1. At x=0, we have Dirichlet boundary conditions and at x=2 Neumann conditions, as well as initial conditions $\sin(\pi x)^2$ in each domain. The load is equal to 1 everywhere. We apply the algorithm above with $\rho=.5$ and use the **pdpe** code from Matlab.

p=2; Left: plot of the solutions in domains 1 and 2 on top of ,true' solution Right: the errors of state and fluxed at the interface

Same as on left figure, but now for p=3/2

Relevance for optimal control problems

We can approach the decomposition of the optimality system by the following fixed point procedure:

- 1. Choose controls (distributed and boundary controls)
- 2. Solve the state equation in parallel using the DDM above
- 3. Input the state in the (linear!) adjoint equation and solve using the classical (still extended) DDM (se e.g. Benamou)
- 4. Retrieve the controls using the optimality condition and go back to the first step until done.

Notice, however, that this procedure is not a DDM for the optimality system as a whole and, consequently, does not lead to a substitute optimal control problem on the subnetworks.

DDM algorithm for the optimality system

- 1. Given $\lambda_{ij}^n, \rho_{ij}^n$,
- 2. solve for y_i^{n+1}, p_i^{n+1}

$$\begin{split} \partial_{t}\beta_{i}(y_{i}^{n+1}) - \partial_{x}(\beta_{i}(\partial_{x}y_{i}^{n+1})) &= \frac{1}{\nu_{i,d}}p_{i}^{n+1}, \\ \beta_{i}'(y_{i}^{n+1})\partial_{t}p_{i}^{n+1} + \partial_{x}(\beta_{i}'(\partial_{x}y_{i}^{n+1})\partial_{x}p_{i}^{n+1}) &= \kappa_{i}(y_{i}^{n+1} - y_{i}^{d}), \\ y_{i}^{n+1}(x_{ij},t) &= 0, \ p_{i}^{k+1}(x_{ij},t) &= 0, \\ d_{ij}\beta_{i}(\partial_{x}y_{i}^{n+1})(x_{ij},t) &= \frac{1}{\nu_{i,b}}p_{i}(x_{ij},t), \ d_{ij}\beta_{i}'(\partial_{x}y_{i}^{n+1})\partial_{x}p_{i}(x_{ij}^{n+1})(x_{ij},t) &= 0, \\ d_{ij}\beta_{i}(\partial_{x}y_{i}^{n+1})(x_{ij}) + \sigma y_{i}^{n+1}(x_{ij}) + \mu p_{i}^{n+1}(x_{ij}) &= -\left(\frac{2}{d_{j}}\sum_{l\in\mathcal{I}_{j}}d_{lj}\beta_{l}(\partial_{x}y_{l}^{n})(x_{lj}) - d_{ij}\beta_{i}(\partial_{x}y_{i}^{n})(x_{ij})\right) \\ + \sigma\left(\frac{2}{d_{j}}\sum_{l\in\mathcal{I}_{j}}y_{l}^{n}(x_{lj},t) - y_{i}(x_{ij},t)\right) + \mu\left(\frac{2}{d_{j}}\sum_{l\in\mathcal{I}_{j}}p_{l}^{n}(x_{lj},t) - p_{i}(x_{ij},t)\right) =: \lambda_{ij}(t)^{n}, \end{split}$$

P-parabolic problem: Algorithm

$$d_{ij}\beta'_{i}(\partial_{x}y_{i}^{n+1}(x_{ij},t))\partial_{x}p_{i}^{n+1}(x_{ij},t) + \sigma p_{i}^{n+1}(x_{ij},t) - \mu y_{i}^{n+1}(x_{ij},t)$$

$$= -\left(\frac{2}{d_{j}}\sum_{l\in\mathcal{I}_{j}}d_{lj}\beta'_{l}(\partial_{x}y_{l}^{n}(x_{lj},t))\beta_{l}(\partial_{x}p_{l}^{n})(x_{lj},t) - d_{ij}\beta'_{i}(\partial_{x}y_{i}^{n}(x_{ij},t))(\beta_{i}(\partial_{x}p_{i}^{n})(x_{ij},t)\right)$$

$$+\sigma\left(\frac{2}{d_{j}}\sum_{l\in\mathcal{I}_{j}}p_{l}^{n}(x_{lj},t) - p_{i}(x_{ij},t)\right) - \mu\left(\frac{2}{d_{j}}\sum_{l\in\mathcal{I}_{j}}y_{l}^{n}(x_{lj},t) - y_{i}(x_{ij})\right) =: \rho_{ij}^{(}t).$$

3. Update λ_{ij}^{n+1} , ρ_{ij}^{n+1} for $n \to n+1$.

Equivalent virtual control problem

- 1. Given $\lambda_{ij}^n, \rho_{ij}^n$,
- 2. solve for $y_i^{n+1}, u_i^{n+1}, u_j^{n+1}, i \in \mathcal{J}_i$

$$\min_{u, \mathbf{g}, y} \left\{ J_i(y_i, u_i) + \frac{1}{2\mu} \sum_{j \in \mathcal{J}_i} \int_0^T \left[|\mathbf{g}_{ij}|^2 + |\mu y_i - \rho_{ij}^n|^2 \right] dt \right\}$$

s. t.

$$\begin{aligned} \partial_t \beta_i(y_i) - \partial_x (\beta_i(\partial_x y_i)) &= u_i, & i \in \mathcal{I}, x \in I_i, t \in (0, T) \\ d_{ij} \beta_i (\partial_x y_i(x_{ij}, t)) + \sigma y_i(x_{ij}, t) &= \lambda_{ij}(t)^n + g_{ij}(t), & j \in \mathcal{J}_i, i \in \mathcal{I}_j, t \in (0, T) \\ y_i, t &= 0, & i \in \mathcal{I}_j, j \in \mathcal{J}_D^S, t \in (0, T) \\ d_{ij} \beta_i (\partial_x y_i(x_{ij}, t)) &= u_j(t), & i \in \mathcal{I}_j, j \in \mathcal{J}_N^S, t \in (0, T). \end{aligned}$$

3. Update λ_{ij}^{n+1} , ρ_{ij}^{n+1} for $n \to n+1$.

Example

A two-link problem

p=2, sigma=0, mu=10, nu=0, kappa=1000

p=3/2, sigma=50, mu=100, nu=.001, kappa=1000

Convergence

Sketch of proof: two-link case (α =2)

$$\partial_t y_i^{n+1} - \partial_x (\beta_i (\partial_x y_i^{n+1})) = \frac{1}{\nu} p_i^{n+1}, \qquad i = 1, 2, \ x \in I_i$$

$$\partial_t p_i^{n+1} + \partial_x (\beta_i' (\partial_x y_i^{n+1}) \partial_x p_i^{n+1}) = \kappa (y_i^{n+1} - y_i^d), \quad i = 1, 2, \ x \in I_i$$

$$y_1^{n+1} (0) = 0, \ y_2^{n+1} (2) = 0,$$

$$p_1^{n+1} (0) = 0, \ p_2^{n+1} (2) = 0,$$

We omit t in the following where all equations are taken at time t^*

$$d_{ij}\beta_{i}(\partial_{x}y_{i}^{n+1}(1)) + \sigma y_{i}^{n+1}(1) - \mu p_{i}^{n+1}(1) = -d_{ij}\beta_{j}(\partial_{x}y_{2}^{n}(1)) + \sigma y_{j}^{n}(1) - \mu p_{j}^{n}(1) := \lambda_{i}^{n}$$

$$d_{ij}\beta'_{i}(\partial_{x}y_{i}^{n+1}(1))\partial_{x}p_{i}^{n+1} + \sigma p_{i}^{n+1}(1) + \mu y_{i}^{n+1}(1) = -d_{ij}\beta'_{j}(\partial_{x}y_{j}^{n}(1))\partial_{x}p_{j}^{n+1}(1) + \sigma p_{j}^{n}(1) + \mu y_{j}^{n}(1) =: \rho_{i}^{n}$$

Error evolution

We introduce the errors $\tilde{y}_i^n := y_i^n - y_i; \tilde{p}_i^n := p_i^n - p_i$ and subtract the equations:

$$\begin{split} \partial_{t} \tilde{y}_{i} - \partial_{x} (\beta_{i} (\partial_{x} \tilde{y}_{i}^{n+1} + \partial_{x} y_{i})) - \partial_{x} (\beta_{i} (\partial_{x} y_{i})) &= \frac{1}{\nu} \tilde{p}_{i}^{n+1} \\ \partial_{t} \tilde{p}_{i}^{n+1} + \partial_{x} (\beta_{i}' (\partial_{x} y_{i}^{n+1} + \partial_{x} y_{i}) \partial_{x} \tilde{p}_{i}^{n+1}) &= (\beta_{i}' (\partial_{x} \tilde{y}_{i}^{n+1} + \partial_{x} y_{i}) - \beta_{i}' (\partial_{x} y_{i})) \partial_{x} p_{i}) \\ &+ \kappa (y_{i} - y_{i}^{d}) =: g_{i}^{n}, & i = 1, 2, \ x \in I_{i} \\ \tilde{y}_{1}^{n+1} (0) &= 0, \ \tilde{y}_{2}^{n+1} (2) = 0, \\ \tilde{p}_{1}^{n+1} (0) &= 0, \ \tilde{p}_{2}^{n+1} (2) = 0, \end{split}$$

Transmission conditions and fixed point map

$$\begin{split} \beta_{1}(\partial_{x}y_{1}^{n+1}(1)) - \beta_{1}(\partial_{x}y_{1}(1)) + \sigma \tilde{y}_{1}^{n+1}(1) - \mu \tilde{p}_{1}^{n+1}(1) \\ &= \beta_{2}(\partial_{x}y_{2}^{n}(1)) - \beta_{2}(\partial_{x}y_{2}(1)) + \sigma \tilde{y}_{2}^{n}(1) - \mu \tilde{p}_{2}^{n}(1) \\ - (\beta_{2}(\partial_{x}y_{2}^{n+1}(1)) - \beta_{2}(\partial_{x}y_{2}(1))) + \sigma \tilde{y}_{2}^{n+1}(1) - \mu \tilde{p}_{2}^{n+1}(1) \\ &= -(\beta_{1}(\partial_{x}y_{1}^{n}(1)) - \beta_{1}(\partial_{x}y_{1}(1))) + \sigma \tilde{y}_{1}^{n}(1) - \mu \tilde{p}_{1}^{n}(1) \\ \beta'_{1}(\partial_{x}y_{1}^{n+1}(1))(\partial_{x}p_{1}^{n+1}(1)) - \beta'_{1}(\partial_{x}y_{1})\partial_{x}p_{1}(1) + \sigma \tilde{p}_{1}^{n+1}(1) + \mu \tilde{y}_{1}^{n+1}(1) \\ &= \beta'_{2}(\partial_{x}y_{2}^{n}(1))(\partial_{x}p_{2}^{n+1}(1)) - \beta'_{2}(\partial_{x}y_{2}(1))\partial_{x}p_{2}(1)) + \sigma \tilde{p}_{2}^{n}(1) + \mu \tilde{y}_{2}^{n}(1) \\ - (\beta'_{2}(\partial_{x}y_{2}^{n+1}(1))(\partial_{x}p_{1}^{n}+\partial_{x}p_{1}(1)) - \beta'_{1}(\partial_{x}y_{1}(1))\partial_{x}p_{1}(1)) + \sigma \tilde{p}_{1}^{n}(1) + \mu \tilde{y}_{1}^{n}(1) \\ &= -(\beta'_{1}(\partial_{x}y_{1}^{n}(1))(\partial_{x}p_{1}^{n} + \partial_{x}p_{1}(1)) - \beta'_{1}(\partial_{x}y_{1}(1))\partial_{x}p_{1}(1)) + \sigma \tilde{p}_{1}^{n}(1) + \mu \tilde{y}_{1}^{n}(1). \\ \mathcal{X}^{n} := (\beta_{1}(\partial_{x}y_{1}^{n}(1)) - \beta_{1}(\partial_{x}y_{1}(1)) + \sigma \tilde{y}_{1}^{n}(1) - \mu \tilde{p}_{1}^{n}(1), \\ - (\beta_{2}(\partial_{x}y_{2}^{n}(1)) - \beta_{2}(\partial_{x}y_{2}(1))) + \sigma \tilde{y}_{2}^{n+1}(1) + \mu \tilde{y}_{1}^{n}(1), \\ \beta'_{1}(\partial_{x}y_{1}^{n}(1))\partial_{x}p_{1}^{n}(1) - \beta'_{1}(\partial_{x}y_{1})\partial_{x}p_{1}(1) + \sigma \tilde{p}_{1}^{n}(1) + \mu \tilde{y}_{1}^{n}(1), \\ - (\beta'_{2}(\partial_{x}y_{2}^{n}(1))\partial_{x}p_{1}^{n}(1) - \beta'_{2}(\partial_{x}y_{2}(1))\partial_{x}p_{2}(1)) + \sigma \tilde{p}_{2}^{n}(1) + \mu \tilde{y}_{1}^{n}(1). \end{split}$$

Accordingly, the blue terms are collected in $\mathcal{T}X^n$.

Energy and non-expansiveness

$$\mathcal{E}^{n} := \int_{0}^{T} \sum_{i=1}^{2} \left\{ (\beta_{i}(\partial_{x}y_{i}^{n}(1) - \beta_{i}(\partial_{x}y_{i}(1))^{2} + (\beta'_{i}(\partial_{x}y_{i}^{n}(1))\partial_{x}p_{i}^{n}(1) - \beta'_{i}(\partial_{x}y_{i}(1))\partial_{x}p_{i}(1))^{2} \right. \\ \left. + (\sigma^{2} + \mu^{2})(\tilde{y}_{i}^{n}(1)^{2} + \tilde{p}_{i}^{n}(1)^{2}) \right\} dt$$

$$\mathcal{F}^{n} := 2\sigma \int_{0}^{T} \left\{ (\beta_{1}(\partial_{x}y_{1}^{n}(1)) - \beta_{1}(\partial_{x}y_{1}(1)))\tilde{y}_{1}^{n}(1) - (\beta_{2}(\partial_{x}y_{2}^{n}(1)) - \beta_{2}(\partial_{x}y_{2}(1)))\tilde{y}_{2}^{n}(1) \right. \\ \left. + (\beta'_{1}(\partial_{x}y_{1}^{n}(1))\partial_{x}p_{1}^{n}(1) - \beta'_{1}(\partial_{x}y_{1}(1))\partial_{x}p_{1}(1))\tilde{p}_{1}^{n}(1) \right. \\ \left. - (\beta'_{2}(\partial_{x}y_{2}^{n}(1))\partial_{x}p_{2}^{n}(1) - \beta'_{2}(\partial_{x}y_{2}(1))\partial_{x}p_{2}(1))\tilde{p}_{2}^{n}(1) \right\} dt$$

$$+ 2\mu \int_{0}^{T} \left\{ (-\beta_{1}(\partial_{x}y_{1}^{n}(1) - \beta_{1}(\partial_{x}y_{1}(1)))\tilde{p}_{1}^{n}(1) + (\beta_{2}(\partial_{x}y_{2}^{n}(1)) - \beta_{2}(\partial_{x}y_{2}(1)))\tilde{p}_{2}^{n}(1) \right. \\ \left. + (\beta'_{1}(\partial_{x}y_{1}^{n}(1))\partial_{x}p_{1}^{n}(1) - \beta'_{1}(\partial_{x}y_{1}(1))\partial_{x}p_{1}(1))\tilde{y}_{1}^{n}(1) - (\beta'_{2}(\partial_{x}y_{2}^{n}(1))\partial_{x}p_{1}^{n}(1) - \beta'_{2}(\partial_{x}y_{2}(1))\partial_{x}p_{2}(1))\tilde{y}_{2}^{n}(1) \right\} dt$$

$$\left. \left\| \mathcal{X}^{n} \right\|^{2} = \mathcal{E}^{n} + \mathcal{F}^{n}, \, \left\| \mathcal{T}\mathcal{X}^{n} \right\|^{2} = \mathcal{E}^{n} - \mathcal{F}^{n}, \, \left\| \mathcal{X}^{n+1} \right\|^{2} = \left\| \mathcal{T}\mathcal{X}^{n} \right\|^{2} = \left\| \mathcal{X}^{n} \right\|^{2} - 2\mathcal{F}^{n} \right\} \right\} dt$$

Proof....

- We need to show that \mathcal{F} is positive definite with respect to the norms of \tilde{y}, \tilde{p} .
- To do this, we multiply the state and the adjoint equation for the edge i individually by \tilde{y}_i, \tilde{p}_i and perform integration by parts.
- This leads to 4 equations for the boundary values needed in \mathcal{F}
- For the estimates we strongly rely on the monotonicity of $\beta_p(\cdot)$.
- Moreover, in order to control mixed terms in \tilde{y}_i, \tilde{p}_i , we need to assume that the iteration starts in a possibly small neighborhood of the solution (locality as for Newton's method).
- Finally, we need a careful estimate of the parameters ν , κ (penalty parameters) and σ , μ (Robin-type parameters) in order to achieve the positiveness of \mathcal{F} .
- Then the crucial estimate $\|\mathcal{X}^{n+1}\|^2 = \|\mathcal{T}\mathcal{X}^{n+1}\|^2 = \|\mathcal{X}^n\|^2 2\mathcal{F}^n$ leads to the result.
- The estimations are quite technical!

Time-domain decomposition

• We introduce a coarse time discretization with

$$0 = T_0 < T_1 < \dots < T_k < T_{k+1} < \dots < T_K < T_{K+1} = T.$$

- We introduce the intervals $I_k := (T_k, T_{k+1})$.
- We take the optimality system and restrict the to time interval I_k .
- At the time-interfaces T_k, T_{k+1} , we employ continuity conditions $(y_k)(T_k) = (y_{k-1})(T_k)$ k = 1, ..., K+1, and similarly for the adjoint variables.

The time-domain-decomposition algorithm

Algorithm

- 1. Given $\mu_{k,k-1}^n, \mu_{k,k+1}^n$,
- 2. solve the restricted $OS|_{I_k}$ for y_k^{n+1}, p_k^{n+1}

$$(y_k^{n+1})(T_{k+1}) + \sigma \beta'(y_k^{n+1})(p_k^{n+1})(T_{k+1}) = \mu_{k,k+1}^n, \quad \beta(y_k^{n+1})(T_k) - \sigma p_k^{n+1}(T_k) = \mu_{k,k-1}^n,$$
(1)

with

$$\mu_{k,k+1}^{n} = (1 - \varepsilon) \left(\beta(y_{k+1}^{n})(T_{k+1}) + \sigma p_{k+1}^{n}(T_{k+1}) \right) + \varepsilon \left(y_{k}^{n+1}(T_{k+1}) + \sigma \beta'(y_{k}^{n+1})(p_{k}^{n+1})(T_{k+1}) \right), \ k = 0, \dots,$$

$$\mu_{k,k-1}^{n} = (1 - \varepsilon) \left(y_{k-1}^{n}(T_{k}) - \sigma \beta'(y_{k-1}^{n})p_{k-1}^{n}(T_{k}) \right) + \varepsilon \left(\beta(y_{k}^{n+1})(T_{k}) - \sigma p_{k}^{n+1}(T_{k}) \right), \ k = 1, \dots, K.$$

$$(2)$$

3. Update $\mu_{k,k-1}^{n+1}, \mu_{k,k+1}^{n+1}$ for $n \to n+1$.

Virtual control problem

The corresponding virtual optimal control problem for the generic interval I_k reads as follows. With

$$J_k^n(u_k, y_k, h_{k,k-1}) := \frac{\kappa}{2} \int_{T_k}^{T_{k+1}} \int_0^\ell (y_k - y_k^d)^2 dx dx t + \frac{\nu}{2} \int_{T_k}^{T_{k+1}} \int_0^\ell u_k^2 dx dt + \frac{1}{2\sigma} \int_0^\ell \left((y_k (T_{k+1}) - \mu_{k,k+1})^2 + (h_{k,k-1})^2 \right) dx,$$

we have

$$\min_{u_k, y_k, h_{k,k-1}} J_k^n(u_k, y_k, h_{k,k-1})$$
s. t.
$$\partial_t \beta_k(y_k) - \partial_x (\beta_k(\partial_x(y_k))) = u_k, \text{ in } (T_k, T_{k+1}) \times (0, \ell)$$

$$\beta_k(y_k)(T_k) = h_{k,k-1} + \mu_{k,k-1}^n, \text{ in } (0, \ell),$$

where $h_{k,k-1}$ serves as the *virtual control*.

Virtual control problem: first interval

This system has to be complemented by the problems on the first and the last interval.

$$\min_{u_0, y_0} J_0^n(u_0, y_0) := \frac{\kappa}{2} \int_{T_0}^{T_1} \int_0^{\ell} (y_0 - y_0^d)^2 dx dt + \frac{\nu}{2} \int_{T_0}^{T_1} \int_0^{\ell} u_0^2 dx dt
+ \frac{1}{2\sigma} \int_0^{\ell} (y_0(T_1) - \mu_{0,1})^2 dx
\text{s. t.}
\partial_t \beta_0(y_0) - \partial_x (\beta_0(\partial_x(y_0))) = u_0, \text{ in } (T_0, T_1) \times (0, \ell)
\beta_k(y_0)(T_0) = y_0, \text{ in } (0, \ell),$$

Virtual control problem: last interval

$$\min_{u_K, y_K, h_{K,K-1}} J_K^n(u_K, y_K) := \frac{\kappa}{2} \int_{T_K}^{T_{K+1}} \int_0^\ell (y_K - y_K^d)^2 dx dt + \frac{\kappa}{2} \int_0^\ell (y_K (T_{K+1}) - y_T^d)^2 dx$$

$$\frac{\nu}{2} \int_{T_K}^{T_{K+1}} \int_0^\ell u_K^2 dx dt + \frac{1}{2\sigma} \int_0^\ell \left((y_K (T_K) - \mu_{K,K+1})^2 + h_{K,K-1}^2 \right) dx$$
s. t.
$$\partial_t \beta_K(y_K) - \partial_x (\beta_K (\partial_x (y_K))) = u_K, \quad \text{in } (T_K, T_{K+1}) \times (0, \ell)$$

$$\beta_k(y_K) (T_K) = \mu_{K,K-1}^n + h_{K,K-1}, \quad \text{in } (0, \ell),$$

Further results and outlook

- 1. We have a similar result for the time-domain-decomposition problem (again, the proof only for for $\alpha = 2$)
- 2. The simultaneous space-time-domain decomposition is open (fine for the p-elliptic case)
- 3. The $(\beta_{\alpha}, \beta_{p})$ -problem is open (as far as the proof is concerned)
- 4. Constrained control can be included, however, this has not yet been proved (just a matter of writing it up)
- 5. State constraints are completely open.
- 6. One may use PINN (XPINN) on subnetworks as surrogate models and perform interface learning (in preparation)
- 7. Final goal: **Ne**twork **T**earing and **I**nterconnection, a formal analogue of FETI.

Thank you for your attention!