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Domain decomposition of flow problems on metric graphs
Why?

* Large scale networks may contain more than major 20K pipes and many nonlinear elements as
compressors, valves etc. See e.g. the German gas network

* For each pipe, one needs space-time discretization for the nonlinear PDEs (e.g. Euler system, shallow
water or water-hammer system) and discrete as well as continuous control variables leading to large-
scale optimality systems (see Stefan Volkwein’s lectures)

* |In order to incorporate randomness (of the system data), we need to solve optimality systems repeatedly
(see Tommaso Vanzan'’s talk on Monday)

* Moreover, in the control of gas networks one faces realtime constraints

* Therefore, real-time capable optimal control on large scale flow networks is beyond the current scope of
numerical reallizations

 Hence, decomposition is at order at almost every turn (i.e. the optimization level , the network and the
time). (See Victorita Doelan’s lectures)



Domain decomposition of optimal control problems on metric graphs

The scope
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Gas flow in pipe networks

Derivation of the model equations
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Network modeling for friction dominated flow
The doubly nonlinear parabolic PDE

We now set y := p* and obtain from the second equation

1 Y

_ Ox
T ) M. A. Stoner 1969
O P.J. Wong, R.E. Larson 1968
With ag := =, we obtain A.Bamberger, M. Sorin, J.P. Yvon’79
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More generally, with 8,(s) := |s|P~% (above p = 2) we obtain

0 g , 0y, L
o aﬁa(y) 5 5}9(%) = 0. P. A. Raviart’70

It is also possible to write this down in the p-Laplace format:



Wellposedness

Theorem (Raviart 1970): Let a,p > 1, a < p+ 1 be given. Let p’ = p%. Let
f,up be functions such that

d : ,
f, = fe L (0, T; W=bP(Q));ug € WHI(Q) N LY(Q).

Then there exists a function w such that

w € L0, T; WHP(Q)) N L*>°(0,T; L*(2))

d a—2,
~(lul =) € L*(0,T5 L7 ()

d, o - ,
- ([u]*Pu) € L=(0, T; W (Q))

d a2, i pzﬁu B
a1 21: (amz‘ ag;i)_f

u(0) = uyp. homogeneous boundary conditions




Graph notation

e Graph G = (V, E), with vertices V = {ni,n2,...,nyv|} = {n;|lj € J} and
edges B = {e1,ea,...,e g} = {e]t € L},
e Fidge-to-node incidence matrix

— 1, if the edge e; starts at node nj;,

dij = ¢ +1, if the edges e; end at node n;,

0, else.

e Each edge e; is given in general by a line segment |0, /;]

e ¢; = |n;,ng| such that d;; = —1,d;x = 1, then x = 0, x = ¢; correspond to the
nodes n;, ng respectively.
e More precisely, we introduce the notion z;;, where z;; = 01t d;; = —1 ,

e The edge degree is d; := |Z;|.

o 7 =JMUJ?, where 7M = {j ¢ J|d; > 1} represents the multiple nodes
and J° = {j € J|d; = 1} the simple nodes. According to Dirichlet or Neumann
boundary conditions a the simple nodes, we further decompose J° = J g JJ ]{’;



The network model

aiﬁtﬁ(yi(x,t)) — 0, (5(0;&%(27,15))) — ui(a:',t), €L, x € (O,Ez), L € (O,T),

yi(nj,t) = yr(n,,t), Vi, k € 1L;, jeJM, te(0,T),

Z dzgﬁ(ﬁxyz(njvt)) — 07 ] - jM? S (O7T)

iEIj

yi(nj,t):(), iEZj,jEjg, tE(O,T),

dzgﬁ(axyz)(njat) — Uj(t), 1 € Zjaj - jf\?? S (OaT)v

yi(:c,()) — y?($)v S (ngi)v
(NET)

where the functions w;,t1 € Z, u;,5 € Z;,5 € J ]*\5; serve as distributed and
boundary controls, respectively.



The optimal control problem

E://%ﬂmmt V—yd(z, ) 2dxdt, Ir(y(z,T)) }:/“”ﬁh

’LEI O ’LGI O

for the state, while the norms of the controls are penalized as follows

¢;

T
//\uzx t)|*dzdt + Z Zb/\uj (t)|?dt,
0 0

JETR

I, (u)

zEI

where w;,k; 7 > 0,054,V > 0 serve as penalty parameters. We pose the

following optimal control problem for (1)

@glwa)z@@%#h@bTW+lﬁw

s.t. (OCP)
(y, ) satisfies (INET).




The corresponding optimality system

aiﬁtﬁ(yi(x,t)) — 8:1: (5(8:1:?%(55775))) — Vild

;8 (yi(x, 1)) 0pi(, ) + Oy (B (Opyi(, 1)) Oupi (2, 1)) = Kilyi — yi),
yi(nja t) — yk(”j? t)v pi(nj? t) — pk(nja t)a
Z diiB(0zyi(n;,t)) =0, Z dii B (0xyi(n;,t))0pi(n;, t) =0,

pi(wvt)a

iEIj iEIj
1
dijB(0zyi(nj, ) = —pj(n;,t), dijB' (0ryi(nj,t))0epi(ng, t) = 0,

yi(.CIZ,O) — yi,O(x)v p’i(va) — _’{i,T(yi(va) T ygT(x))a

where p denotes the adjoint variable (Lagrange multiplier).

We need to be caretul with possibly 'flat regions’

e, x

~ (O,ZZ), S (O,T),

Vi,k€Z;, j€JM, t€(0,T),

jeJ™, te(0,7),

ic€Z;,j€Jp, te(0,T),

ic€Z,jeJdn,te(0,7T),

(GOS)

T & (O,&),



Time discretization

e We decompose [0,7T] into break points tg = 0 < t; < -+ < ty = T with
widths At,, ==t,.1 —t,,n=0,...,N —1

e We denote y;(z,t,) := y; n(x),n =0,..., N —1 and similarly for the controls.
e We consider an implicit Euler scheme and a standard quadrature rule for the
time integrals represented by weights w,,.

e We introduce the semi-discrete cost functions

N-1 L £
) = 30 S wn [ Sl — wtalPdo, Iv(n) = Y [ Sty — i lda,
1€ n=1 0 SN
N—1 & N
I2(0) = sz’d wn/|uzjn *da + Z Wi V;’b an|u37n °
1€l n=1 0 jeETN 1



Time-discrete optimal control problem

min I(y,u) = I2(y) + Ir(y(, N) + I3 (w)

(y,u)
S.T.

1 1

= BWin41) (@) = O (B0yins1(2)) = - B(yin) (@) + tins1 (), v € (0,4:),
Yin+1(15) = Yk nt1(n;), Vi,keZ;, je T,
Z dij 5(0xYint1)(n;) =0, jeJ",
’iEIj
B(G’xyi,nﬂ)(nj) — Ujn+1, dj — 1, 1 € Ij, j - jjé,
yi,n+1(nj):()v iEZj, j€~71§7
Yi 0(x) :y,?(a:), re€ZL, x € (0,¢;), 1€,

withn=1,..., N — 1.



Instantaneous control

e We replace o := Ait, [ = a;8(yi ) and omit the weights w,,.
e or cachn =1,...,N — 1 and given y; ,,, we consider the cost functions at
each time ¢,,:




Instantaneous control

min I (y, u)
(y,u)

S.T.

\V/i,kEIj,jEjM,



Decomposition

Principal remarks

* We want to iteratively decompose the optimality system (GOS) on the ,global® network
G into subnetworks (Network tearing and Interconnection NETI), in fact here, to each
individual edge. Analysis in the continuous setting!

 The decomposed optimality system (DOS) should itself be an optimality system for an
optimal control problem on the subnetwork (i.e. edge) including virtual controls at the
multiple nodes (interfaces), in the sense of J.L. Lions and O. Pironneau 1999.

 The decomposition should be non-overlapping (in the sense of P.L. Lions 1989)
overlapping domains are not intuitive at multiple nodes. Overlapping Schwarz-type
methods at serial connections (,cutting out stars’) are also under consideration (not
here, however), see Gon, Kwok, Tan 2022

* Space-time domain decomposition



Previous work

* General domains (manifolds, continuous level, no controls; very selective list): Early work by P. L.
Lions’1989 and O. Pironneau & J.L. Lions’1999 pursued later by J.-D. Benamou’1992-99 for elliptic and
parabolic problems, A. Quarteroni’1988-16, F. Nataf’ 91-’, M. Gander’00-, G. Ciaramella’17-,L. Halpern’00-,
J. Haslinger’00-14, J. Kucera, T. Sassi (Signorini-type contact problems), E. Engstrom, E. Hansen’22 (Robin-
type p-Laplace)...M. Dryia, W. Hackbusch’97 (general finite dimensional(!) nonlinear problems)

 Time domain decomposition (continuous level; again very selective list): J.L. Lions, Y. Maday, G.
Turinici’01, J. Salomon’07-, M. Gander’'07-, F. Kwok’18-,G. Ciaramella’21 (semi-linear elliptic) ....(parareal/
multiple shooting)...space-time...

* Optimal control problems: M. Heinkenschloss’00-11, M. Herty’07, S. Ulbrich’07, M. Gander,’00- F.
Kwok’17-, V. Agoshkov’85-, P. Gervasio’04-16, A. Quarteroni’05/06, B. Delourme, L. Halpern, B. Nguyen’06,
W. Gong, F. Kwok, Z. Tan’22 (overlapping domains) many others, for linear elliptic and parabolic problems
(in almost all cases).

* Networked domains and optimal control (hon-manifolds; multiple nodes in 1-D and interfaces in 2- or 3-
D): J. E. Lagnese & G.L. 2003, G.L. (et al.) 2018-2022.



Example: diamond graph

e We consider the so-called diamond graph.,

e We apply a Neumann condition at ng and
a boundary control at n;.

e We want to steer y4 to the constant value 1,
applying running costs and terminal costs, individually.

e For the penalty data, we take Kk = l.ed,v =1

e We use standard discretization in space and time,
as already proposed by Bamberger’77 and Raviart’70
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Example full network
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Example
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Domain decomposition In space
The P.L. Lions algorithm extended to p-parabolic equations

OuBi(y" ) (2, 1) — 0, (Bi (Ot T (2, 1)) = fila, 1), i€, xe(0,4), te(0,7T),
Yt (ng, t) =0, ic€I;,5€Jp, te(0,T),
di; B0,y (n;,t) =0, ic€T;,j€Tn, t<(0,T),
2
dijBi(Oey; ) (@i, t) + pys T (i, t) = p - >y (i, t) — Yl (i, t) |
J lGIj
( Z dlj@l z Y] )(xljv ) — dijﬁi(axyfxxijvt)) : J € jM7i = Ij’
7 €T,

yf—l_l(x O) — y@( ); (S (O,&), 1€ L.



Example: two-link p-parabolic problem

We take the interval (0,2) and introduce the interface at x = 1. At x = 0, we
have Dirichlet boundary conditions and at * = 2 Neumann conditions, as well

as initial conditions sin(wx)

2

in each domain. The load is equal to 1 everywhere.

We apply the algorithm above with p = .5 and use the pdpe code from Matlab.
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Relevance for optimal control problems

We can approach the decomposition of the optimality system by the following
fixed point procedure:

1. Choose controls (distributed and boundary controls)
2. Solve the state equation in parallel using the DDM above

3. Input the state in the (linear!) adjoint equation and solve using the clas-
sical (still extended) DDM (se e.g. Benamou)

4. Retrieve the controls using the optimality condition and go back to the
first step until done.

Notice, however, that this procedure is not a DDM for the optimality system as
a whole and, consequently, does not lead to a substitute optimal control problem
on the subnetworks.



DDM algorithm for the optimality system

1. Given A, pit,

2. solve for y" 1 pitt

BB (YY) — 0, (Bi(Buy ™)) = 1dp7:+1,

Bi (T H)owi T 4 0. (B (024 ) 0upl ) = kily] T — yf),
y?_l_l('rijv ) — O pk_l_l(mij? ) — 07
1

dijBi(0ny; ) (wij, t) = V,bpi(%» t), dijBi(Dny; ) Oupi(aii ) (wi5,1) = 0,

2
dijBi(0xyy ) (wig) + oy T (wig) + ppi T (wi5) = — (d Z di; Bi (02 ;" ) (@1j) — dij Bi(0xy; ) (wij)

)



P-parabolic problem: Algorithm

d@]ﬁ;( ivy?H(:’U’ij? t))axp?+1($ij7 t) T Op?+1(wijv t) :uy;,nﬂ(mijv t)

( D> diiBi(uyp (w15, 1)) Bu(0up}) (w15, 1) — dij B (Duyy! (i, 1)) (Bi :cpz)(wz'jat))

9 €T,

3. Update )\Z—H, ot for n — n + 1.

1]



Equivalent virtual control problem

1. Given A, pis,

2. solve for "t u Tt ul T i€ T

HllIl{J yzvuz I Z/ glj‘2+‘:uyz /0@] }dt}

u,q,y
1€J5
S. T.

81562(%,) — x(ﬂz(aa:yz)) — U4, 1 E I,$ & [iat -
’L]ﬁz( azyz(mwat)) + O-yi(ajijat) — Aij(t)n + gij(t)7 ] = u7?37i = Ijvt =

Yy, T =0, iGIj,jE
2361( :U%(ajwvt)) — uj(t)> 1€ 15,7 €

3. Update )\,ZH, ot forn — n 4+ 1.

(%)



Example

A two-link problem

p=2, sigma=0, mu=10, nu=0, kappa=1000 p=3/2, sigma=50, mu=100, nu=.001, kappa=1000



Convergence
Sketch of proof: two-link case (x=2)

i=1,2 z¢cl,

Oopl ™) = k(Y —yf), i=1,2, z €l

We omit ¢ in the following where all equations are taken at time t*

diy B (Do (1) + oy (1) — api (1) = —di B (Day (1) + oyl (1) — (L) =

di; B (0ayl T (1)) 0 4 opP (L) + pyl (1) = —di; B (Oayy (1)) 0pp)



Error evolution

We introduce the errors y' = y' — y;;p = p' — p; and subtract the
equations:

1
0vi — 0x (Bi(0aGi"™ + 0avi)) — 0w (Bi(Oavi)) = —Bi' " i=1,2, x €l
—|—/<;(yz-—y§1) =:9,, 1=1,2, x € 1

gt 0) =0, gitt(2) =0,
py T (0) =0, pyT(2) =0,



Transmission conditions and fixed point map

B1(02yr (1)) = Br(Bayn (1)) + oy (1) — ppi ™ (1)
= B2(02y5 (1)) — B2(0:y2(1)) + oy (1) — upy (1)
1)) = B2(9xy2(1))) + g5 (1) — pupy (1)
B1(0xy1' (1)) — B1(0xy1(1))) + oy’ (1) — pupy (1)
B1 (0297 (1)) (02T (1)) = BL(Oy1)0upr (1) + opy (1) + pgy (1)
= B35(02y5 (1)) (82p5 (1)) — B5(92y2(1))Dap2(1)) + opy (1) + pgy (1)
— (B5(0y5 (1)) (8epy (1)) — By (02y2(1))Dap2(1))) + 0Py (1) + pigy ™ (1)
= —(81(0:47 (1)) (0Pt + 0xp1(1)) — B1(02y1(1))0:p1(1))) + op7 (1) + pgy (1)

X" =(61(0zy1' (1)) = B1(0z91 (1)) + 09y’ (1) — ppy (1),

— (B2(02y5 (1)) — B2(02y2(1))) + 03 (1) — upy ™ (1),
B1(0xy1' (1))0py (1) = B1(02y1)02p1 (1) + opt (1) + pyy (1),
— (B2(02y3 (1)) 0up3 (1) — B2(02y2(1))0up2(1))) + op5 (1) + pyz (1))

Accordingly, the blue terms are collected in 7 X™.



Energy and non-expansiveness

e = / > By (1) = Bi(2y:(1))? + (B(Dai (1))} (1) — B(2s(1))Dupi(1))?
(o + p?) (g (1) + 7 (1)%) } dt
F 3:20/{(51( 0zy1 (1)) — B1(0zy1(1)))y1 (1) — (B2(0zy5 (1)) — B2(02y2(1)))ys (1)

+(81(9xy1' (1)) 02pt (1) — B1(92y1(1))0epr (1))p7 (1)
(52( xy2( ))833]?2( ) 52( xy2( ))8xp2(1)))ﬁ3(1)}dt

(51( 0.y1 (1)) 0:p7 (1) — B1(02y1(1))02p1(1)) 77
—(85(02y5 (1)) 92p5 (1) — B3(02y2(1))0zp2(1))

H‘XRHZ _ £&n _|_Jrn7 HTXnHQ — £n _ f-’”’ HA'/TH_1H2 _ HTXnHQ _ HXnHQ _9F™



Proof....

e We need to show that F is positive definite with respect to the norms of
Y, D-

e To do this, we multiply the state and the adjoint equation for the edge 7
individually by v;, p; and perform integration by parts.

e This leads to 4 equations for the boundary values needed in F
e For the estimates we strongly rely on the monotonicity of 5,(-).

e Moreover, in order to control mixed terms in y;,p;, we need to assume
that the iteration starts in a possibly small neighborhood of the solution
(locality as for Newton’s method).

e Finally, we need a careful estimate of the parameters v, k (penalty parame-
ters) and o, u (Robin-type parameters) in order to achieve the positiveness

of F.

e Then the crucial estimate ||X"T1||* = ||TX" |2 = ||X™|? — 2F" leads
to the result.

e The estimations are quite technical!



Time-domain decomposition

e We introduce a coarse time discretization with
0=Ty<Th < - <Tp <Tpy1 < <Tg <Tgs1 =T,

e We introduce the intervals Iy, := (Tk, Tx11)-

e We take the optimality system and restrict the to time interval I;..

e At the time-interfaces Ty, Tx11, we employ continuity conditions (yx)(7T%) =
(ye—1)(T%) k=1,..., K + 1, and similarly for the adjoint variables.



The time-domain-decomposition algorithm

Algorithm

3 n n
1. Given p o1y 1y i1

2. solve the restricted OS|;,_ for y,?“, pZH

(Y ") (D) + 08 (Y ) 0f ) (Ther1) = B gegrs Blyp ) (Tk) — 0wy ™ (Th) = py g1

(1)
with
W jn = (1= &) (B Te) + opfs (Tern)) + € (U™ (Trn) + 08/ (0@ (o)) k=0,
i k-1 = (1 —¢) (?JZ—1(Tk) — 06’(?/?_1)102_1(%)) TE (5(?JZ+1)(TI<) — U(Z?Z)H(Tk))  k=1,... K.

2

3. Update /LZ:II_Cl_l, /LZ:Zi_l for n - n + 1.



Virtual control problem

The corresponding virtual optimal control problem for the generic interval I
reads as follows. With

Tk_|_1 k—|—1 f 1 f
Ji (Uk, Yk, Mk k—1) / / (ye—y5) dxdxt—|— / /uidxdt%—% ((ye (Tht1) — M ka1)” + (hk,k—1)2) dx,
T. O 0

we have

. T
min  Jg (uk, Yk, hr,k—1)
Uk, Yk Nk k—1

S. t.

Ot Br(Yr) — 02 (B (02 (yx))) = ug, in (Tk,Tks1) x (0,£)
Br(yr) (Tk) = hi k-1 + uZ,k_l, in (0,/),

where hy 1 serves as the virtual control.



Virtual control problem: first interval

This system has to be complemented by the problems on the first and the
last interval.

T, ¢ T, ¢
- K %
min J' (ug, yo) := 5 //(yo — yN)?dxdt + 5 //u%dwdt
uo,Yo
TO 0 TO 0
14
1 2
F 5 (yo(T1) — po,1)"dx
o
0

0:tBo(yo) — 0x(Bo(0x(v0))) = wo, in (Tp,T1) x (0,¢)
Br(yo)(To) = yo, in (0,£),



Virtual control problem: last interval

Tki1 ¢ 4
. K
111 JK UK , yK / /?JK yK dxdtJr —/ YK TK+1
UK YK WK K—1 2
0
Tki1 4 ¢
% 1
2 20
T O 0
S. 1.

018k (Yr) — 0:(Br (0:(yk))) = uk, in (Tk,Tki1) X (0,£)
5k(yK)(TK) — M?(,K_l + hg k-1, 1n (075)7



Further results and outlook

1. We have a similar result for the time-domain-decomposition problem (again,
the proof only for for a = 2)

9

2. The simultaneous space-time-domain decomposition is open (fine for the
p-elliptic case)

3. The (Ba, B,)-problem is open (as far as the proof is concerned)

4. Constrained control can be included, however, this has not yet been proved
(just a matter of writing it up)

5. State constraints are completely open.

6. One may use PINN (XPINN) on subnetworks as surrogate models and
perform interface learning (in preparation)

7. Final goal: Network Tearing and Interconnection, a formal analogue of
FETI.



Thank you for your attention!



